148 research outputs found

    Conditions for detecting lensed Population III galaxies in blind surveys with the James Webb Space Telescope, the Roman Space Telescope and Euclid

    Full text link
    Dark matter halos that reach the HI-cooling mass without prior star formation or external metal pollution represent potential sites for the formation of small Population III galaxies at high redshifts. Such objects are expected to attain total stellar masses of at most 10610^6 solar masses and will therefore typically be extremely faint. Gravitational lensing may in rare cases boost their fluxes to detectable levels, but to find even a small number of such objects requires very large sky areas to be surveyed. Because of this, a small, wide-field telescope can in principle offer better detection prospects than a large telescope with a smaller field of view. Here, we derive the Pop III galaxy properties - in terms of comoving number density, stellar initial mass function and total stellar mass - required to allow gravitational lensing to lift such objects at redshift z = 5-16 above the detection thresholds of blind surveys carried out with the James Webb space telescope (JWST), the Roman space telescope (RST) or Euclid. We find that the prospects for photometric detections of Pop III galaxies are promising, and that they are better for RST than for JWST and Euclid. However, the Pop III galaxies favoured by current simulations have number densities too low to allow spectroscopic detections based on the strength of the HeII1640 emission line in any of the considered surveys unless very high star formation efficiencies (10 per cent) are envoked.Comment: 13 pages, 4 figure

    Nitrogen substitutional defects in silicon. A quantum mechanical investigation of the structural, electronic and vibrational properties

    Get PDF
    RD and FSG acknowledges the CINECA award (HP10CTG8YY) under the ISCRA initiative, for the availability of high performance computing resources and support.The vibrational infrared (IR) and Raman spectra of seven substitutional defects in bulk silicon are computed, by using the quantum mechanical CRYSTAL code, the supercell scheme, an all electron Gaussian type basis set and the B3LYP functional. The relative stability of various spin states has been evaluated, the geometry optimized, the electronic structure analyzed. The IR and Raman intensities have been evaluated analitically. In all cases the IR spectrum is dominated by a single N peak (or by two or three peaks with very close wavenumbers), whose intensity is at least 20 times larger than the one of any other peak. These peaks fall in the 645–712 cm−1 interval, and a shift of few cm−1 is observed from case to case. The Raman spectrum of all defects is dominated by an extremely intense peak at about 530 cm−1, resulting from the (weak) perturbation of the peak of pristine silicon.ISCRA initiative CINECA award (HP10CTG8YY); Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    The stellar populations of the bluest low surface brightness galaxies

    Full text link
    Using optical/near-IR broadband photometry together with Halpha emission line data, we attempt to constrain the star formation histories, ages, total stellar masses and stellar mass-to-light ratios for a sample of extremely blue low surface brightness galaxies. We find that, under standard assumptions about the stellar initial mass function, the Halpha equivalent widths of these objects appear inconsistent with recently suggested scenarios including constant or increasing star formation rates over cosmological time scales. In a critical assessment of the prospects of obtaining ages from integrated broadband photometry, we conclude that even with near-IR data, the ages are poorly constrained and that current observations cannot rule out the possibility that these objects formed as recently as 1-2 Gyr ago. Methods which could potentially improve the age estimates are discussed. The stellar masses of these galaxies are inferred to lie below 10^10 solar masses. This, in combination with low ages, could constitute a problem for current hierarchical models of galaxy formation, which predict objects of this mass to form predominantly early in the history of the universe. The possibility to use the ages of the bluest low surface brightness galaxies as a test of such models is demonstrated.Comment: 13 pages, 14 figures, accepted for publication in A&

    I Zw 18 as morphological paradigm for rapidly assembling high-z galaxies

    Full text link
    IZw18, ever since regarded as the prototypical blue compact dwarf (BCD) galaxy, is, quite ironically, the most atypical BCD known. This is because its large exponential low-surface brightness envelope is not due to an old stellar host but entirely due to extended nebular emission (ne) (Papaderos et al. 2002; P02). We study IZw18 and IZw18C down to an unprecedently faint surface brightness level using HST ACS data. We argue that the properties of IZw18C can be consistently accounted for by propagating star formation over the past ~100 Myr, in combination with stellar diffusion and the associated radial stellar mass filtering effect (P02). As for IZw18, we find that ne extends out to ~16 stellar scale lengths and provides at least 1/3 of the total optical emission. The case of IZw18 suggests caution in studies of distant galaxies in dominant stages of their evolution, rapidly assembling their stellar mass at high specific star formation rates (SSFRs). It calls attention to the fact that ne is not necessarily cospatial with the underlying ionizing and non-ionizing stellar background, neither has to scale with its surface density. The prodigious energetic output during dominant phases of galaxy evolution may result in large exponential ne envelopes, extending much beyond the still compact stellar component, just like in IZw18. Therefore, the morphological paradigm of IZw18, while probably unique in the nearby Universe, may be ubiquitous among high-SSFR galaxies at high redshift. Using IZw18 as reference, we show that extended ne may introduce substantial observational biases and significantly affect fundamental galaxy relations. Among others, we show that the surface brightness profiles of distant morphological analogs to IZw18 may be barely distinguishable from Sersic profiles with an exponent 2<n<5, thus mimicking the profiles of massive galaxy spheroids. (abridged)Comment: 22 pages, 15 figures, Accepted for publication in Astronomy and Astrophysic

    Dark matter dominated dwarf disc galaxy Segue 1

    Full text link
    Several observations reveal that dwarf galaxy Segue 1 has a dark matter (DM) halo at least ~ 200 times more massive than its visible baryon mass of only ~ 103 solar masses. The baryon mass is dominated by stars with perhaps an interstellar gas mass of < 13 solar masses. Regarding Segue 1 as a dwarf disc galaxy by its morphological appearance of long stretch, we invoke the dynamic model of Xiang-Gruess, Lou & Duschl (XLD) to estimate its physical parameters for possible equilibria with and without an isopedically magnetized gas disc. We estimate the range of DM mass and compare it with available observational inferences. Due to the relatively high stellar velocity dispersion compared to the stellar surface mass density, we find that a massive DM halo would be necessary to sustain disc equilibria. The required DM halo mass agrees grossly with observational inferences so far. For an isopedic magnetic field in a gas disc, the ratio f between the DM and baryon potentials depends strongly on the magnetic field strength. Therefore, a massive DM halo is needed to counteract either the strong stellar velocity dispersion and rotation of the stellar disc or the magnetic Lorentz force in the gas disc. By the radial force balances, the DM halo mass increases for faster disc rotation.Comment: 5 pages, 2 figures, accepted for publication in MNRA

    Study of galaxies in the Lynx-Cancer void. -- III. New extreme LSB dwarf galaxies

    Full text link
    (Abridged) We present the results of the complex study of the low surface brightness dwarf (LSBD) gas-rich galaxies J0723+3621, J0737+4724 and J0852+1350, which reside in the nearby Lynx-Cancer void. Their ratios M(HI)/L_B, according to HI data obtained with the NRT, are respectively ~3.9, ~2, ~2.6. For the two latter galaxies, we derived oxygen abundance corresponding to the value of 12+log(O/H) <~7.3, using spectra from the Russian 6m telescope and from the SDSS database. We found two additional blue LSB dwarfs, J0723+3622 and J0852+1351, which appear to be physical companions of J0723+3621 and J0852+1350 situated at the projected distances of ~12--13 kpc. The companion relative velocities, derived from the BTA spectra, are dV = +89 km/s and +30 km/s respectively. The geometry and the relative orientation of orbits and spins in these pairs indicate, respectively, prograde and polar encounters for J0723+3621 and J0852+1350. The NRT HI profiles of J0723+3621 and J0723+3622 indicate a sizable gas flow in this system. The SDSS u,g,r,i images of the five dwarfs are used to derive the photometric parameters and the exponential or Sersic disc model fits. For three of them, the (u-g),(g-r),(r-i) colours of the outer parts, being compared with the PEGASE evolutionary tracks, evidence for the dominance of the old stellar populations with ages of T ~(8-10)+-3 Gyr. For J0723+3622 and J0737+4724, the outer region colours appear rather blue, implying the ages of the oldest visible stars of T <~1-3 Gyr. The new LSB galaxies complement the list of the known most metal-poor and `unevolved' dwarfs in this void, including DDO 68, SDSS J0926+3343 and others. This unique concentration of 'unevolved' dwarf galaxies in a small cell of the nearby Universe implies a physical relationship between the slow galaxy evolution and the void-type global environment.Comment: 16 pages, 5 tables, 9 figures. MNRAS, in pres

    Disentangling genetic and epigenetic determinants of ultrafast adaptation

    Get PDF
    A major rationale for the advocacy of epigenetically mediated adaptive responses is that they facilitate faster adaptation to environmental challenges. This motivated us to develop a theoretical–experimental framework for disclosing the presence of such adaptation‐speeding mechanisms in an experimental evolution setting circumventing the need for pursuing costly mutation–accumulation experiments. To this end, we exposed clonal populations of budding yeast to a whole range of stressors. By growth phenotyping, we found that almost complete adaptation to arsenic emerged after a few mitotic cell divisions without involving any phenotypic plasticity. Causative mutations were identified by deep sequencing of the arsenic‐adapted populations and reconstructed for validation. Mutation effects on growth phenotypes, and the associated mutational target sizes were quantified and embedded in data‐driven individual‐based evolutionary population models. We found that the experimentally observed homogeneity of adaptation speed and heterogeneity of molecular solutions could only be accounted for if the mutation rate had been near estimates of the basal mutation rate. The ultrafast adaptation could be fully explained by extensive positive pleiotropy such that all beneficial mutations dramatically enhanced multiple fitness components in concert. As our approach can be exploited across a range of model organisms exposed to a variety of environmental challenges, it may be used for determining the importance of epigenetic adaptation‐speeding mechanisms in general.publishedVersio

    Genetically controlled mtDNA deletions prevent ROS damage by arresting oxidative phosphorylation

    Get PDF
    Deletion of mitochondrial DNA in eukaryotes is currently attributed to rare accidental events associated with mitochondrial replication or repair of double-strand breaks. We report the discovery that yeast cells arrest harmful intramitochondrial superoxide production by shutting down respiration through genetically controlled deletion of mitochondrial oxidative phosphorylation genes. We show that this process critically involves the antioxidant enzyme superoxide dismutase 2 and two-way mitochondrial-nuclear communication through Rtg2 and Rtg3. While mitochondrial DNA homeostasis is rapidly restored after cessation of a short-term superoxide stress, long-term stress causes maladaptive persistence of the deletion process, leading to complete annihilation of the cellular pool of intact mitochondrial genomes and irrevocable loss of respiratory ability. This shows that oxidative stress-induced mitochondrial impairment may be under strict regulatory control. If the results extend to human cells, the results may prove to be of etiological as well as therapeutic importance with regard to age-related mitochondrial impairment and disease
    • 

    corecore