9 research outputs found

    Functional characterization of Bartonella effector protein C (BepC) in the context of infection

    Get PDF
    A wide variety of bacterial pathogens evolved a panel of virulence factors in order to subvert cellular processes and achieve a successful infection. Bacteria of the genus Bartonella translocate a cocktail of effector proteins (Beps) via a type IV secretion system (T4SS) into mammalian cells. BepC, one of the most conserved effectors in the Bartonella species of the lineage 4, has been previously shown to be involved in the internalization of bacterial aggregates and migration defect in vitro. In this work, we show that the effector BepC localizes at cell-to-cell contact and triggers strong actin rearrangements as well as the formation of bacterial aggregates during infection of human cells. The actin phenotype is induced by BepC from different Bartonella species, indicating an important role of this effector during pathogenesis. BepC pull-down from infected cells led to the identification of two interacting partners, GEF-H1 and MRCKα, which are two host proteins involved in the RhoA and Cdc42 pathways, respectively. We demonstrate that the ability of BepC to bind GEF-H1 and MRCKα highly correlates with its ability to trigger actin rearrangements. Accordingly, infected cells show an increase of GTP-bound RhoA and phosphorylated myosin light chain while both RhoA and its downstream effector ROCK are required for actin rearrangements mediated by BepC. Thus, our results indicate that BepC activates the RhoA pathway by interacting with GEF-H1 and thereby inducing actin rearrangements although MRCKα might also be involved. The majority of Beps, including BepC, carries an enzymatic FIC domain that is usually involved in posttranslational modifications. Most Fic proteins carry a canonical FIC motif that is essential for ATP binding and the transfer of AMP onto the target protein (AMPylation). By contrast, BepC is characterized by a non-canonical FIC motif and only displays a weak AMPylation and phosphorylation activity, independently from its conserved motif. Nevertheless, structural analysis and binding assays demonstrate that ATP binds to the FIC domain of BepC and is critical for its thermal stability. In absence of FIC domain, BepC loses its ability to localize at cell junctions, to interact with GEF-H1 and MRCKα, and to trigger actin rearrangement, suggesting a central role for this domain in the effector function. However, a conserved FIC motif is not necessary to trigger actin rearrangements, which indicates that BepC acts by protein-protein interaction rather than by posttranslational modification. Thus, we propose that BepC is recruited to cell contacts where it triggers the activation of the RhoA pathway by interacting with GEF-H1 and eventually leads to actin rearrangements, possibly with the help of MRCKα. Ultimately, the subversion of RhoA signaling by BepC could help Bartonella to interfere with the immune response by preventing phagocytosis or impair cell migration. Furthermore, it could play an important role in the disruption of the endothelial barrier in order to reach the blood and establish a long-lasting bacteremia inside the host

    Nit1 is a metabolite repair enzyme that hydrolyzes deaminated glutathione

    Get PDF
    The mammalian gene Nit1 (nitrilase-like protein 1) encodes a protein that is highly conserved in eukaryotes and is thought to act as a tumor suppressor. Despite being ∼35% sequence identical to ω-amidase (Nit2), the Nit1 protein does not hydrolyze efficiently α-ketoglutaramate (a known physiological substrate of Nit2), and its actual enzymatic function has so far remained a puzzle. In the present study, we demonstrate that both the mammalian Nit1 and its yeast ortholog are amidases highly active toward deaminated glutathione (dGSH; i.e., a form of glutathione in which the free amino group has been replaced by a carbonyl group). We further show that Nit1-KO mutants of both human and yeast cells accumulate dGSH and the same compound is excreted in large amounts in the urine of Nit1-KO mice. Finally, we show that several mammalian aminotransferases (transaminases), both cytosolic and mitochondrial, can form dGSH via a common (if slow) side-reaction and provide indirect evidence that transaminases are mainly responsible for dGSH formation in cultured mammalian cells. Altogether, these findings delineate a typical instance of metabolite repair, whereby the promiscuous activity of some abundant enzymes of primary metabolism leads to the formation of a useless and potentially harmful compound, which needs a suitable “repair enzyme” to be destroyed or reconverted into a useful metabolite. The need for a dGSH repair reaction does not appear to be limited to eukaryotes: We demonstrate that Nit1 homologs acting as excellent dGSH amidases also occur in Escherichia coli and other glutathione-producing bacteria

    Bartonella effector protein C mediates actin stress fiber formation via recruitment of GEF-H1 to the plasma membrane

    Get PDF
    Bartonellae are Gram-negative facultative-intracellular pathogens that use a type-IV-secretion system (T4SS) to translocate a cocktail of Bartonella effector proteins (Beps) into host cells to modulate diverse cellular functions. BepC was initially reported to act in concert with BepF in triggering major actin cytoskeletal rearrangements that result in the internalization of a large bacterial aggregate by the so-called 'invasome'. Later, infection studies with bepC deletion mutants and ectopic expression of BepC have implicated this effector in triggering an actin-dependent cell contractility phenotype characterized by fragmentation of migrating cells due to deficient rear detachment at the trailing edge, and BepE was shown to counterbalance this remarkable phenotype. However, the molecular mechanism of how BepC triggers cytoskeletal changes and the host factors involved remained elusive. Using infection assays, we show here that T4SS-mediated transfer of BepC is sufficient to trigger stress fiber formation in non-migrating epithelial cells and additionally cell fragmentation in migrating endothelial cells. Interactomic analysis revealed binding of BepC to a complex of the Rho guanine nucleotide exchange factor GEF-H1 and the serine/threonine-protein kinase MRCKα. Knock-out cell lines revealed that only GEF-H1 is required for mediating BepC-triggered stress fiber formation and inhibitor studies implicated activation of the RhoA/ROCK pathway downstream of GEF-H1. Ectopic co-expression of tagged versions of GEF-H1 and BepC truncations revealed that the C-terminal ' B ep intracellular d elivery' (BID) domain facilitated anchorage of BepC to the plasma membrane, whereas the N-terminal 'filamentation induced by c AMP' (FIC) domain facilitated binding of GEF-H1. While FIC domains typically mediate post-translational modifications, most prominently AMPylation, a mutant with quadruple amino acid exchanges in the putative active site indicated that the BepC FIC domain acts in a non-catalytic manner to activate GEF-H1. Our data support a model in which BepC activates the RhoA/ROCK pathway by re-localization of GEF-H1 from microtubules to the plasma membrane. Author Summary A wide variety of bacterial pathogens evolved numerous virulence factors to subvert cellular processes in support of a successful infection process. Likewise, bacteria of the genus Bartonella translocate a cocktail of effector proteins (Beps) via a type-IV-secretion system into infected cells in order to interfere with host signaling processes involved in cytoskeletal dynamics, apoptosis control, and innate immune responses. In this study, we demonstrate that BepC triggers actin stress fiber formation and a linked cell fragmentation phenotype resulting from distortion of rear-end retraction during cell migration. The ability of BepC to induce actin stress fiber formation is directly associated with its ability to bind GEF-H1, an activator of the RhoA pathway that is sequestered in an inactive state when bound to microtubules, but becomes activated upon release to the cytoplasm. Our findings suggest that BepC is anchored via its BID domain to the plasma membrane where it recruits GEF-H1 via its FIC domain, eventually activating the RhoA/ROCK signaling pathway and leading to stress fiber formation

    C7orf10 encodes succinate-hydroxymethylglutarate CoA-transferase, the enzyme that converts glutarate to glutaryl-CoA.

    No full text
    Glutarate, a side-product in the metabolism of tryptophan and lysine, is metabolized by conversion to glutaryl-CoA by a transferase using succinyl-CoA as a coenzyme donor. The enzyme catalyzing this conversion has not been formally identified. However, a benign form of glutaric aciduria (glutaric aciduria type III) is due to mutations in C7orf10, a putative member of the coenzyme A transferase class III family. In the present work, we show that recombinant human C7orf10 catalyzes the succinyl-CoA-dependent conversion of glutarate to glutaryl-CoA. C7orf10 could use many dicarboxylic acids as CoA acceptors, the best ones being glutarate, succinate, adipate, and 3-hydroxymethylglutarate. Confocal microscopy analysis of CHO cells transfected with a C7orf10-GFP fusion protein indicated that C7orf10 is a mitochondrial protein, in agreement with the presence of a predicted mitochondrial propeptide at its N-terminus. The effect of a missense mutation (p.Arg336Trp) found in the homozygous state in several patients with glutaric aciduria type III and present in the general population at a low frequency was also investigated. The p.Arg336Trp mutation led to the production of insoluble and inactive C7orf10 both in Escherichia coli and in HEK293T cells. These findings indicate that C7orf10 is implicated in the metabolism of glutarate, but possibly also of longer dicarboxylic acids. Homologues of this enzyme are found in numerous bacterial operons comprising also a putative glutaryl-CoA dehydrogenase, indicating that an enzyme with similar specificity exists in prokaryotes

    Nit1 is a metabolite repair enzyme that hydrolyzes deaminated glutathione.

    Get PDF
    The mammalian gene Nit1 (nitrilase-like protein 1) encodes a protein that is highly conserved in eukaryotes and is thought to act as a tumor suppressor. Despite being ∼35% sequence identical to ω-amidase (Nit2), the Nit1 protein does not hydrolyze efficiently α-ketoglutaramate (a known physiological substrate of Nit2), and its actual enzymatic function has so far remained a puzzle. In the present study, we demonstrate that both the mammalian Nit1 and its yeast ortholog are amidases highly active toward deaminated glutathione (dGSH; i.e., a form of glutathione in which the free amino group has been replaced by a carbonyl group). We further show that Nit1-KO mutants of both human and yeast cells accumulate dGSH and the same compound is excreted in large amounts in the urine of Nit1-KO mice. Finally, we show that several mammalian aminotransferases (transaminases), both cytosolic and mitochondrial, can form dGSH via a common (if slow) side-reaction and provide indirect evidence that transaminases are mainly responsible for dGSH formation in cultured mammalian cells. Altogether, these findings delineate a typical instance of metabolite repair, whereby the promiscuous activity of some abundant enzymes of primary metabolism leads to the formation of a useless and potentially harmful compound, which needs a suitable "repair enzyme" to be destroyed or reconverted into a useful metabolite. The need for a dGSH repair reaction does not appear to be limited to eukaryotes: We demonstrate that Nit1 homologs acting as excellent dGSH amidases also occur in Escherichia coli and other glutathione-producing bacteria

    “But-He’ll Fall!”: Children with Autism, Interspecies Intersubjectivity, and the Problem of ‘Being Social’

    No full text

    References

    No full text
    corecore