130 research outputs found

    RNA

    Get PDF
    Next-generation sequencing is an increasingly popular and efficient approach to characterize the full set of microRNAs (miRNAs) present in human biosamples. MiRNAs' detection and quantification still remain a challenge as they can undergo different post transcriptional modifications and might harbor genetic variations (polymiRs) that may impact on the alignment step. We present a novel algorithm, OPTIMIR, that incorporates biological knowledge on miRNA editing and genome-wide genotype data available in the processed samples to improve alignment accuracy. OPTIMIR was applied to 391 human plasma samples that had been typed with genome-wide genotyping arrays. OPTIMIR was able to detect genotyping errors, suggested the existence of novel miRNAs and highlighted the allelic imbalance expression of polymiRs in heterozygous carriers. OPTIMIR is written in python, and freely available on the GENMED website (http://www.genmed.fr/index.php/fr/) and on Github (github.com/FlorianThibord/OptimiR)

    Genome-wide association analysis of self-reported events in 6135 individuals and 252 827 controls identifies 8 loci associated with thrombosis

    Get PDF
    Thrombotic diseases are among the leading causes of morbidity and mortality in the world. To add insights into the genetic regulation of thrombotic disease, we conducted a genome-wide association study (GWAS) of 6135 self-reported blood clots events and 252 827 controls of European ancestry belonging to the 23andMe cohort of research participants. Eight loci exceeded genome-wide significance. Among the genome-wide significant results, our study replicated previously known venous thromboembolism (VTE) loci near the F5, FGA-FGG, F11, F2, PROCR and ABO genes, and the more recently discovered locus near SLC44A2 In addition, our study reports for the first time a genome-wide significant association between rs114209171, located upstream of the F8 structural gene, and thrombosis risk. Analyses of expression profiles and expression quantitative trait loci across different tissues suggested SLC44A2, ILF3 and AP1M2 as the three most plausible candidate genes for the chromosome 19 locus, our only genome-wide significant thrombosis-related locus that does not harbor likely coagulation-related genes. In addition, we present data showing that this locus also acts as a novel risk factor for stroke and coronary artery disease (CAD). In conclusion, our study reveals novel common genetic risk factors for VTE, stroke and CAD and provides evidence that self-reported data on blood clots used in a GWAS yield results that are comparable with those obtained using clinically diagnosed VTE. This observation opens up the potential for larger meta-analyses, which will enable elucidation of the genetics of thrombotic diseases, and serves as an example for the genetic study of other diseases

    Genetics of venous thrombosis: insights from a new genome wide association study

    Get PDF
    Background: Venous Thrombosis (VT) is a common multifactorial disease associated with a major public health burden. Genetics factors are known to contribute to the susceptibility of the disease but how many genes are involved and their contribution to VT risk still remain obscure. We aimed to identify genetic variants associated with VT risk. Methodology/Principal Findings: We conducted a genome-wide association study (GWAS) based on 551,141 SNPs genotyped in 1,542 cases and 1,110 controls. Twelve SNPs reached the genome-wide significance level of 2.0×10−8 and encompassed four known VT-associated loci, ABO, F5, F11 and FGG. By means of haplotype analyses, we also provided novel arguments in favor of a role of HIVEP1, PROCR and STAB2, three loci recently hypothesized to participate in the susceptibility to VT. However, no novel VT-associated loci came out of our GWAS. Using a recently proposed statistical methodology, we also showed that common variants could explain about 35% of the genetic variance underlying VT susceptibility among which 3% could be attributable to the main identified VT loci. This analysis additionally suggested that the common variants left to be identified are not uniformly distributed across the genome and that chromosome 20, itself, could contribute to ∼7% of the total genetic variance. Conclusions/Significance: This study might also provide a valuable source of information to expand our understanding of biological mechanisms regulating quantitative biomarkers for VT

    Combined analysis of three genome-wide association studies on vWF and FVIII plasma levels

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Elevated levels of factor VIII (FVIII) and von Willebrand Factor (vWF) are well-established risk factors for cardiovascular diseases, in particular venous thrombosis. Although high, the heritability of these traits is poorly explained by the genetic factors known so far. The aim of this work was to identify novel single nucleotide polymorphisms (SNPs) that could influence the variability of these traits.</p> <p>Methods</p> <p>Three independent genome-wide association studies for vWF plasma levels and FVIII activity were conducted and their results were combined into a meta-analysis totalling 1,624 subjects.</p> <p>Results</p> <p>No single nucleotide polymorphism (SNP) reached the study-wide significance level of 1.12 × 10<sup>-7 </sup>that corresponds to the Bonferroni correction for the number of tested SNPs. Nevertheless, the recently discovered association of <it>STXBP5</it>, <it>STX2</it>, <it>TC2N </it>and <it>CLEC4M </it>genes with vWF levels and that of <it>SCARA5 </it>and STAB2 genes with FVIII levels were confirmed in this meta-analysis. Besides, among the fifteen novel SNPs showing promising association at p < 10<sup>-5 </sup>with either vWF or FVIII levels in the meta-analysis, one located in <it>ACCN1 </it>gene also showed weak association (<it>P </it>= 0.0056) with venous thrombosis in a sample of 1,946 cases and 1,228 controls.</p> <p>Conclusions</p> <p>This study has generated new knowledge on genomic regions deserving further investigations in the search for genetic factors influencing vWF and FVIII plasma levels, some potentially implicated in VT, as well as providing some supporting evidence of previously identified genes.</p

    Genetically predicted cortisol levels and risk of venous thromboembolism

    Get PDF
    Introduction - In observational studies, venous thromboembolism (VTE) has been associated with Cushing’s syndrome and with persistent mental stress, two conditions associated with higher cortisol levels. However, it remains unknown whether high cortisol levels within the usual range are causally associated with VTE risk. We aimed to assess the association between plasma cortisol levels and VTE risk using Mendelian randomization. Methods - Three genetic variants in the SERPINA1/SERPINA6 locus (rs12589136, rs11621961 and rs2749527) were used to proxy plasma cortisol. The associations of the cortisol-associated genetic variants with VTE were acquired from the INVENT (28 907 cases and 157 243 non-cases) and FinnGen (6913 cases and 169 986 non-cases) consortia. Corresponding data for VTE subtypes were available from the FinnGen consortium and UK Biobank. Two-sample Mendelian randomization analyses (inverse-variance weighted method) were performed. Results - Genetic predisposition to higher plasma cortisol levels was associated with a reduced risk of VTE (odds ratio [OR] per one standard deviation increment 0.73, 95% confidence interval [CI] 0.62–0.87, p Conclusions - This study provides evidence that genetically predicted plasma cortisol levels in the high end of the normal range are associated with a decreased risk of VTE and that this association may be mediated by blood pressure. This study has implications for the planning of observational studies of cortisol and VTE, suggesting that blood pressure traits should be measured and accounted for

    Modulation of Macrophage Activation State Protects Tissue from Necrosis during Critical Limb Ischemia in Thrombospondin-1-Deficient Mice

    Get PDF
    International audienceBACKGROUND: Macrophages, key regulators of healing/regeneration processes, strongly infiltrate ischemic tissues from patients suffering from critical limb ischemia (CLI). However pro-inflammatory markers correlate with disease progression and risk of amputation, suggesting that modulating macrophage activation state might be beneficial. We previously reported that thrombospondin-1 (TSP-1) is highly expressed in ischemic tissues during CLI in humans. TSP-1 is a matricellular protein that displays well-known angiostatic properties in cancer, and regulates inflammation in vivo and macrophages properties in vitro. We therefore sought to investigate its function in a mouse model of CLI. METHODS AND FINDINGS: Using a genetic model of tsp-1(-/-) mice subjected to femoral artery excision, we report that tsp-1(-/-) mice were clinically and histologically protected from necrosis compared to controls. Tissue protection was associated with increased postischemic angiogenesis and muscle regeneration. We next showed that macrophages present in ischemic tissues exhibited distinct phenotypes in tsp-1(-/-) and wt mice. A strong reduction of necrotic myofibers phagocytosis was observed in tsp-1(-/-) mice. We next demonstrated that phagocytosis of muscle cell debris is a potent pro-inflammatory signal for macrophages in vitro. Consistently with these findings, macrophages that infiltrated ischemic tissues exhibited a reduced postischemic pro-inflammatory activation state in tsp-1(-/-) mice, characterized by a reduced Ly-6C expression and a less pro-inflammatory cytokine expression profile. Finally, we showed that monocyte depletion reversed clinical and histological protection from necrosis observed in tsp-1(-/-) mice, thereby demonstrating that macrophages mediated tissue protection in these mice. CONCLUSION: This study defines targeting postischemic macrophage activation state as a new potential therapeutic approach to protect tissues from necrosis and promote tissue repair during CLI. Furthermore, our data suggest that phagocytosis plays a crucial role in promoting a deleterious intra-tissular pro-inflammatory macrophage activation state during critical injuries. Finally, our results describe TSP-1 as a new relevant physiological target during critical leg ischemia

    Integrating Genome-Wide Genetic Variations and Monocyte Expression Data Reveals Trans-Regulated Gene Modules in Humans

    Get PDF
    One major expectation from the transcriptome in humans is to characterize the biological basis of associations identified by genome-wide association studies. So far, few cis expression quantitative trait loci (eQTLs) have been reliably related to disease susceptibility. Trans-regulating mechanisms may play a more prominent role in disease susceptibility. We analyzed 12,808 genes detected in at least 5% of circulating monocyte samples from a population-based sample of 1,490 European unrelated subjects. We applied a method of extraction of expression patterns—independent component analysis—to identify sets of co-regulated genes. These patterns were then related to 675,350 SNPs to identify major trans-acting regulators. We detected three genomic regions significantly associated with co-regulated gene modules. Association of these loci with multiple expression traits was replicated in Cardiogenics, an independent study in which expression profiles of monocytes were available in 758 subjects. The locus 12q13 (lead SNP rs11171739), previously identified as a type 1 diabetes locus, was associated with a pattern including two cis eQTLs, RPS26 and SUOX, and 5 trans eQTLs, one of which (MADCAM1) is a potential candidate for mediating T1D susceptibility. The locus 12q24 (lead SNP rs653178), which has demonstrated extensive disease pleiotropy, including type 1 diabetes, hypertension, and celiac disease, was associated to a pattern strongly correlating to blood pressure level. The strongest trans eQTL in this pattern was CRIP1, a known marker of cellular proliferation in cancer. The locus 12q15 (lead SNP rs11177644) was associated with a pattern driven by two cis eQTLs, LYZ and YEATS4, and including 34 trans eQTLs, several of them tumor-related genes. This study shows that a method exploiting the structure of co-expressions among genes can help identify genomic regions involved in trans regulation of sets of genes and can provide clues for understanding the mechanisms linking genome-wide association loci to disease

    Cerebral small vessel disease genomics and its implications across the lifespan

    Get PDF
    White matter hyperintensities (WMH) are the most common brain-imaging feature of cerebral small vessel disease (SVD), hypertension being the main known risk factor. Here, we identify 27 genome-wide loci for WMH-volume in a cohort of 50,970 older individuals, accounting for modification/confounding by hypertension. Aggregated WMH risk variants were associated with altered white matter integrity (p = 2.5×10-7) in brain images from 1,738 young healthy adults, providing insight into the lifetime impact of SVD genetic risk. Mendelian randomization suggested causal association of increasing WMH-volume with stroke, Alzheimer-type dementia, and of increasing blood pressure (BP) with larger WMH-volume, notably also in persons without clinical hypertension. Transcriptome-wide colocalization analyses showed association of WMH-volume with expression of 39 genes, of which four encode known drug targets. Finally, we provide insight into BP-independent biological pathways underlying SVD and suggest potential for genetic stratification of high-risk individuals and for genetically-informed prioritization of drug targets for prevention trials.Peer reviewe

    Genet Epidemiol

    Get PDF
    Although recent Genome-Wide Association Studies have identified novel associations for common variants, there has been no comprehensive exome-wide search for low-frequency variants that affect the risk of venous thromboembolism (VTE). We conducted a meta-analysis of 11 studies comprising 8,332 cases and 16,087 controls of European ancestry and 382 cases and 1,476 controls of African American ancestry genotyped with the Illumina HumanExome BeadChip. We used the seqMeta package in R to conduct single variant and gene-based rare variant tests. In the single variant analysis, we limited our analysis to the 64,794 variants with at least 40 minor alleles across studies (minor allele frequency [MAF] ~0.08%). We confirmed associations with previously identified VTE loci, including ABO, F5, F11, and FGA. After adjusting for multiple testing, we observed no novel significant findings in single variant or gene-based analysis. Given our sample size, we had greater than 80% power to detect minimum odds ratios greater than 1.5 and 1.8 for a single variant with MAF of 0.01 and 0.005, respectively. Larger studies and sequence data may be needed to identify novel low-frequency and rare variants associated with VTE risk
    corecore