30 research outputs found

    Cadmium, lead and bromine in beached microplastics.

    Get PDF
    Samples of microplastic (n = 924) from two beaches in south west England have been analysed by field-portable-x-ray fluorescence (FP-XRF) spectrometry, configured in a low-density mode and with a small-spot facility, for the heavy metals, Cd and Pb, and the halogen, Br. Primary plastics in the form of pre-production pellets were the principal type of microplastic (>70%) on both beaches, with secondary, irregularly-shaped fragments representing the remainder of samples. Cadmium and Pb were detected in 6.9% and 7.5% of all microplastics, respectively, with concentrations of either metal that exceeded 10(3) Όg g(-1) usually encountered in red and yellow pellets or fragments. Respective correlations of Cd and Pb with Se and Cr were attributed to the presence of the coloured, inorganic pigments, cadmium sulphoselenide and lead chromate. Bromine, detected in 10.4% of microplastics and up to concentrations of about 13,000 Όg g(-1), was mainly encountered in neutrally-coloured pellets. Its strong correlation with Sb, whose oxides are effective fire suppressant synergists, suggests the presence of a variety of brominated flame retardants arising from the recycling of plastics originally used in casings for heat-generating electrical equipment. The maximum bioaccessible concentrations of Cd and Pb, evaluated using a physiological extraction based on the chemical characteristics of the proventriculus-gizzard of the northern fulmar, were about 50 Όg g(-1) and 8 Όg g(-1), respectively. These concentrations exceed those estimated for the diet of local seabirds by factors of about 50 and 4, respectively

    Observational study unveils the extensive presence of Hazardous elements in beached plastics from Lake Geneva

    Get PDF
    Over 3,000 samples of plastic litter have been retrieved from 12 pebble beaches around the shores of Lake Geneva. The plastic stock consisted of identifiable objects of various size and color, including bottles, bottle tops, cotton buds, pens, toys, and straws, an heterogeneous assortment of fragments whose origin was either discernible or unknown, and pieces or blocks of expanded polymer (polystyrene or polyurethane foam). Analysis of 670 samples by portable x-ray fluorescence (XRF) spectrometry revealed high concentrations of hazardous elements or compounds among many plastics. These included Cd, Hg, and Pb (with maximum concentrations of 6,760, 810, and 23,500 ppm, respectively) as stabilizers in PVC-based materials and/or brightly-colored sulfide or chromate pigments in primary and secondary plastics, and Br (with a maximum concentration of 27,400 ppm) as a proxy for brominated flame retardants (BFRs) in both plastics and foams. The abundance of hazardous elements in beached plastics that have been restricted or banned reflect the age and residence time of the plastic stock in the lake, coupled with a relatively high length of shoreline to surface area of the system. The migratability of hazardous elements from the polymeric matrix is likely to determine their environmental impacts and is recommended as a future area of research

    The influence of additives on the fate of plastics in the marine environment, exemplified with barium sulphate

    Get PDF
    With an inherent density marginally below that of seawater, polyolefins (polyethylene-polypropylene) are predicted to float or undergo beaching in the marine environment. Polyolefins commonly observed on the seabed, therefore, require additional considerations that are usually based around increasing density through fouling or packaging into sinking faecal matter. Here, however, we propose that the presence of additives is of least equal significance to the behaviour of such plastics in marine systems. We compared barium, present largely as the filler, BaSO₄ (density = 4.5 g cm⁻³), in consumer and beached plastics and established that the metal was more abundant and occurred at higher concentrations in the former samples, consistent with the environmental fractionation of plastics based on additive content. Significantly, the Ba content of polyolefins required to confer a density above seawater is about 13,000 mg kg⁻Âč, a value that was exceeded in many consumer plastics but never observed in beached samples

    Lead pollution of coastal sediments by ceramic waste

    Get PDF
    © 2018 Ceramic fragments and fractionated (<2 mm) sediment have been sampled from two beaches in southwest England, along with sediment from a control beach where ceramic waste was lacking. Analysis of the glazed ceramic surfaces by X-ray fluorescence (XRF) spectrometry returned concentrations of Pb up to 729,000 mg kg−1, while XRF analysis of sediment samples revealed high but heterogeneous concentrations of Pb at the two sites impacted by ceramic waste (median = 292 and 737 mg kg−1) compared with the control beach (median ~ 20 mg kg−1). These observations are attributed to the disposal of contemporary and historical ceramic products, and the subsequent attrition of material and contamination of local sediment. Extraction of a milled ceramic composite (Pb = 2780 mg kg−1) by 1 M HCl, revealed a high (34%) environmental mobility and availability of Pb; extraction in a solution of protein, however, suggested a low (0.1%) bioaccessibility to sediment-ingesting invertebrates

    Stabilized dye-pigment formulations with platy and tubule nanoclays

    Get PDF
    [EN] Alumosilicate materials of different morphologies, such as platy and tubule nanoclays, may serve as an efficient, protective encasing for colored organic substances and nanoparticles. The adsorption of dyes onto the nanoclays increases their stability against thermal, oxidative, and acidÂżbase-induced decomposition. Natural organic dyes form stable composites with clays, thus allowing for ÂżgreenÂż technology in production of industrial nanopigments. In the presence of high-surface-area alumosilicate materials, semiconductor nanoparticles known as quantum dots are stabilized against agglomeration during their colloid synthesis, resulting in safe colors. The highly dispersed nanoclays such as tubule halloysite can be employed as biocompatible carriers of quantum dots for the dual labeling of living human cellsÂżboth for dark-field and fluorescence imaging. Therefore, complexation of dyes with nanoclays allows for new, stable, and inexpensive color formulations.Y.L., V.V., A.S., and A.N. thank the Ministry of Education and Science of the Russian Federation (grant 14.Z50.31.0035) for funding this work. Authors are grateful to Mikhail S. Kotelev (Gubkin University) for the TEM micrographs. The human cell labeling work was performed by RF and ER according to the Russian Government Program of Competitive Growth of Kazan Federal University. The authors also thank the Spanish Ministry of Economy and Competitiveness for funding Projects DPI2011-30090-C02-02 and DPI2015-68514-RMicĂł-Vicent, B.; MartĂ­nez-VerdĂș, FM.; Novikov, A.; Stavitskaya, A.; Vinokurov, V.; Rozhina, E.; Fakhrullin, R.... (2017). Stabilized dye-pigment formulations with platy and tubule nanoclays. Advanced Functional Materials. 28(27):1-9. https://doi.org/10.1002/adfm.201703553S192827Massos, A., & Turner, A. (2017). Cadmium, lead and bromine in beached microplastics. Environmental Pollution, 227, 139-145. doi:10.1016/j.envpol.2017.04.034Mirjalili, M., Nazarpoor, K., & Karimi, L. (2011). Eco-friendly dyeing of wool using natural dye from weld as co-partner with synthetic dye. Journal of Cleaner Production, 19(9-10), 1045-1051. doi:10.1016/j.jclepro.2011.02.001Ebrahimi, I., & Parvinzadeh Gashti, M. (2016). Extraction of polyphenolic dyes from henna, pomegranate rind, andPterocarya fraxinifoliafor nylon 6 dyeing. Coloration Technology, 132(2), 162-176. doi:10.1111/cote.12204Rather, L. J., Shahid-ul-Islam, Shabbir, M., Bukhari, M. N., Shahid, M., Khan, M. A., & Mohammad, F. (2016). Ecological dyeing of Woolen yarn with Adhatoda vasica natural dye in the presence of biomordants as an alternative copartner to metal mordants. Journal of Environmental Chemical Engineering, 4(3), 3041-3049. doi:10.1016/j.jece.2016.06.019Polette-Niewold, L. A., Manciu, F. S., Torres, B., Alvarado, M., & Chianelli, R. R. (2007). Organic/inorganic complex pigments: Ancient colors Maya Blue. Journal of Inorganic Biochemistry, 101(11-12), 1958-1973. doi:10.1016/j.jinorgbio.2007.07.009Kohno, Y., Inagawa, M., Ikoma, S., Shibata, M., Matsushima, R., Fukuhara, C., 
 Kobayashi, K. (2011). Stabilization of a hydrophobic natural dye by intercalation into organo-montmorillonite. Applied Clay Science, 54(3-4), 202-205. doi:10.1016/j.clay.2011.09.001E. Baena-Murillo B. MicĂł-Vicent F. M. MartĂ­nez-VerdĂș Patent WO2013ES70026 20130123 2013Huskić, M., Ćœigon, M., & Ivanković, M. (2013). Comparison of the properties of clay polymer nanocomposites prepared by montmorillonite modified by silane and by quaternary ammonium salts. Applied Clay Science, 85, 109-115. doi:10.1016/j.clay.2013.09.004Kohno, Y., Asai, S., Shibata, M., Fukuhara, C., Maeda, Y., Tomita, Y., & Kobayashi, K. (2014). Improved photostability of hydrophobic natural dye incorporated in organo-modified hydrotalcite. Journal of Physics and Chemistry of Solids, 75(8), 945-950. doi:10.1016/j.jpcs.2014.04.010Kohno, Y., Haga, E., Yoda, K., Shibata, M., Fukuhara, C., Tomita, Y., 
 Kobayashi, K. (2014). Adsorption behavior of natural anthocyanin dye on mesoporous silica. Journal of Physics and Chemistry of Solids, 75(1), 48-51. doi:10.1016/j.jpcs.2013.08.007Wang, C.-C., Juang, L.-C., Hsu, T.-C., Lee, C.-K., Lee, J.-F., & Huang, F.-C. (2004). Adsorption of basic dyes onto montmorillonite. Journal of Colloid and Interface Science, 273(1), 80-86. doi:10.1016/j.jcis.2003.12.028Salam, H., Dong, Y., & Davies, I. (2015). Development of biobased polymer/clay nanocomposites. Fillers and Reinforcements for Advanced Nanocomposites, 101-132. doi:10.1016/b978-0-08-100079-3.00006-5TombĂĄcz, E., & Szekeres, M. (2004). Colloidal behavior of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes. Applied Clay Science, 27(1-2), 75-94. doi:10.1016/j.clay.2004.01.001DurĂĄn, J. D. G., Ramos-Tejada, M. M., Arroyo, F. J., & GonzĂĄlez-Caballero, F. (2000). Rheological and Electrokinetic Properties of Sodium Montmorillonite Suspensions. Journal of Colloid and Interface Science, 229(1), 107-117. doi:10.1006/jcis.2000.6956B. MicĂł-Vicent F. M. MartĂ­nez-VerdĂș Spain Patent ES2568833 2017Lvov, Y., Wang, W., Zhang, L., & Fakhrullin, R. (2015). Halloysite Clay Nanotubes for Loading and Sustained Release of Functional Compounds. Advanced Materials, 28(6), 1227-1250. doi:10.1002/adma.201502341Liu, M., Jia, Z., Jia, D., & Zhou, C. (2014). Recent advance in research on halloysite nanotubes-polymer nanocomposite. Progress in Polymer Science, 39(8), 1498-1525. doi:10.1016/j.progpolymsci.2014.04.004Du, M., Guo, B., & Jia, D. (2010). Newly emerging applications of halloysite nanotubes: a review. Polymer International, 59(5), 574-582. doi:10.1002/pi.2754Yuan, P., Tan, D., & Annabi-Bergaya, F. (2015). Properties and applications of halloysite nanotubes: recent research advances and future prospects. Applied Clay Science, 112-113, 75-93. doi:10.1016/j.clay.2015.05.001Cavallaro, G., Lazzara, G., & Milioto, S. (2012). Exploiting the Colloidal Stability and Solubilization Ability of Clay Nanotubes/Ionic Surfactant Hybrid Nanomaterials. The Journal of Physical Chemistry C, 116(41), 21932-21938. doi:10.1021/jp307961qMicĂł-Vicent, B., JordĂĄn, J., MartĂ­nez-VerdĂș, F., & Balart, R. (2016). A combination of three surface modifiers for the optimal generation and application of natural hybrid nanopigments in a biodegradable resin. Journal of Materials Science, 52(2), 889-898. doi:10.1007/s10853-016-0384-8R. Price, B. P. Gaber, Y. Lvov, R. (2001). In-vitro release characteristics of tetracycline HCl, khellin and nicotinamide adenine dineculeotide from halloysite; a cylindrical mineral. Journal of Microencapsulation, 18(6), 713-722. doi:10.1080/02652040010019532Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D., & Delvaux, B. (2005). Halloysite clay minerals — a review. Clay Minerals, 40(4), 383-426. doi:10.1180/0009855054040180Lvov, Y. M., Shchukin, D. G., Möhwald, H., & Price, R. R. (2008). Halloysite Clay Nanotubes for Controlled Release of Protective Agents. ACS Nano, 2(5), 814-820. doi:10.1021/nn800259qLvov, Y., & Abdullayev, E. (2013). Functional polymer–clay nanotube composites with sustained release of chemical agents. Progress in Polymer Science, 38(10-11), 1690-1719. doi:10.1016/j.progpolymsci.2013.05.009Abdullayev, E., Joshi, A., Wei, W., Zhao, Y., & Lvov, Y. (2012). Enlargement of Halloysite Clay Nanotube Lumen by Selective Etching of Aluminum Oxide. ACS Nano, 6(8), 7216-7226. doi:10.1021/nn302328xYah, W. O., Takahara, A., & Lvov, Y. M. (2012). Selective Modification of Halloysite Lumen with Octadecylphosphonic Acid: New Inorganic Tubular Micelle. Journal of the American Chemical Society, 134(3), 1853-1859. doi:10.1021/ja210258yCavallaro, G., Lazzara, G., Milioto, S., Parisi, F., & Sanzillo, V. (2013). Modified Halloysite Nanotubes: Nanoarchitectures for Enhancing the Capture of Oils from Vapor and Liquid Phases. ACS Applied Materials & Interfaces, 6(1), 606-612. doi:10.1021/am404693rSilvi, S., & Credi, A. (2015). Luminescent sensors based on quantum dot–molecule conjugates. Chemical Society Reviews, 44(13), 4275-4289. doi:10.1039/c4cs00400kJin, T., & Imamura, Y. (2015). Applications of Highly Bright PbS Quantum Dots to Non-Invasive Near-Infrared Fluorescence Imaging in the Second Optical Window. ECS Journal of Solid State Science and Technology, 5(1), R3138-R3145. doi:10.1149/2.0171601jssXu, Z., Yan, J., Xu, C., Cheng, C., Jiang, C., Liu, X., & Qiu, J. (2017). Tunable near-infrared emission and fluorescent lifetime of PbSe quantum dot-doped borosilicate glass. Journal of Alloys and Compounds, 711, 58-63. doi:10.1016/j.jallcom.2017.03.347Petryayeva, E., Algar, W. R., & Medintz, I. L. (2013). Quantum Dots in Bioanalysis: A Review of Applications across Various Platforms for Fluorescence Spectroscopy and Imaging. Applied Spectroscopy, 67(3), 215-252. doi:10.1366/12-06948Shen, H., Bai, X., Wang, A., Wang, H., Qian, L., Yang, Y., 
 Li, L. S. (2013). High-Efficient Deep-Blue Light-Emitting Diodes by Using High Quality ZnxCd1-xS/ZnS Core/Shell Quantum Dots. Advanced Functional Materials, 24(16), 2367-2373. doi:10.1002/adfm.201302964Li, Q., Jin, X., Yang, Y., Wang, H., Xu, H., Cheng, Y., 
 Luo, S. (2015). Nd2(S, Se, Te)3Colloidal Quantum Dots: Synthesis, Energy Level Alignment, Charge Transfer Dynamics, and Their Applications to Solar Cells. Advanced Functional Materials, 26(2), 254-266. doi:10.1002/adfm.201503433Liu, Q., Campbell, M. G., Evans, J. S., & Smalyukh, I. I. (2014). Nanocrystals: Orientationally Ordered Colloidal Co-Dispersions of Gold Nanorods and Cellulose Nanocrystals (Adv. Mater. 42/2014). Advanced Materials, 26(42), 7133-7133. doi:10.1002/adma.201470287Benayas, A., Ren, F., Carrasco, E., Marzal, V., del Rosal, B., Gonfa, B. A., 
 Vetrone, F. (2015). PbS/CdS/ZnS Quantum Dots: A Multifunctional Platform for In Vivo Near-Infrared Low-Dose Fluorescence Imaging. Advanced Functional Materials, 25(42), 6650-6659. doi:10.1002/adfm.201502632Chen, J., Kong, Y., Wang, W., Fang, H., Wo, Y., Zhou, D., 
 Chen, S. (2016). Direct water-phase synthesis of lead sulfide quantum dots encapsulated by ÎČ-lactoglobulin for in vivo second near infrared window imaging with reduced toxicity. Chemical Communications, 52(21), 4025-4028. doi:10.1039/c6cc00099aMalgras, V., Tominaka, S., Ryan, J. W., Henzie, J., Takei, T., Ohara, K., & Yamauchi, Y. (2016). Observation of Quantum Confinement in Monodisperse Methylammonium Lead Halide Perovskite Nanocrystals Embedded in Mesoporous Silica. Journal of the American Chemical Society, 138(42), 13874-13881. doi:10.1021/jacs.6b05608Tiwari, A., & Dhoble, S. J. (2016). Stabilization of ZnS nanoparticles by polymeric matrices: syntheses, optical properties and recent applications. RSC Advances, 6(69), 64400-64420. doi:10.1039/c6ra13108eDzamukova, M. R., Naumenko, E. A., Rozhina, E. V., Trifonov, A. A., & Fakhrullin, R. F. (2015). Cell surface engineering with polyelectrolyte-stabilized magnetic nanoparticles: A facile approach for fabrication of artificial multicellular tissue-mimicking clusters. Nano Research, 8(8), 2515-2532. doi:10.1007/s12274-015-0759-1Tai, S., Sun, Y., Squires, J. M., Zhang, H., Oh, W. K., Liang, C.-Z., & Huang, J. (2011). PC3 is a cell line characteristic of prostatic small cell carcinoma. The Prostate, 71(15), 1668-1679. doi:10.1002/pros.21383Konnova, S. A., Sharipova, I. R., Demina, T. A., Osin, Y. N., Yarullina, D. R., Ilinskaya, O. N., 
 Fakhrullin, R. F. (2013). Biomimetic cell-mediated three-dimensional assembly of halloysite nanotubes. Chemical Communications, 49(39), 4208. doi:10.1039/c2cc38254

    Cadmium pigments in consumer products and their health risks

    Get PDF
    © 2018 Elsevier B.V. Cadmium is a toxic heavy metal that has been increasingly regulated over the past few decades. The main exposure routes for the general public are the consumption of certain foods and the inhalation of cigarette smoke. However, additional exposure may occur through the current and historical use of the metal in consumer products. In this paper, the uses of Cd in consumer goods are reviewed, with the focus on brightly-coloured Cd sulphide and sulphoselenide pigments, and measurements of Cd in historical and contemporary products ascertained by XRF are reported. Cadmium is encountered across a wide range of contemporary plastic products, mainly because of the unregulated recycling of electronic waste and polyvinyl chloride. However, concentrations are generally low (<100 ÎŒg g−1), conforming with current limits and posing minimal risk to consumers. Of greater concern is high concentrations of pigmented Cd (up to 2% by weight) in old products, and in particular children's toys that remain in circulation. Here, tests conducted suggest that Cd migration in some products exceeds the Toy Safety Directive limit of 17 ÎŒg g−1 by an order of magnitude. The principal current use of Cd pigments is in ceramic products where the metal is encapsulated and overglazed. Leaching tests on new and secondhand items of hollowware indicate compliance with respect to the current Cd limit of 300 ÎŒg L−1, but that non-compliance could occur for items of earthenware or damaged articles should a proposed limit of 5 ÎŒg L−1 be introduced. The greatest consumer risk identified is the use of Cd pigments in the enamels of decorated drinking glasses. Thus, while dĂ©cor is restricted to the exterior, any enamel within the lip area is subject to ready attack from acidic beverages because the pigments are neither encapsulated nor overglazed. Glass bottles decorated with Cd-based enamel do not appear to represent a direct health hazard but have the propensity to contaminate recycled glass products. It is recommended that decorated glassware is better regulated and that old, brightly-coloured toys are treated cautiously

    Jujutsu Kaisen: Akutami’s Radical Evolution of Shƍnen Anime Protagonists

    No full text
    “I don’t give a damn about men this or women that” — This thesis examines the evolution of female representation (with or without an LGBT subtext) within the Shonen anime genre through the protagonists portrayed in Gege Akutami’s series Jujutsu Kaisen (2018-Present)

    Jujutsu Kaisen: Akutami’s Radical Evolution of Shƍnen Anime Protagonists

    No full text
    “I don’t give a damn about men this or women that” — This thesis examines the evolution of female representation (with or without an LGBT subtext) within the Shonen anime genre through the protagonists portrayed in Gege Akutami’s series Jujutsu Kaisen (2018-Present)

    Hand-held X-ray fluorescence spectrometry

    No full text
    corecore