122 research outputs found

    Surface Characterization of Silanized Glass Fibers by Labeling with Environmental Sensitive Fluorophores

    Get PDF
    Glass fibers have been treated with gamma-aminopropyl-triethoxysilane (APES) through different silanizating procedures, which include APES aqueous solutions and APES vapor adsorption. Transmission Fourier transform IR (FTIR) measurements have been performed on the silanized samples to characterize the silanization reaction. Dansyl-sulfonamide conjugates have then been formed by reaction of dansyl chloride in dimethylformamide solution with the amine functionality's immobilized on the glass fiber surface. Steady-state and time-resolved fluorescence measurements have been performed on dansylated samples. A dependence of the fluorescence intensity and the wavelength of the maximum emission on the silanization procedure has been observed. Good fits of the fluorescence decays of dansyl labels are found when biexponential functions are used for deconvolution, whereas the decay of dansylamides in fluid solution is single exponential. A two-state model for the solid solvent relaxation seems to apply for this samples. Several surface structural changes produced by the different silanization methods have been proposed. FTIR results support the conclusions drawn from fluorescence measurements.Financial support for this work has been provided by Comision Interministerial de Ciencia y Tecnologia (Cl­ CYT) , under grant MAT93-0823, and by Comunidad Autónoma de Madrid (CAM) , under grant 247 / 92. We thank Dr. I. Pierola for her comments and suggestions

    Pyrene-Doped Polyorganosiloxane Layers over Commercial Glass Fibers

    Get PDF
    Commercial glass fibers have been subjected to different activation treatments under neutral and acidic conditions to achieve different coating degrees when silanized with γ-aminopropyltriethoxisi lane (APES). A fluorescent sulfonamide (PSA) was formed between the amine residue and a fluorescent probe, pyrenesulfonyl chloride (PSC). Reflectance UV–Vis spectra of the pyrene-doped fibres show that pyrene is present in the form of preassociated dimers when the coating degree is low. Emission and excitation fluorescence spectra reveal the existence of a charge transfer ground-state complex with exciplex emission at 460–515 nm and absorption red-shifted with respect to the S₀ → S₁ transition. Lifetime measurements yield three lifetimes, which are assigned to dimer, exciplex, and monomer emission. From the photophysical data it is concluded that the fibers with the highest silane content have an open structure with the highest fraction of isolated fluorescent moieties.This research was supported by CICYT MAT93- 0823. This paper is dedicated to the memory of Professor Irmina Hernández-Fuentes

    Photophysics of a pyrene probe grafted onto silanized glass fiber surfaces

    Get PDF
    Glass fibers have been silanized with γ-aminopropyltriethoxysilane. 1-pyrenesulphonyl chloride (PSC) has been grafted onto the fibers via adduct formation with the amine functionality. Absorption spectra from SPC stock solutions shows aggregation. Emission spectra from the fibers also reveal aggregation of the cromophore at extremely low concentration (10⁻⁹ mol/g).This work has been supported by projects CAM 247/92 and CICYT MAT93-0823

    CEACAM7 polymorphisms predict genetic predisposition to mortality in post-surgical septic shock patients

    Get PDF
    We carried out a retrospective exploratory study on 173 patients who underwent major surgery and developed septic shock after surgery. Our findings suggest that CEACAM7 rs1001578, rs10409040, and rs889365 polymorphisms could influence septic shock-related death in individuals who underwent major surgery.This work has been supported by grants given by Instituto de Salud Carlos III (grant number PI15/01451 to ET), “Gerencia de Salud, Consejería de Sanidad, Junta de Castilla y Leon” [grant number GRS 463/A/10 and 773/A/13 to ET], and PFIZER [grant number CT25-ESP01-01 to SR]. MAJS and AFR are supported by “Instituto de Salud Carlos III” [grant numbers CP17CIII/00007 and CP14CIII/00010, respectively]S

    Tumour growth: An approach to calibrate parameters of a multiphase porous media model based on in vitro observations of Neuroblastoma spheroid growth in a hydrogel microenvironment

    Get PDF
    To unravel processes that lead to the growth of solid tumours, it is necessary to link knowledge of cancer biology with the physical properties of the tumour and its interaction with the surrounding microenvironment. Our understanding of the underlying mechanisms is however still imprecise. We therefore developed computational physics-based models, which incorporate the interaction of the tumour with its surroundings based on the theory of porous media. However, the experimental validation of such models represents a challenge to its clinical use as a prognostic tool. This study combines a physics-based model with in vitro experiments based on microfluidic devices used to mimic a three-dimensional tumour microenvironment. By conducting a global sensitivity analysis, we identify the most influential input parameters and infer their posterior distribution based on Bayesian calibration. The resulting probability density is in agreement with the scattering of the experimental data and thus validates the proposed workflow. This study demonstrates the huge challenges associated with determining precise parameters with usually only limited data for such complex processes and models, but also demonstrates in general how to indirectly characterise the mechanical properties of neuroblastoma spheroids that cannot feasibly be measured experimentally

    A clinical method for mapping and quantifying blood stasis in the left ventricle

    Get PDF
    In patients at risk of intraventrcular thrombosis, the benefits of chronic anticoagulation therapy need to be balanced with the pro-hemorrhagic effects of therapy. Blood stasis in the cardiac chambers is a recognized risk factor for intracardiac thrombosis and potential cardiogenic embolic events. In this work, we present a novel flow image-based method to assess the location and extent of intraventricular stasis regions inside the left ventricle (LV) by digital processing flow-velocity images obtained either by phase-contrast magnetic resonance (PCMR) or 2D color-Doppler velocimetry (echo-CDV). This approach is based on quantifying the distribution of the blood Residence Time (TR) from time-resolved blood velocity fields in the LV. We tested the new method in illustrative examples of normal hearts, patients with dilated cardiomyopathy and one patient before and after the implantation of a left ventricular assist device (LVAD). The method allowed us to assess in-vivo the location and extent of the stasis regions in the LV. Original metrics were developed to integrate flow properties into simple scalars suitable for a robust and personalized assessment of the risk of thrombosis. From a clinical perspective, this work introduces the new paradigm that quantitative flow dynamics can provide the basis to obtain subclinical markers of intraventricular thrombosis risk. The early prediction of LV blood stasis may result in decrease strokes by appropriate use of anticoagulant therapy for the purpose of primary and secondary prevention. It may also have a significant impact on LVAD device design and operation set-up

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    A Roadmap for HEP Software and Computing R&D for the 2020s

    Get PDF
    Particle physics has an ambitious and broad experimental programme for the coming decades. This programme requires large investments in detector hardware, either to build new facilities and experiments, or to upgrade existing ones. Similarly, it requires commensurate investment in the R&D of software to acquire, manage, process, and analyse the shear amounts of data to be recorded. In planning for the HL-LHC in particular, it is critical that all of the collaborating stakeholders agree on the software goals and priorities, and that the efforts complement each other. In this spirit, this white paper describes the R&D activities required to prepare for this software upgrade.Peer reviewe

    Solving patients with rare diseases through programmatic reanalysis of genome-phenome data.

    Get PDF
    Funder: EC | EC Seventh Framework Programm | FP7 Health (FP7-HEALTH - Specific Programme "Cooperation": Health); doi: https://doi.org/10.13039/100011272; Grant(s): 305444, 305444Funder: Ministerio de Economía y Competitividad (Ministry of Economy and Competitiveness); doi: https://doi.org/10.13039/501100003329Funder: Generalitat de Catalunya (Government of Catalonia); doi: https://doi.org/10.13039/501100002809Funder: EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj); doi: https://doi.org/10.13039/501100008530Funder: Instituto Nacional de Bioinformática ELIXIR Implementation Studies Centro de Excelencia Severo OchoaFunder: EC | EC Seventh Framework Programm | FP7 Health (FP7-HEALTH - Specific Programme "Cooperation": Health)Reanalysis of inconclusive exome/genome sequencing data increases the diagnosis yield of patients with rare diseases. However, the cost and efforts required for reanalysis prevent its routine implementation in research and clinical environments. The Solve-RD project aims to reveal the molecular causes underlying undiagnosed rare diseases. One of the goals is to implement innovative approaches to reanalyse the exomes and genomes from thousands of well-studied undiagnosed cases. The raw genomic data is submitted to Solve-RD through the RD-Connect Genome-Phenome Analysis Platform (GPAP) together with standardised phenotypic and pedigree data. We have developed a programmatic workflow to reanalyse genome-phenome data. It uses the RD-Connect GPAP's Application Programming Interface (API) and relies on the big-data technologies upon which the system is built. We have applied the workflow to prioritise rare known pathogenic variants from 4411 undiagnosed cases. The queries returned an average of 1.45 variants per case, which first were evaluated in bulk by a panel of disease experts and afterwards specifically by the submitter of each case. A total of 120 index cases (21.2% of prioritised cases, 2.7% of all exome/genome-negative samples) have already been solved, with others being under investigation. The implementation of solutions as the one described here provide the technical framework to enable periodic case-level data re-evaluation in clinical settings, as recommended by the American College of Medical Genetics
    corecore