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Abstract 

With an inherent density marginally below that of seawater, polyolefins (polyethylene-

polypropylene) are predicted to float or undergo beaching in the marine environment. 

Polyolefins commonly observed on the seabed, therefore, require additional 

considerations that are usually based around increasing density through fouling or 

packaging into sinking faecal matter. Here, however, we propose that the presence of 

additives is of least equal significance to the behaviour of such plastics in marine 

systems. We compared barium, present largely as the filler, BaSO4 (density = 4.5 g cm-

3), in consumer and beached plastics and established that the metal was more abundant 

and occurred at higher concentrations in the former samples, consistent with the 

environmental fractionation of plastics based on additive content. Significantly, the Ba 

content of polyolefins required to confer a density above seawater is about 13,000 mg 

kg-1, a value that was exceeded in many consumer plastics but never observed in 

beached samples. 
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1. Introduction 

The behaviour and (eco)toxicological effects of plastic litter in the aquatic environment, 

and in particular of microplastics, are generally discussed or modelled as though 

materials are ‘pure’ polymers (Cole et al., 2015; Chubarenko et al., 2016; Yin et al., 

2018; Kaiser et al., 2019; Richard et al., 2019). A central tenet of many of these studies 

is that transport and fate is dictated by density, with polymers whose densities are lower 

than water subject to transportation at or near the surface and deposition on shorelines 

and polymers with densities greater than water subject to sinking and accumulation in 

benthic environments (Zhang, 2017; Collins and Hermes, 2019). This assumption, 

however, ignores the fact that most manufactured plastic products contain a variety of 

additives and residues whose specific densities are often well above unity (Pritchard, 

1997; Papazoglou et al., 2004; Hansen et al, 2013; Shaw and Turner, 2019). A variety 

of functional additives that are based on simple mineral or more complex organic 

compounds are employed in plastics and include antimicrobials, biostabilisers, 

antioxidants, antistatic agents, external and internal lubricants, fillers, extenders, flame 

retardants, fragrances, heat and light stabilisers, impact modifiers, pigments for colour 

and plasticisers. 

Compounds of Ba, including barium sulphide, barium carbonate, barium stearate and 

barium sulphate, have found widespread usage in various plastics, with BaSO4 being 

the most commonly applied as an inert, white filler and extender, especially where an 

increase in specific gravity is required (Gooch, 2011). Barium compounds are among 

the densest used in plastics and, unlike other dense additives based on heavy metals 

(e.g. Pb and Cd), their presence has not been subject to restrictions based on 

environmental and health grounds. 
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Barium itself is a silvery-white Group IIA alkaline earth element that occurs in nature 

largely as the minerals barite (BaSO4) and witherite (BaCO3). Barium is a non-essential 

element for living organisms and in soluble form is very toxic, with some compounds 

(e.g. BaCl2) used as an insecticide. However, BaSO4 is so poorly soluble in water that 

it is considered to be non-toxic and is even used in medical applications as a contrast 

medium (Menzie et al., 2008; Nielsen and Ladefoged, 2013). As noted above, the 

presence of Ba in plastics is not regulated although its migration into a solution 

mimicking the human stomach (0.07 M HCl) from toys is limited to between 375 and 

18,750 mg kg-1, depending on the physical characteristics of the material, according to 

the latest iteration of the European Toy Safety Directive (Turner, 2018).  

In this study we report on X-ray fluorescence (XRF) measurements of Ba in both plastic 

consumer products and in plastics retrieved from the strandlines of beaches in order to 

evaluate the occurrence and concentrations of the metal across a wide range of 

contemporary and historical materials. Given the high density of Ba compounds (e.g. 

BaSO4 = 4.5 g cm-3), we explore the hypothesis that the amount of Ba present as an 

additive in low density plastics, such as polypropylene and high density and low density 

polyethylene (and known collectively as polyolefins), may impact on their fate in the 

marine environment.  

2. Materials and methods 

2.1. Sample collection and categorisation 

Plastic samples for the present study had been acquired as part of independent research 

projects (Turner and Solman, 2016; Turner and Filella, 2017; Turner, 2018) or were 

collected or purchased specifically for the present study. We focused on rigid or semi-

rigid plastics, avoiding rubber and foams, in both consumer products and beached litter. 



5 

 

Consumer plastics (n = 342) included single use and multi-use food and cosmetic items, 

toys, containers and bottles, decorations, construction consumables and other plastics 

that enter the conventional municipal waste stream and whose age range spans 50 years. 

Note that we excluded electronic insulation and housings that are, in principle, disposed 

of separately for material recovery. Polymeric composition was noted from standard 

resin codes, where evident, or from previous characterisation, if undertaken. Littered 

plastics visible to the naked eye were collected from the strandlines of a variety of sandy 

beaches in south west and southern England, hereafter categorised as Atlantic (three 

beaches facing the Atlantic Ocean: n = 95), urban (two beaches within the urbanised 

reaches of Plymouth Sound: n = 55) and Channel (one English Channel facing beach: 

n = 43). To be as consistent as possible with consumer plastics, we avoided samples 

that had a distinctive marine or industrial source, like fishing rope and cord and beads 

for waste water treatment, and focussed on primary or secondary plastics more 

representative of municipal waste. Distinctive items retrieved included toys, bottles and 

bottle tops, cartridges, nozzles, caps, cotton buds, crate strapping and piping. Offcuts 

of a few mg from samples collected from the Channel beach were analysed by 

attenuated total reflectance Fourier-transform-infrared (ATR-FTIR) spectrometry using 

a Bruker Vertex 70 in order to identify component polymers. 

2.2. XRF analysis 

Samples were analysed by energy-dispersive FP-XRF using a Niton XL3t 950 He 

GOLDD+ that was employed either in the laboratory and in an accessory stand or in 

situ and handheld. The instrument was operated in a customised, standardless ‘plastics’ 

mode with a thickness correction algorithm employed for samples between 50 m and 

12 mm in depth. Sample thickness was determined through the measurement surface 
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using Allendale digital callipers and, where possible and to reduce counting error, 

thickness was increased by layering or folding material. 

Samples were counted for Ba and Cl (as a proxy for polyvinyl chloride, PVC, and 

defined as having a concentration > 15%) amongst a range of elements for periods 

ranging from 30 to 180 s, depending on thickness, that were distributed equally or in a 

2:1 ratio between a low energy range (20 kV and 100 A) and main energy range (50 

kV and 40 A). Spectra were quantified by fundamental parameter coefficients to yield 

concentrations on a dry weight basis (in g g-1) and with a counting error of 2 (95% 

confidence). As a performance check, a 13-mm thick polyethylene reference disc 

(Niton PN 180-619, Lot # T-81) that had been impregnated with Ba at a concentration 

of 688 + 45 mg kg-1 was analysed throughout each measurement session, with the 

instrument returning an average concentration of 721 mg kg-1 (n = 22). Precision, as the 

relative standard deviation arising from quintuplicate measurements of selected 

samples, ranged from 8 to 17%.  

According to the manufacturer, the instrument detection limit for Ba in polyethylene of 

infinite thickness and counted for 30 s is 100 mg kg-1. This value increases with 

decreasing thickness and decreases with increasing counting time and for our samples 

and operating conditions detection limits, derived from the lowest counting errors 

arising from each analytical batch, ranged from about 95 to 250 mg kg-1. The high and 

variable detection limit for Ba compared with other elements results from an overlap of 

its Lβ line by a stronger Ti Kβ peak and a Kα line of low sensitivity that is located at 

32.19 keV and towards the maximum energy discharged by the X-ray source (Conrey 

et al., 2014). It is, therefore, important to appreciate these constraints when we report 

concentrations of Ba that were detected. 
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3. Results 

3.1. Polymer composition 

Most of the single use consumer items considered were constructed of polyethylene, 

polypropylene or polyethylene terephthalate (PET), while multi-use items, where 

signage was evident, displayed a broader variety of polymeric materials that included, 

additionally, polystyrene, acrylonitrile butadiene styrene (ABS), polycarbonate and 

PVC. Of the beach litter plastics analysed by FTIR (n = 43), 17 were polyethylene, 21 

were polypropylene, four were blends of (presumably recycled) polyethylene and 

polypropylene and one was PVC. 

3.2. Barium concentrations and distributions 

The number of cases in which Ba was detected by XRF, along with summary statistics 

for concentrations (where returned), are shown in Table 1 for beached plastic litter and 

consumer plastics. Figure 1 presents Ba concentrations in ascending order and in terms 

of frequency distribution for the two sample categories. Barium was detected in more 

than 40% of the consumer items analysed with concentrations ranging from 243 to 

105,000 mg kg-1 and dominated by measurements in the 1000 to 5000 mg kg-1 interval. 

The metal was detected in a broad range of products and polymer types of different 

ages of manufacture that included polyethylene- and polypropylene-based toys, 

polystyrene cases, and PET- and polyethylene-based single-use food packaging and 

food utensils. Barium was also commonly present in products constructed of PVC (as 

defined by the Cl content returned by the XRF), including toys and sports gear. 

Significantly, at least 59 samples out of 112 consumer plastics in which Ba was detected 

were of low density, polyethylene or polypropylene construction. 
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Regarding beached litter, Ba was detected by XRF in < 10% of all samples analysed 

and in only one sample from the Channel beach. The maximum concentration of about 

11,000 mg kg-1 was encountered in an item of PVC packaging from an urban beach, 

and the remaining Ba-positive samples were dominated by the 1000 to 5000 mg kg-1 

concentration interval and by bottle tops (n = 6) and fragments of unknown origin (n = 

8) that spanned a variety of colours, including colourless. Despite an overall mean Ba 

concentration that was considerably lower in beached plastics (2320 mg kg-1) than in 

consumer plastics (6890 mg kg-1), an independent two sample t-test revealed no 

significant difference between the two categories (p = 0.09). 

4. Discussion 

The inherent densities of polyolefin thermoplastics (polyethylene and polypropylene) 

are in the range 0.9 to 1.0 g cm-3 and considerably lower than the densities of the 

remaining polymers encountered in consumer products (for instance, the densities of 

polycarbonate, PET and PVC are typically above 1.2 g cm-3). Thus, assuming that 

consumer plastics are broadly representative of plastic waste entering the environment, 

a natural selection of beached plastics according to density is predicted. Specifically, 

polyolefin densities below that of coastal seawater (about 1.02 g cm-3) ensure that this 

material evades sinking and is subject to long-term transportation in suspension or 

beaching on the strandline while denser material is deposited in the benthic environment 

and closer to its point of origin (Schwarz et al., 2019). This assertion is consistent with 

the observations in the present study and findings of other studies where beached 

plastics are dominated by polyolefins (Andrades et al., 2018; Brignac et al., 2019; Chen 

and Chen, 2020), with occasional denser objects (e.g. PVC) only washed up during 

certain weather conditions or when entangled with natural benthic material like kelp 
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that is sometimes deposited in the intertidal zone (Massos and Turner, 2017; Turner et 

al., 2020).  

This selection of material based on inherent polymer density does not, however, account 

for cases in which polyolefins have been detected in sediments of the seabed over a 

wide range of water depths (Vianello et al., 2013; Frére et al., 2017; Cheang et al., 2018; 

Mu et al., 2019; Mistri et al., 2020). Some authors attribute their presence here to an 

increase in density and settling velocity through chemical or biological fouling or to 

incorporation of fragments into sinking biological aggregates like faecal material (Long 

et al., 2015; Cole et al., 2016; Koelmans et al., 2017). These effects become more 

important with decreasing particle size and increasing surface area (Ryan, 2015; Kooi 

et al., 2017) but may only result in temporary deposition since fouled precipitates 

dissolve and faecal pellets disaggregate much more quickly than the rates at which 

plastics degrade. 

A plausible alternative, however, and one that accounts for the more permanent 

deposition of polyolefins of a range of size on the seafloor, is that the density of some 

formulations of polyethylene or polypropylene is sufficiently high to facilitate sinking 

through the presence of chemical additives in the matrix. Corcoran et al. (2015) 

suggested that the occurrence of polyethylene and polypropylene fragments in bottom 

sediments of Lake Ontario might result from the presence of a range of mineral fillers 

of moderate density, like talc and calcium carbonate ( ~ 2.7 g cm-3), and other 

additives. An important, more general implication is that the environmental behaviour 

and fate of plastics constructed of polymers whose inherent densities are just below that 

of water could be sensitive to the precise nature and concentration of functional 

additives.  
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Results reported herein are qualitatively consistent with this assertion in that Ba-based 

additives are more commonly encountered and at higher (mean) concentrations in 

consumer plastics than in beached plastics. From a quantitative perspective, we may 

calculate the effects of increasing the fractional contribution of an additive, fA, of 

density,A, on the density of polyethylene or polypropylene,P,  from mass balance:  

PA = (1 – fA) P + fAA  (1) 

where PA is the net density of the amended plastic. With respect to Ba, and assuming 

that the metal is present as the filler, BaSO4 (A = 4.5 g cm-3): 

PA = (1 – [Ba]/5.89x105) P + [Ba]A /5.89x105  (2) 

where the concentration of Ba is in mg kg-1 and 5.89x105 accounts for unit conversion 

and the mass contribution of the metal to the compound. Figure 2 shows the predicted 

change in density of a polyolefin (of median P = 0.94 g cm-3) arising from increasing 

Ba concentration up to 50,000 mg kg-1. Significantly, and as annotated, an added Ba 

concentration of 13,200 mg kg-1 is sufficient to raise the density to that of coastal 

seawater and alter the environmental fate and (photolytic) degradation rate of the 

plastic. This concentration was exceeded in 17 consumer plastics, of least five of which 

were polyolefin in construction, but was never exceeded among the beached plastics 

analysed. On this basis, therefore, we predict that polyolefins in the marine environment 

that have a Ba content in excess of a critical value of 13,200 mg kg-1 will accumulate 

on the seafloor of temperate coastal regions, with sinking in fresh water or deep ocean 

environments requiring slightly less than or more than this concentration, respectively. 

On the other hand, polyolefins containing lower concentrations of Ba are predicted to 

remain in suspension or become beached. Significantly, the behaviour of polyolefins 
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whose Ba content is close to the critical value may be particularly sensitive to additional 

environmental factors, such as fluctuations in salinity or temperature, the degree of 

biofouling and the rate of leaching of the additive from the matrix. 

Of course, in reality manufactured plastics may contain a range of additives that have 

been deliberately added during manufacture or incorporated inadvertently through 

recycling that further increase density or reduce the amount of Ba required to reach a 

critical density equal to that of seawater. Where Ba was detected in consumer goods by 

XRF it was generally the main additive in terms of mass, although X-ray spectra often 

revealed important contributions from compounds of Fe, Ti and Zn and traces of 

compounds of Cu, Pb and Sb.  

An additional consequence of the environmental fractionation of polyolefins according 

to additive content is the exposure to greater quantities of potentially harmful 

compounds in benthic habitats through incidental ingestion of plastic. Thus, BaSO4 

itself very insoluble (285 mg L-1 in water at 30oC; Ropp, 2013) but plastic could be a 

source of microscopic filler particles whose size range (2 to 70 m for BaSO4; 

Pritchard, 1997) presents a risk of being accumulated and translocated (Cole et al., 

2015; Fernandez and Albentosa, 2019). Other, dense and harmful additives used 

historically in polyethylene and polypropylene for colour include lead chromate and 

cadmium sulphate (Hansen et al., 2013; Turner, 2018) and while occasionally reported 

in beached plastics (Turner and Solman, 2016; Massos and Turner, 2017), we surmise 

that higher concentrations are likely in benthic accumulations.  
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Table 1: Number of cases in which Ba was detected by XRF and summary statistics 

for Ba concentrations in consumer plastics and beached plastics. Also shown is the 

number of PVC samples containing detectable Ba. 

 

  

Consumer goods Atlantic beaches Urban beaches Channel beach

no. analysed 342 95 55 43

no. Ba detected 140 6 11 1

% Ba detected 40.9 6.3 20.0 2.3

mean, mg kg-1 6890 2150 2540 910

min, mg kg-1 243 551 329

max, mg kg-1 105,000 5690 10,700

median, mg kg-1 1540 1620 2030

Q1, mg kg-1 640 1130 1080

Q3, mg kg-1 6510 2220 2700

no. PVC 33 1 1 0

no. PVC Ba detected 26 0 1 0
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Figure 1: Barium detected in consumer and beached plastics, shown in ascending order 

of concentration. Inset is the frequency distribution of Ba concentrations in both 

categories.  
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Figure 2: Increase in density of a polyolefin with increasing Ba content, calculated 

according to equation 2. Annotated is the density of coastal seawater and the (critical) 

added Ba content required to reach this value. 
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