

University of Parma Research Repository

Enzymes that make and enzymes that fix mistakes: Nit1 is a 'repair' amidase that hydrolyzes deaminated glutathione

This is the peer reviewd version of the followng article:

Original

Enzymes that make and enzymes that fix mistakes: Nit1 is a 'repair' amidase that hydrolyzes deaminated glutathione / Peracchi, Alessio; Veiga-da-Cunha, Maria; Kuhara, Tomiko; Ellens, Kenneth W.; Paczia, Nicole; Stroobant, Vincent; Seliga, Agnieszka K.; Marlaire, Simon; Bommer, Stephane Jaisson Guido T.; Sun, Jin; Huebner, Kay; Linster, Carole L.; Cooper, Arthur J. L.; Van Schaftingen, Emile. - ELETTRONICO. - (2017), pp. 37-38.

Availability: This version is available at: 11381/2887593 since: 2021-02-04T12:19:55Z

Publisher: SIB

Published DOI:

Terms of use:

openAccess

Anyone can freely access the full text of works made available as "Open Access". Works made available

Publisher copyright

(Article begins on next page)

SIB 2017 59th CONGRESS Italian Society of Biochemistry and Molecular Biology

Caserta, September 20 – 22, 2017

BOOK OF ABSTRACT

Enzymes that make and enzymes that fix mistakes: Nit1 is a 'repair' amidase that hydrolyzes deaminated glutathione

<u>Alessio Peracchi^{1,2*}</u>, Maria Veiga-da-Cunha², Tomiko Kuhara³, Kenneth W. Ellens⁴, Nicole Paczia⁴, Vincent Stroobant², Agnieszka K. Seliga², Simon Marlaire², Stephane Jaisson² Guido T. Bommer², Jin Sun⁵, Kay Huebner⁵, Carole L. Linster⁴, Arthur J. L. Cooper⁶, Emile Van Schaftingen²

¹ Dept. of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; ² de Duve Institute, Université Catholique de Louvain. Brussels, Belgium; ³ Japan Clinical Metabolomics Institute, Kahoku, Ishikawa, Japan; ⁴ Université du Luxembourg, Belvaux, Luxembourg; ^e Ohio State University, Columbus, OH, USA; ^h New York Medical College, Valhalla, NY, USA

*Corresponding author: alessio.peracchi@unipr.it

Enzymes of intermediary metabolism are not perfectly specific and tend to act on intracellular compounds resembling their true substrate. The products of such side reactions are non-classical metabolites, which in several cases need to be eliminated or recycled by specific enzymes, called metabolite repair enzymes ^{1, 2}. The increasing rate at which repair enzymes are being discovered suggests that a substantial fraction of currently 'unclassified' enzymes, encoded in eukaryotic and prokaryotic genomes, might in fact be involved in metabolite repair.

Here I will describe a study on the mammalian protein Nit1, whose enzymatic function has long remained a puzzle. Nit1 is highly conserved in eukaryotes and is thought to act as tumor suppressor. Despite being ~35% sequence identical to ω -amidase (Nit2), it had been shown that Nit1 does not hydrolyze efficiently α -ketoglutaramate (the known physiological substrate of Nit2).

However, we demonstrated that both the mammalian Nit1 and its yeast ortholog can very efficiently hydrolize deaminated glutathione (dGSH), i.e., a form of glutathione in which the free amino group has been replaced by a carbonyl group. We further showed that *Nit1*-KO mutants of both human and yeast cells accumulate dGSH, and that the same compound is excreted in large amounts in the urine of *Nit1*-KO mice. Finally, we showed that several mammalian aminotransferases can form dGSH *via* a common (if slow) side-reaction, and provided indirect evidence that transaminases are mainly responsible for dGSH formation in cultured mammalian cells.

Altogether, these findings delineate a typical instance of metabolite repair, whereby the promiscuous activity of some abundant enzyme(s) of primary metabolism leads to the formation of a useless and

potentially harmful compound, which needs a suitable 'repair' enzyme to be destroyed or reconverted into a useful metabolite. The need for a dGSH repair reaction does not seem limited to eukaryotes: we demonstrated that Nit1 homologs acting as excellent dGSH amidases also occur in *Escherichia coli* and other glutathione-producing bacteria ³.

References

- 1. C. L. Linster, E. Van Schaftingen and A. D. Hanson, Nat Chem Biol (2013) 9, 72-80.
- 2. E. Van Schaftingen, R. Rzem, A. Marbaix, F. Collard, M. Veiga-da-Cunha and C. L. Linster, J Inherit Metab Dis (2013) 36, 427-434.
- 3. A. Peracchi, M. Veiga-da-Cunha et al. . Proc Natl Acad Sci U S A., (2017) 114, E3233-E3242.