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A B S T R A C T

To unravel processes that lead to the growth of solid tumours, it is necessary to link knowledge of cancer
biology with the physical properties of the tumour and its interaction with the surrounding microenvironment.
Our understanding of the underlying mechanisms is however still imprecise. We therefore developed compu-
tational physics-based models, which incorporate the interaction of the tumour with its surroundings based on
the theory of porous media. However, the experimental validation of such models represents a challenge to its
clinical use as a prognostic tool. This study combines a physics-based model with in vitro experiments based
on microfluidic devices used to mimic a three-dimensional tumour microenvironment. By conducting a global
sensitivity analysis, we identify the most influential input parameters and infer their posterior distribution
based on Bayesian calibration. The resulting probability density is in agreement with the scattering of the
experimental data and thus validates the proposed workflow. This study demonstrates the huge challenges
associated with determining precise parameters with usually only limited data for such complex processes
and models, but also demonstrates in general how to indirectly characterise the mechanical properties of
neuroblastoma spheroids that cannot feasibly be measured experimentally.
1. Introduction

While tumour growth has historically been considered a disease of
the cell alone, e.g. caused by genetic changes, in recent years cancer
research has recognised the importance of the microenvironment sur-
rounding the tumour [1]. The link between biophysical tumour prop-
erties and their surroundings, on the one hand, to signalling pathways
in cancer biology, on the other, is therefore crucial to understanding
tumour growth and improving cancer treatment.

To mimic the morphological and functional features of in vivo tu-
mours within a controlled environment, multicellular tumour spheroids
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are grown in vitro and used as a model [2]. Collagen-based hydrogels
are widely used in experiments to create three-dimensional (3D) mi-
croenvironments. The collagen matrices make it possible to produce
matrices with different mechanical properties based on their compo-
sition and preparation procedures. There have been several recent at-
tempts to replicate the first stages of tumour formation [2–5]. Microflu-
idic techniques enable such miniaturisation of tumour growth [6].
Constraining the system to a small scale ensures better control of the
environmental conditions. The main advantage of this is that it makes
it possible to recreate biological environments that are more realistic
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than with traditional in vitro two-dimensional (2D) cell cultures [6–8].
3D cell culture models are able to reproduce such features as tumour
architecture and metabolism, unlike 2D cultures.

In the present study, we focus on neuroblastoma (NB) cancer.
Neuroblastoma is the most common extracranial solid tumour in the
paediatric population [9–11]. The median age of diagnosis is 22 months
and the primary tumour is usually located in the adrenal glands, inside
the abdominal cavity [12]. NB exhibits unique clinical features, includ-
ing spontaneous regression, but also a high frequency of metastatic
disease at the time of diagnosis. In fact, this type of tumour is metastatic
in 60%–70% of cases at diagnosis [13], with metastasis frequently
appearing in bone and bone marrow, liver, lymphatic nodes and, in
very young children, even in the eyes or skin [14]. Whereas patients
with low-risk diseases have a favourable prognosis of >90% survival,
the 5-year survival rate of patients with high-risk diseases is still below
50% [15].

Experimental research is a powerful way of improving our under-
standing of the complex processes behind cancer, but it can be costly
and time-consuming. And even with unlimited resources, experimental
limitations (such as control over conditions and measurement capabil-
ities) still restrict our understanding. Therefore, computational models
based on first principles can be highly valuable and offer additional
crucial insight.

In recent decades, considerable attention has been devoted to com-
putational models that simulate tumour growth, as simulating biolog-
ical processes facilitates our understanding of the underlying mecha-
nisms of the biological phenomena, particularly in cancer. The hope
is that deciphering the biological interactions between cells and the
tumour microenvironment provides better tumour therapies and more
robust preclinical testing. The most commonly used physics-based mod-
els of tumour growth range from simulations at the macroscale of
volumetric tumour growth [16–19] to simulations at the microscale
of the key molecular processes [20–23]. A variety of approaches exist,
including continuous models [17,24–26] and discrete or agent-based
models [27–29]. Single-cell models offer a high level of spatial accuracy
but are more computationally expensive, and discrete models cannot
simulate processes associated with tumour growth or development
due to the large size of the cell populations involved. To address
these issues, hybrid models combine the strengths of both continu-
ous and agent-based models. One example of a hybrid model is the
mathematical approach developed by [30] that uses an agent-based
model to characterise vascular changes and a continuum model to
handle nutrient dynamics. Another example is a continuum model that
incorporates the pre-existing vasculature through a one-dimensional
approach [31,32]. We will use a multiphase computational model based
on porous media to simulate the growth of the spheroids [33,34]. The
model consists of three phases (namely extracellular matrix (ECM),
tumour cells and interstitial fluid/culture medium) plus a number of
species, and it is extremely versatile as it is able to simulate a wide
range of biological processes.

The synergy between experimental and computational tools pro-
vides powerful opportunities: in silico models are a helpful tool for
simulating complex experiments, improving our understanding of in
vitro scenarios, and trialling new ideas in the computational envi-
ronment prior to in vitro experiments. Indeed, the calibration and
validation of mechanical models based on experimental data as well as
the quantification of the arising uncertainties are integral to scientific
activity, especially in a medical context. While computational models
have widened their horizons dramatically in recent years, it is crucial
to be able to calibrate these models so that relevant patient-specific
predictions can be made. In order to do this, the model parameters
have to be determined. Some parameters can be measured directly.
Since however a direct measurement of most parameters is not possible,
they have to be estimated by inverse analysis. There are two general
methods of solving the inverse problem: deterministic and probabilistic.
2

While deterministic optimisation techniques yield a point estimate for p
the best fit, Bayesian methods infer the entire probability distribution,
including the uncertainty, which is especially important in a medical
setting. Since most models contain a large number of uncertain pa-
rameters, which have to be calibrated, it is first necessary to identify
the most influential parameters and to distinguish them from non-
influential parameters using sensitivity analysis. Subsequent calibration
then focuses on the most relevant parameters. In the field of tumour-
growth modelling, several groups have made some advances in this
direction. [35] laid out a Bayesian framework for calibration, validation
and uncertainty quantification of tumour-growth models considering
synthetic data, and [36] presented the Bayesian calibration of a simple
Gompertzian tumour-growth model as a tutorial. Furthermore, [37]
used a similar methodology to analyse the effect of mechanical forces
on tumour growth, and [38] performed a Bayesian calibration of a
stochastic, multiscale agent-based model based on 2D cell cultures of
human breast carcinoma cells.

In this paper, we perform a Bayesian calibration of 3D NB spheroid
growth based on a multiphase porous medium model and experimental
data (see Fig. 1). The main contribution of the current work to the
state-of-the-art is the combination and integration of experimental and
computational techniques in order to achieve a validated model of
tumour growth, which is an important area for future progress in the
field but so far rather sparsely covered. To this end, we combine in-
itro experiments of the tumour growth in a 3D collagen-based porous
ydrogel with a matching multiphase porous media model so that both
dequately include the interaction of the tumour with its microenvi-
onment. The integration of both models is built on a unique approach
ased on a Bayesian calibration process, which naturally incorporates
he uncertainties associated with the calibration process.

In Section 2.1, we present the novel 3D NB spheroids experiments
erformed in microfluidic devices. In Section 2.2, we then summarise
he multiphase porous media model of tumour growth. Next, we per-
orm a time-dependent global sensitivity analysis to identify the relative
mportance of the model parameters, in Section 2.3. This uses the
obol method [39,40], which is a variance-based global sensitivity
nalysis method, combined with a Gaussian process as surrogate model
Section 2.4). We then feed the results of the sensitivity analysis into a
ayesian calibration process based on sequential Monte Carlo (SMC)
ethods [41] to infer the posterior density of the most influential
arameters from the experimental data (Section 2.5). The findings
f the study are summarised in Section 3. Finally, in Section 4, we
raw conclusions from these results as they relate to potential future
esearch.

. Materials and methods

.1. Experimental setup

The NB tumour spheroids were cultured in 3D microfluidic devices
or seven days. We first describe the cell lines used for the experiment
nd then the experimental setup and image acquisition process. We
etermined NB spheroid growth from single tumour cells that were
omogeneously embedded in 3D-hydrogels.

.1.1. Cell lines
Neuroblastoma primary culture (PACA cells) was obtained from a

atient’s tumour at La Fe University and Polytechnic Hospital (Valen-
ia, Spain), in accordance with the ethics committee of the hospital,
eference number 2019-305-1. The patient was diagnosed with poorly-
ifferentiated neuroblastoma harbouring deletion in chromosome 11q,
s confirmed by the pathology department of the University of Va-
encia. The remaining material of the relapsed tumour was used to
enerate the primary culture. Informed written consent was obtained
rom legal representatives.

PACA cells were embedded in 3D-hydrogels in the subsequent ex-

eriments. The cells were cultured at 37 °C in a humidified atmosphere
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Fig. 1. Workflow to calibrate the uncertain model parameters based on experimental data. The uncertain model parameters are first analysed by a global sensitivity analysis, where
the model is replaced by a Gaussian process (GP). The sensitivity analysis determines which parameters are non-influential and which have a significant influence on the selected
quantity of interest, in this case the spheroid volume. The non-influential parameters are fixed, whereas the influential ones are further calibrated by the Bayesian framework. In
this part, the model is again replaced by a Gaussian process, and the influential parameters are calibrated together with the experimental behaviour observed in the microfluidic
devices.
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of 5% CO2. They were routinely grown in Dulbecco’s modified Eagle’s
medium (DMEM, Sigma) with high glucose (4.500mgml−1), L-glutamine
and sodium pyruvate and supplemented with 10% heat-inactivated fe-
tal bovine serum (FBS, Gibco) and a 1% antibiotic, antimycotic solution
of penicillin, streptomycin, and amphotericin B (Gibco). To enable 3D
cell nuclei reconstruction using light-sheet microscopy, the PACA cells
were further transfected with a plasmid containing histone 2B fused
to GFP (pEGFP-N1 H2B GFP), and clones were selected based on their
growth in the presence of G418 (750 μgml−1) and their GFP-expressed
luorescence.

.1.2. Fabrication of polydimethylsiloxane-based microfluidic devices
The polydimethylsiloxane (PDMS)-based microfluidic devices were

roduced using the method described by [7]. Briefly, soft lithography
as used to develop positive SU8 300-μm relief moulds onto sili-

on wafers of the desired geometry (National Facility ELECMI ICTS,
ode Laboratorio de Microscopías Avanzadas (LMA) at the University of

Zaragoza, Spain). The microdevices were fabricated in PDMS (Sylargd-
184, Dow, Midland, TX) at a 10:1 weight ratio of the base and curing
agent, respectively. The solution was mixed and poured onto the SU8
master and then degassed to remove any air bubbles. The PDMS
was cured for 24 h at 80 °C, and then the replica-moulded layer was
rimmed, perforated with 1 and 4mm disposable biopsy punches, and
terilised by autoclaving. The PDMS microdevices were activated by
lasma treatment and bonded to 35-mm glass-bottom Petri dishes
Ibidi, Gräfelfing, Germany). The microfluidic devices were then coated
nd incubated for 4 h at 37 °C with a solution of Poly-D-Lysine (PDL) at
mgml−1 to enhance adhesion and prevent surface detachment of the
ollagen hydrogels. After coating, the devices were washed with sterile
eionised water and placed in an oven at 80 °C for 24 h.

The device geometry was described by [2] and is illustrated in
ig. 2. It has a central chamber with a height of approximately 300 μm,
width of 1300 μm, and contains an array of trapezoidal posts to cage

he collagen hydrogel solution with the embedded cells. Concerning the
entral chamber (which was filled with hydrogel), our devices also had
wo side media channels (each with two media reservoirs) for hydration
nd medium replacement and to assure the transport of nutrients and
ther chemical factors throughout the hydrogel.
3

.1.3. Collagen gel solution preparation and cell seeding
We followed the protocol described by [7] for the collagen hydrogel

reparation. Collagen Type-I (BD bioscience) was buffered to a final
oncentration of 6mgml−1 at pH 7.4 with 250 000 cellsml−1 using 10X
hosphate buffered saline (PBS) (Thermo Fisher) with phenol red, 0.5N
aOH solution and DMEM 10%FBS (Gibco). After the central chamber
as filled with gel solution, it was left to polymerise for 20 min in
umid chambers in a CO2 incubator at 37 °C. After polymerisation, the
els were hydrated with complete media and stored in the incubator.
edia were aspirated from all reservoirs of the device and replaced

very 48 h. Cells were cultured up to day 7.

.1.4. Brightfield image acquisition and analysis
Cell spheroid formation and growth were visualised and recorded

very 24 h using a Leica DM IL LED inverted microscope in a Basler
cA1920-155um camera. Phase-contrast time-lapse images were taken
sing a 4X Leica objective lens. Images were converted to hyperstacks
nd aligned with a template matching ImageJ plug-in (National Insti-
utes of Health, USA). The aligned images were then analysed with
semi-automatic in-house MATLAB code [42] capable of recognising

pheroids and calculating their area (μm2) and circularity over time.
igures were designed with Prism7-GraphPad (GraphPad Software Inc.,
an Diego, CA, USA).

.1.5. Immunofluorescence staining and imaging
For confocal imaging, neuroblastoma spheroids were fixed and

mmunostained on day 7. Devices were fixed for 15 min at room
emperature with 4% paraformaldehyde in PBS. The microfluidic de-
ices were then washed three times with PBS and permeabilised for
0 min with 0.1% Triton X-100 (Calbiochem) diluted in PBS. Devices
ere washed three more times with PBS and blocked in PBS 5%
ovine serum albumin (BSA, VWR) overnight at 4 °C. The samples
ere then incubated in darkness for a minimum of two hours with
halloidin-tetramethylrhodamine B isothiocyanate (Santa Cruz) and
API (Invitrogen). Finally, the devices were washed three more times
nd imaged. Confocal images were captured at the Microscopy and
maging Core Facility, Instituto Aragonés de Ciencias de la Salud (IACS)
ith a Zeiss LSM 880 confocal microscope using a 25x oil immersion
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Fig. 2. Microfluidic devices used for the analysis of 3D NB spheroids. The image on the left shows the microfluidic device bonded to a 35 mm glass plate. On the right is a 3D
visualisation of the microfluidic chip system. A blow-up of the central channel is shown in the top-right. Collagen-I hydrogel is loaded through the central cage (white). The setup
includes two side media channels (green) to supply the culture media and ensure hydration and transport of nutrients and other chemical factors throughout the hydrogel. The
height of the culture chamber is 290(20) μm. Individual cells are seeded in the culture chamber and cultured up to day seven.
objective lens. Spheroid projections were obtained from a collection
of multiple focal planes (Z-stack). For in vivo nuclei visualisation,
NB spheroids with PACA-GFP (transfected with a plasmid containing
histone 2B fused to GFP) were imaged with the Lattice Lightsheet
7 microscope (Zeiss) in a manner that is compatible with long term
fluorescent time-lapse imaging. Images were acquired with a 40x water
immersion objective lens, processed, and 3D projected using Zen 3.5
Blue software (Zeiss).

2.2. Porous multiphase tumour-growth model

A computational model able to reproduce the in vitro experiments
is now needed. We propose to use a multiphase porous media model of
the type that has been widely used to model tumour growth, e.g., [24,
34,43,44]. From a computational modelling perspective, the above
experiments can be described as follows: the ECM constitutes a solid
porous scaffold with the tumour cells and the culture medium filling
the pore space. Together, they form the different phases of a porous
medium (see Fig. 3, left). We also include several species, namely
oxygen (as the nutrient which drives the growth of the tumour) and
necrotic tumour cells (which are formed when deprived of nutrients).
At the microscopic scale, all of these components are clearly discernible
and distinguishable. We now consider the porous medium at the macro-
scopic scale, where averaging or up-scaling the microscopic balance
equations leads to a continuous description of the porous medium. The
solid (in this case the ECM) and the fluids (tumour cells and culture
medium) are modelled as overlapping continua, and thus the actual
interfaces between the components are not resolved explicitly. At the
macroscopic scale, the different phases are described by their volume
fractions 𝜀𝛼 at a specific point (see Fig. 3, right), where 𝛼 ∈ {𝑠, 𝑡, 𝑙}.
In the following, the ECM is denoted by a superscript 𝑠 (for solid),
tumour cells by 𝑡 (for tumour) and the culture medium by 𝑙 (for liquid).2
Note that we model the growing tumour spheroid itself as a viscous
fluid, as in the previous tumour models [33]. When averaging the
equations, we maintain a strong connection between the microscopic
and the macroscopic descriptions by employing the thermodynamically
constrained averaging theory (TCAT) [25]. This has the additional
advantage that all quantities at the macroscale have a clear relation
to their counterparts at the microscale and therefore lend themselves
to precise physical interpretation [33].

2 In previous publications, e.g., [24,34,43,44], the superscript 𝑙 denotes the
interstitial fluid (IF) which surround cells in the body and transports nutrients.
The IF directly corresponds to the culture medium in the context of in vitro
spheroid growth, and we therefore use the same superscript 𝑙.
4

Fig. 3. Microscopic to macroscopic up-scaling of the porous multiphase tumour-growth
model. At the microscopic scale, all components (ECM, cells, culture medium and
oxygen) are resolved. Up-scaling results in a continuous description at the macroscopic
scale, in which the phases are described by their volume fractions 𝜀𝛼 . Employing the
thermodynamically constrained averaging theory (TCAT) ensures a firm connection
between the two scales.

The resulting tumour-growth model has previously been presented
in various forms, e.g., [24,34,43,44]. To replicate the spheroid growth
experiments, the model is reduced to its two-phase model form, com-
prising the ECM as the solid phase with two fluid phases flowing in
its pores, tumour cells and culture medium. In addition, all phases can
transport species. Oxygen, as a nutrient, is assumed to be transported by
the culture medium [45]. A sufficiently high oxygen supply leads to tu-
mour growth. In contrast, tumour cells become necrotic when exposed
to low nutrient concentrations or excessive mechanical pressure. To
take this into account, tumour cells are divided into living and necrotic
tumour cells, the latter being modelled as a species.

In the following, we present an overview of the components of the
tumour-growth model and its essential input parameters. All model
equations are listed in Appendix A.

Solid phase: ECM. The ECM is the solid phase of the porous system.
Experimental characterisation of the mechanical properties of the hy-
drogels used in the experiments revealed that hydrogels are usually
viscoelastic [46–48], and so we employ a visco-hyperelastic constitu-
tive law. The hyperelastic part is described by a Neo-Hookean material
model with the initial Young’s modulus 𝐸 and a Poisson’s ratio 𝜈, while
the viscous part is added in the form of a Maxwell model based on [49],
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including the relaxation time 𝜏. The governing equation of the solid
hase is the classical balance of momentum (see Appendix A for further
etails).

The ECM contains pores (voids) which are filled by the fluid phases
tumour cells and culture medium). The ratio of the ECM pore volume
o the total volume is characterised by the porosity 𝜀. We assume that
he two fluid phases completely fill the pore volume, and hence the
orosity corresponds to the sum of the volume fractions of tumour cells
𝑡 and of the culture medium 𝜀𝑙:

= 𝜀𝑡 + 𝜀𝑙 . (1)

he saturation of the fluid phases is given by

𝛼 = 𝜀𝛼

𝜀
for 𝛼 = 𝑡, 𝑙. (2)

The initial porosity and initial saturation of tumour cells are denoted
by 𝜀0 and 𝑆𝑡0, respectively. Since the ECM is deformable, the porosity,
volume fractions of the fluid phases, and saturations change as the
tumour grows.

Fluid phases: culture medium and tumour cells. We consider two fluid
phases that fill the pore space of the ECM: culture medium and tumour
cells. It is important to note that our approach, based on porous media,
directly takes into account the flow of the fluid phases. The culture
medium is modelled as a fluid with a low viscosity 𝜇𝑙, similar to that
of water. The tumour cell phase has a considerably higher viscosity
𝜇𝑡. The two fluid phases are further characterised by their density 𝜌𝛼 .
The governing equations of the fluid phases are mass balance equations
based on the pressures 𝑝𝑙 and 𝑝𝑡 of the culture medium and the tumour
ell phase, respectively (see Appendix A).

As the two fluid phases share the pore space of the ECM, they
nteract with each other and with the ECM. These interactions are
nfluenced by permeability and interfacial tension.

The effective permeability describes how easily a specific phase can
low through the solid scaffold. We define the effective permeability
ensor as 𝒌𝛼 = 𝑘𝛼rel 𝑘 𝑰 based on the scalar intrinsic permeability 𝑘 of

the ECM. The intrinsic permeability characterises how easily one single
fluid phase filling the entire pore space can flow through the scaffold. In
our case, we have two fluid phases (tumour cells and culture medium)
in the pore space: each phase interferes with and impedes the flow of
the other phase. Therefore, the relative permeability 𝑘𝛼rel is a function
of the corresponding saturation given by

𝑘𝛼rel = (𝑆𝛼)𝐴𝛼 (3)

with a model coefficient 𝐴𝛼 , as proposed by [43]3

Although they are adjacent and share one pore space, the two fluid
phases are immiscible. To preserve this immiscibility, a pressure differ-
ence 𝑝𝑡𝑙 between the fluid phases needs to be sustained. This pressure
difference results from the interfacial tension 𝜎𝑡𝑙 and the curvature of
the interface between the fluid phases [51], and we use the following
heuristic model at the macroscale:

𝑝𝑡𝑙 = 𝑝𝑡 − 𝑝𝑙 = 𝜎𝑡𝑙 tan
(𝜋
2
𝑆𝑡

)

, (4)

hich also provides the link back to the fluid saturations.4 A higher
nterfacial tension causes higher infiltration of one fluid phase into the
ther and hence a less compact tumour [43].

3 We use the simple empirical relation given by Eq. (3) for the relative
ermeability since no detailed measurements are available for our particular
ultiphase system. This simple form still is in agreement with the classical
odels commonly used in porous media mechanics [50]. A more specific
odel for our multiphase system should be determined, e.g., from specific

xperiments, through micro-models or Lattice-Boltzmann modelling [43].
4 Eq. (4) is an approximation at the macroscale to account for the curvature

f the interface, similar to those commonly used for geophysical multiphase
ystems [52]. To overcome this limitation, [25] present a more detailed
5

pproach to link capillary pressure to saturation.
Species: oxygen and necrotic tumour cells. The fluid phases can transport
further subcomponents. We include oxygen as a nutrient and necrotic
tumour cells. The lack of nutrients causes living tumour cells to become
necrotic, and these necrotic tumour cells are a subcomponent of the
tumour cell phase. The mass fraction of necrotic tumour cells is denoted
by 𝜔𝑁𝑡. Similarly, nutrients are modelled as a species in the culture
medium. The nutrient concentration drives the growth of the tumour.
To begin with, we only include oxygen as a nutrient, with the mass
fraction 𝜔𝑛𝑙. We describe the diffusion of oxygen in the culture medium
by 𝐷𝑛𝑙

eff = 𝐷𝑛𝑙
0 (𝜀𝑆

𝑙)𝛿 , with the diffusion coefficient in the medium 𝐷𝑛𝑙
0

nd a constant 𝛿. The effective diffusion coefficient 𝐷𝑛𝑙
eff of oxygen

has a nonlinear dependence on the volume fraction of IF, as it is
also related to the connectivity grade of the extracellular spaces and
tortuosity of the porous network. The parameter 𝛿 was calibrated
experimentally by [51]. The governing equations used for the species
are reaction–diffusion–advection equations (see Appendix A).

Mass transfer terms governing tumour growth. To bring everything to-
gether, we are left with the question of what actually drives the growth
of the tumour in the multiphase porous media model: as long as
the tumour cells are supplied with enough oxygen (above the critical
threshold 𝜔𝑛𝑙crit), the tumour phase grows, as described by the mass
ransfer term from the culture medium to the tumour phase

→𝑡
𝑀growth = 𝛾 𝑡growth

⟨

𝜔𝑛𝑙 − 𝜔𝑛𝑙crit

𝜔𝑛𝑙env − 𝜔𝑛𝑙crit

⟩

+

(

1 − 𝜔𝑁𝑡
)

𝜀𝑆𝑡 (5)

where
𝑙→𝑡
𝑀growth represents the inter-phase exchange of mass between

the phases 𝑙 and 𝑡 (representing the mass of IF which becomes tumour
due to cell growth) and 𝛾 𝑡growth denotes the growth coefficient [51].
The parameter 𝜔𝑛𝑙crit is the critical nutrient threshold below which cells
starve and become necrotic, and 𝜔𝑛𝑙env is the reference mass fraction of
oxygen available in the environment (i.e. in culture medium without
a tumour spheroid). The Macaulay brackets ⟨⋅⟩+ indicate the positive
value of the argument if the argument is positive but zero if it is not.

Moreover, living tumour cells consume oxygen, as described by

𝑛𝑙→𝑡
𝑀cons =

⎛

⎜

⎜

⎝

𝛾𝑛𝑡growth

⟨

𝜔𝑛𝑙 − 𝜔𝑛𝑙crit

𝜔𝑛𝑙env − 𝜔𝑛𝑙crit

⟩

+

+ 𝛾𝑛𝑡0 sin

(

𝜋
2
𝜔𝑛𝑙

𝜔𝑛𝑙env

)

⎞

⎟

⎟

⎠

(

1 − 𝜔𝑁𝑡
)

𝜀𝑆𝑡.

(6)

𝑛𝑙→𝑡
𝑀cons represents the inter-phase exchange of the mass of oxygen
present in the IF which becomes tumour due to cell consumption.
The first addend describes the consumption of oxygen during tumour
growth proportional to the coefficient 𝛾𝑛𝑡growth, and the second addend
accounts for the normal metabolism of tumour cells proportional to
the coefficient 𝛾𝑛𝑡0 . 5 Finally, tumour cells become necrotic when not
supplied with enough oxygen. This increase in the necrotic fraction of
tumour cells is included as

𝜀𝑡𝑟𝑁𝑡 = 𝛾 𝑡necrosis

⟨

𝜔𝑛𝑙crit − 𝜔
𝑛𝑙

𝜔𝑛𝑙env − 𝜔𝑛𝑙crit

⟩

+

(

1 − 𝜔𝑁𝑡
)

𝜀𝑆𝑡 (7)

where 𝜀𝑡𝑟𝑁𝑡 is the death rate of tumour cells and 𝛾 𝑡necrosis is the necrosis
coefficient.

5 Since the oxygen mass fraction 𝜔𝑛𝑙 is always smaller or equal to 𝜔𝑛𝑙env,
the argument of the sine function varies between 0 and 𝜋∕2, and the oxygen
consumption due to normal metabolism of the cells reaches its maximum for
𝜔𝑛𝑙 = 𝜔𝑛𝑙env. The sine function is chosen for numerical reasons because of its
horizontal tangent.
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Fig. 4. Geometry, initial and boundary conditions in the simulated domain. The spheroids are assumed to be spherical, and therefore a segment of the spherical 3D geometry is
modelled. Multiple spheroids are cultured together in the microfluidic device, nevertheless they are far enough from each other to neglect any mechanical interaction. Thus, the
model simulates the growth of an individual spheroid embedded in the culture medium and the collagen-based matrix The initial radius of the tumour is the one observed in
the experiments at the initial time. As the cells proliferate and the aggregate grows, the tumour domain expands. The initial tumour domain 𝛺𝑡 (in blue) contains tumour cells
and culture medium in the pore space. In the initial domain 𝛺𝑙 (in beige), the pore space is initially filled with culture medium only. Dirichlet boundary conditions for the fluid
phases and species are applied on the outer surface marked in grey.
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Geometry and initial and boundary conditions. The model aims to repro-
duce the experimental assays described in Section 2.1. The spheroids
are assumed to be spherical, with an initial mean radius of 10 μm.
Initially, cells are seeded far enough separated so that any mechanical
interaction between them can be neglected. Therefore, the spheroids
are modelled individually 4. Due to the axial symmetry of the growing
spheroids, only a segment of a spherical 3D geometry is computation-
ally resolved. The total spherical computational domain has a radius of
100 μm, and we only consider a segment of 0.16 rad × 0.16 rad. Tumour
cells initially occupy the inner part 𝛺𝑡 with a radius of 10 μm. This
simulates the initial cell seed in the microfluidic device. At the initial
time, the tumour saturation is set to 𝑆𝑡 = 0.875, and zero in the rest of
the domain. In addition, we assume that there are no necrotic cells at
the initial stage. We assume a steady nutrient supply since the culture
medium in the experiment is changed every two days in order to ensure
a steady nutrient concentration and a physiological pH level. Therefore,
the mass fraction of nutrients in the medium is set as constant and equal
to 4.2 ⋅ 10−6 [44]. It is applied as a Dirichlet boundary condition at
the outer surface 𝛤 of the domain. The domain is fixed at the inner
surface with a Dirichlet boundary condition but can deform in the
radial direction. Fig. 4 summarises the initial and boundary conditions
of the numerical analysis.

The space discretisation is based on the finite element method with
250 3D trilinear hexahedral elements in the radial direction. The time
discretisation is based on the one-step-theta scheme with a time step
of 𝛥𝑡 = 450 s and 𝜃 = 0.52. In total 1344 time steps are simulated, and
thus the simulation describes the growth of a spheroid over the course
of seven days.

2.3. Global sensitivity analysis (GSA)

Our tumour-growth model, as described in Section 2.2, is based on
physical laws, unlike many other tumour-growth models, which are
purely data-driven. Such a physics-based approach allows the model
output to be predictive, even under unobserved conditions, but per se
comes at the cost of a large number of uncertain input parameters.
It is therefore crucial to be able to distinguish influential parameters
from non-influential ones. Sensitivity analysis does this by quantifying
the influence of each uncertain input parameter on the variation of
the model output [53,54], thereby guiding the subsequent calibration
process. To perform a rigorous global sensitivity analysis, we employ
6

the Sobol method [39]. n
2.3.1. The Sobol method
The Sobol method [39] is a variance-based global approach, which

decomposes the output variance into portions attributed to the specific
input parameters. Being a global approach, the Sobol method explores
the entire input space of the uncertain input parameters as opposed to
local sensitivity measures, which only perturb a single input parameter
at a time around a fixed base point [54].

Our tumour-growth model (hereafter referred to as 𝑓 ) includes a
number of uncertain input parameters 𝜃𝑖, which we further detail be-
low. The uncertain input parameters 𝜃𝑖 are assumed to be independent
random variables described by their probability density function (PDF)
𝑝(𝜃𝑖) and summarised in the random vector 𝜽, such that 𝑝(𝜽) = ∏

𝑖 𝑝(𝜃𝑖).
y 𝜽∼𝑖, we denote the random vector of all components except 𝜃𝑖.
ecause of the randomness in the input parameters, the output of the
odel 𝑓 is also a random variable. We use the expected value of the

unction 𝑓 of 𝜽 denoted by

𝜽[𝑓 (𝜽)] = ∫𝛺
𝑓 (𝜽)𝑝(𝜽) d𝜽 (8)

nd the variance (second moment) denoted by

𝜽 [𝑓 (𝜽)] = ∫𝛺

(

𝑓 (𝜽) − E𝜽[𝑓 (𝜽)]
)2 𝑝(𝜽) d𝜽 (9)

here 𝛺 is the input parameter space.
The first-order Sobol index 𝑖 then is defined as6

𝑖 =
V𝜃𝑖

[

E𝜽∼𝑖
[

𝑓 (𝜽)|𝜃𝑖
]

]

V𝜽 [𝑓 (𝜽)]
, (10)

and describes the extent to which the variance of the output V𝜽 [𝑓 (𝜽)]
ould be reduced if the true value of the input parameter 𝜃𝑖 was
nown (with V denoting the variance operator) [55]. Note that the
xpectation E𝜽∼𝑖

[

𝑓 (𝜽)|𝜃𝑖
]

in the numerator is taken over all possible
alues of 𝜽∼𝑖 (denoted by the subscript) while keeping parameter 𝜃𝑖
ixed. In contrast, the variance V𝜃𝑖 in the numerator is taken over all
ossible values of 𝜃𝑖. A parameter 𝜃𝑖 with a high first-order Sobol index
𝑖 is considered in the subsequent calibration, since determining its true
alue efficiently reduces the overall uncertainty of the model output,

6 Hereafter, we will refer to the Sobol indices as 𝑖. Although the notation
s similar to that for saturation (𝑆𝛼) of the fluid phases of the porous
edia model, it was nevertheless decided to retain it since both are standard
otations in their corresponding fields.
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Table 1
Fixed parameters of the model.

Symbol Parameter Value Units Reference

𝑟0 Initial tumour radius 0.010 mm Measured
𝜌𝑡 , 𝜌𝑙 Density of fluid phases 1 ⋅ 10−3 g∕mm3 [61]
𝜌𝑠 Density of ECM 1 ⋅ 10−3 g∕mm3 [61]
𝑆 𝑡0 Initial tumour saturation 0.875 – [43]
𝜀0 Initial porosity 0.89 – [2,62–65]
𝜔𝑛𝑙crit Critical mass fraction of oxygen 1 ⋅ 10−6 – [66]
𝜔𝑛𝑙env Environmental mass fraction of oxygen 4.2 ⋅ 10−6 – [43]
𝐷𝑛𝑙

0 Interstitial diffusivity of oxygen 3.2 ⋅ 10−3 mm2∕s [43]
𝛿 Non-linear diffusion law of oxygen 2 – [43]
𝜇𝑙 Dynamic viscosity of medium 0.95 ⋅ 10−3 Pa s [61]
𝛾𝑛𝑡0 Oxygen consumption due to metabolism of TCa 6 ⋅ 10−10 g∕(mm3s) [43]

aTC denotes the tumour cell phase.
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n this case, the tumour volume [53]. At the same time, a small first-
rder index is not a sufficient basis from which to conclude that the
arameter 𝜃𝑖 is non-influential, because the parameter may be involved
n interactions with other parameters.

We therefore additionally consider the total-order Sobol index

𝑡𝑜𝑡
𝑖 =

E𝜽∼𝑖
[

V𝜃𝑖
[

𝑓 (𝜽)|𝜽∼𝑖
]

]

V𝜽 [𝑓 (𝜽)]
(11)

which describes the total contribution of the parameter 𝜃𝑖, including the
first-order effect plus any higher-order effects that arise from interac-
tions. If  𝑡𝑜𝑡𝑖 = 0 (or, in practice, sufficiently small), the parameter 𝜃𝑖 can
be considered non-influential, and hence it can be fixed anywhere in its
input range without affecting the output variance [53]. The difference
 𝑡𝑜𝑡𝑖 − 𝑖 between the first- and the total-order Sobol index quantifies
the interactions between the input parameter 𝜃𝑖 and all other input
parameters. To further quantify these interactions, the second-order
Sobol indices can be estimated, similar to [56,57].

To estimate the Sobol indices, we need to compute the conditional
expectations and variances given in Eqs. (10) and (11), which means
evaluating the multidimensional integrals in the space of the input pa-
rameters. Monte Carlo integration is employed for this purpose, as the
integration error is not dependent on the dimension of the integrand,
unlike grid-based integration schemes, such as Gaussian quadrature.
We further use the estimators proposed by [58,59]. However, this esti-
mation involves evaluating the tumour-growth model 𝑓 for all Monte
Carlo samples. Considering the large number of Monte Carlo samples
needed and the computational cost of the model 𝑓 , the degree of re-
sources required makes this option unfeasible. We therefore substitute
the simulations of the forward model 𝑓 with realisations of a trained
Gaussian process metamodel 𝑓GP (see Section 2.4). The estimation of
the Sobol indices includes two main sources of uncertainty: one related
to the Monte Carlo integration, and one related to the metamodel
approximation. We quantify those uncertainties based on [57,60].

2.3.2. Setup of the GSA
The quantity of interest in the spheroid growth analysis is the

volume 𝑉 𝑡 of the tumour spheroid over time (see supplementary
Eq. (A.10)), and the objective of the sensitivity analysis is to sepa-
rate the (most) influential uncertain input parameters from the non-
influential ones. To this end, the input parameters are grouped accord-
ing to whether they are fixed or uncertain.

The fixed parameters are listed in Table 1. We assume that the
values of those parameters are known a priori, e.g., from previous
tudies. The initial tumour radius 𝑟0 is obtained from the experimental
mages. The densities of the fluid phases (𝜌𝑡 and 𝜌𝑙) and of the ECM (𝜌𝑠)

are assumed to be equal to the density of water. In the experiments,
nutrients are supplied every day to ensure that they are available in
sufficient concentration throughout the assay. In the computational
model, we include oxygen as the only nutrient, and assume that the
parameters related to oxygen (𝜔𝑛𝑙 , 𝜔𝑛𝑙 , 𝐷𝑛𝑙 and 𝛿) are known.
7

crit env 0 d
Table 2 lists the eleven uncertain parameters whose influence will
be analysed in the GSA. We assume a uniform distribution for all
parameters, with  denoting the continuous uniform distribution over
the interval [𝑎, 𝑏]. We define the support for the distributions of these
parameters based on values obtained from the literature. The ranges
of the initial porosity 𝜀0 and of the properties of the ECM (intrin-
sic permeability 𝑘, shear modulus 𝐺, Poisson’s ratio 𝜈 and dynamic
viscosity 𝜇𝑠) are based on experimental results, in which the role of
the ECM was investigated. The parameters 𝐴𝑡 and 𝐴𝑙 impact on the
sotropic permeability of the ECM with respect to the fluid phase
∈ {𝑡, 𝑙}. The dynamic viscosity of the tumour cell phase 𝜇𝑡 has been

measured in numerous studies, producing values that vary over several
orders of magnitude. Further parameters, such as the initial tumour
saturation 𝑆𝑡0, the interfacial tension between the tumour cells and the
medium 𝜎𝑡𝑙, and the coefficients related to growth, necrosis or nutrient
consumption (𝛾 𝑡growth, 𝛾 𝑡necrosis and 𝛾𝑛𝑡growth) have been investigated in
previous publications.

2.4. Gaussian process metamodel

When a large number of model evaluations is required, the computa-
tional cost becomes prohibitive since every evaluation of the underlying
tumour-growth model is expensive (an analysis needs around 30 min to
simulate seven days of growth on one Intel Xeon E5-2630 v3 Haswell
node (2.4 GHz Octa-Core, 64 GB RAM) in our Linux cluster). We
therefore employ Gaussian processes as a metamodel (also known as a
surrogate model or emulator) for approximating our porous multiphase
tumour-growth model, introduced in Section 2.2.

A Gaussian process (GP) is given by

𝑓GP(𝜽) ∼ GP(𝑚GP(𝜽), 𝑘(𝜽,𝜽′)) (12)

with its mean function 𝑚GP(𝜽) and its covariance function 𝑘(𝜽,𝜽′). We
use a squared exponential covariance function (also called radial basis
function)

𝑘(𝜽,𝜽′) = 𝜎2𝑓 exp

(

−
𝐷
∑

𝑖=1

(𝜃𝑖 − 𝜃′𝑖 )
2

2𝓁2
𝑖

)

(13)

ith the variance parameter 𝜎𝑓 and one characteristic lengthscale 𝑙𝑖 per
nput space dimension. Hence, we have 𝐷 + 1 a priori unknown hyper-
arameters  = (𝜎𝑓 , 𝑙1,… , 𝑙𝐷). The hyperparameters  are optimised
n the basis of a maximum likelihood estimation [84]. To enhance the
omputational efficiency and robustness, we perform stochastic opti-
isation, using Adam optimisation [85]. Hence, training the Gaussian
rocess means optimising the hyperparameters  .

To ensure good predictive quality of the metamodel, the training
amples should provide good coverage of the input space. To this
nd, we use the low-discrepancy Sobol sequence [86] to generate the
raining samples. In addition, we generate a set  of testing samples
isjoint of the training sample set. We assess the performance of the
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Table 2
Probability distributions of the uncertain input parameters.

Parameter Distribution Units Reference

Interfacial tension 𝜎𝑡𝑙 ∼  [2, 50] mNm−1 [43,67]
Dynamic viscosity of TCa 𝜇𝑡 ∼  [10, 1000] Pa s [34,68–74]
Relative permeability exponent for TC 𝐴𝑡 ∼  [1, 10] – [44]
Relative permeability exponent for medium 𝐴𝑙 ∼  [1, 7] – [44]
Tumour-growth coefficient 𝛾 𝑡growth ∼  [0.1, 2.0] ⋅ 10−8 g∕(mm3s) [26,43,44]
Necrosis coefficient of TC 𝛾 𝑡necrosis ∼  [1, 10] ⋅ 10−9 g∕(mm3s) [26,43,44]
Oxygen consumption due to growth 𝛾𝑛𝑡growth ∼  [1, 5] ⋅ 10−10 g∕(mm3s) [26,43,44]
Intrinsic permeability of the ECM 𝑘 ∼  [0.5, 1.5] ⋅ 10−9 mm2 [44,62,75]
Poisson’s ratio of ECM 𝜈 ∼  [0.35, 0.48] – [43,76,77]
Shear modulus of ECM 𝐺 ∼  [120, 710] Pa [47,62,78–81]
Dynamic viscosity of ECM 𝜇𝑠 ∼  [10, 35] Pa s [47,82,83]

aTC denotes the tumour cell phase.
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aussian process metamodel by evaluating the Nash–Sutcliffe efficiency
2 [87] as

2 = 1 −
∑

𝜽∈
(

𝑚GP(𝜽) − 𝑓 (𝜽)
)2

∑

𝜽∈
(

𝑚GP(𝜽) − 𝑓
)2

with 𝑓 = 1
𝑁𝑇

∑

𝜽∈
𝑓 (𝜽)

(14)

where 𝑁𝑇 is the number of testing samples. Nash–Sutcliffe efficiency
compares the mean prediction of the trained Gaussian process to the
actual output of the tumour-growth model, whereby values close to
one indicate good agreement and thus good predictive quality of the
Gaussian process.

2.5. Bayesian calibration

We favour a Bayesian approach to parameterise our computational
tumour-growth model for a number of reasons. As stated above, the
model contains uncertain input parameters for which we do not know
the true value. Additionally, the true value itself may be subject to un-
certainty, for instance, due to randomness in the underlying processes.
This means that the uncertain input parameters are characterised by
probability distributions as opposed to a single (fixed) value. When
working with experimental data or biological systems, it is necessary
to assume that a certain degree of uncertainty is present (such as
measurement error, model error or intrinsic variability). Otherwise
the solution is overconfident or incorrect. Indeed, uncertainty can
also be found in computational modelling, for instance, in the form
of simplifying assumptions in the model formulation. In this paper,
Bayesian techniques are deemed the most appropriate for performing
model calibration, since the approaches used are intrinsically able to
characterise uncertainty [88].

Based on Bayes’ rule [89], knowledge of the uncertain parameters
𝜽 of a model 𝑓 is updated in the presence of the experimental data 𝒚obs
resulting in a posterior distribution 𝑝(𝜽|𝒚obs) of the parameters as

𝑝(𝜽|𝒚obs) ∝ 𝑝(𝒚obs|𝒇 (𝜽))𝑝(𝜽) (15)

where 𝑝(𝜽) is the prior distribution and 𝑝(𝒚obs|𝒇 (𝜽)) is the likelihood
function.

The observations 𝒚obs are the tumour-spheroid volumes obtained
by in vitro experiments over time. Here, we use 𝑁 conditionally in-
dependent observations 𝒚obs = {𝒚obs,𝑖}𝑁𝑖=1, with 𝑁 being the number
of observed tumour spheroids.7 The variable 𝜽 denotes the uncertain
input parameters. We assume an additive Gaussian noise 𝝐 such that

𝒚obs = 𝒇 (𝜽) + 𝜎𝑁 ⋅ 𝝐 with 𝝐 ∼  (𝟎, 𝟏) (16)

7 To avoid cluttered notation, the output of 𝒇 (𝜽) is a vector containing
he tumour-spheroid volumes at different discrete time points. Similarly, 𝒚obs,𝑖
ontains the experimentally observed volume of one tumour spheroid 𝑖 at
ifferent discrete time points, and 𝒚obs concatenates the tumour-spheroid
olumes for all time points and all observed spheroids.
8
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here  denotes the Gaussian distribution and 𝜎𝑁 denotes the stan-
ard deviation [90].

Further, the prior distribution 𝑝(𝜽) encodes the uncertainty about
he parameters before observing the data. The prior distribution is
pecified beforehand and represents the parameter information that we
ish to include in the model calibration. It might represent the igno-

ance of a parameter or introduce a strong subjective belief [36]. To be
onsistent with the preceding GSA, we choose the prior distributions
resented in Table 2. They are defined as uniform distributions, and
he domains are based on values found in the literature.

The likelihood function 𝑝(𝒚obs|𝒇 (𝜽)) is a true probability density for
he observations 𝒚obs, conditionally dependent on the parameters 𝜽,
hereby the likelihood connects the experimental data to the compu-

ational model. In the context of Bayesian calibration, the likelihood
unction can be interpreted as a goodness-of-fit measure, i.e., how well
he model output fits the experimental data, given a particular value
or the input parameters 𝜽 [91]. Based on the additive Gaussian noise
ssumption (see Eq. (16)), the likelihood is given by

(𝒚obs|𝒇 (𝜽)) =
𝑁
∏

𝑖=1
 (𝒚obs,𝑖|𝒇 (𝜽), 𝜎𝑁 ) =

𝑁
∏

𝑖=1

1
√

2𝜋𝜎𝑁
exp

(

− 1
2𝜎2𝑁

‖𝒚obs,𝑖 − 𝒇 (𝜽)‖2
) (17)

ith ‖ ⋅ ‖ denoting the Euclidean L2-norm.
Finally, the posterior distribution 𝑝(𝜽|𝒚obs) fully characterises the

nowledge of the model parameters, having now observed the data. It
s defined as a conditional distribution of the parameters 𝜽, given the
ata 𝒚obs. The aim of this Bayesian calibration is to present the posterior
istribution of the multiphase model parameters.

Due to the implicit dependency on the forward solver, the posterior
istribution is analytically intractable, so it is approximated using
ampling techniques [88]. However, sampling from the posterior distri-
ution involves numerous evaluations of the forward model 𝑓 , which
esults in a tremendous computational burden for complex models,
uch as our tumour-growth model. Therefore, the forward model 𝑓
s again replaced by a Gaussian process 𝑓GP (see Section 2.4) as a
etamodel. This study uses a single-surface approximation [92] based

n the mean of the Gaussian process. However, several approaches for
apturing this additional uncertainty are proposed in [92].

We use a sequential Monte Carlo (SMC) approach [41,93,94] for
ampling, in which the posterior distribution is approximated by a large
ollection of 𝑀 ≫ 1 weighted particles [95] such that

(𝜽|𝒚obs) ≈
𝑀
∑

𝑖=0
𝑊 (𝑖)𝛿𝜃(𝑖) (𝜽) with

𝑀
∑

𝑖=0
𝑊 (𝑖) = 1 (18)

here 𝑀 is the number of particles, {𝑊 (𝑖)}𝑀𝑖=1 are weights, {𝜽(𝑖)}𝑀𝑖=1
s the ensemble of particles and 𝛿(⋅) represents the Dirac delta. The
ey idea of SMC is to start from a particle representation of the prior
istribution and sequentially blend over to the target, i.e., posterior

istribution [93]. The SMC method has gained considerable attention
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due to its superior efficiency and algorithmic robustness compared
to Markov Chain Monte Carlo methods [93,96,97]. SMC comprises
numerous steps, such as reweighting, resampling and MCMC-based
rejuvenation.8 The technical details of SMC are beyond the scope of
his work and can be found in [41,93,98,99].

.6. Numerical implementation

The proposed multiphase porous media framework is implemented
n the in-house parallel multiphysics research code BACI (Bavarian
dvanced Computational Initiative) [100]. All methods relating to
aussian process metamodels, sensitivity analysis and Bayesian calibra-

ion are implemented in QUEENS [101], which is a general-purpose
ramework for uncertainty quantification, physics-informed machine
earning, Bayesian optimisation, inverse problems and simulation ana-
ytics on distributed computer systems. We use GPflow [102,103] as the
P framework, TensorFlow [104] for Adam optimisation [85] and Py-
orch [105] for generating Sobol sequences. The SMC implementation

s based on the Python based SMC library particles [106].

3. Results

In this section, we present the results of the experiment, that is, the
evolution of the tumour spheroid. We then move on to consider the
outcome of the global sensitivity analysis and determine which model
parameters are the most influential. Finally, we calibrate the relevant
parameters of the multiphase model in such a way that they mimic the
experimental results.

3.1. 3D growth of neuroblastoma spheroids in microfluidic devices

To better understand how NB tumour cells interact with the mi-
croenvironment and to calibrate the tumour-growth model, we de-
signed an in vitro technique based on microfluidic devices that have
been described above.

The development of multicellular clusters of cells (NB spheroids)
growing in microfluidic devices was evaluated by imaging to determine
whether neuroblastoma primary culture (PACA cells) has the ability to
form spheroids (embedded cell aggregates growing in a 3D extracel-
lular matrix). To do this, we performed time-lapse microscopy of NB
spheroids from day zero (single cells) up to day seven (Fig. 5A). The NB
PACA cell culture embedded in 6mgml−1 collagen-I hydrogels induced
a high degree of spheroid formation. Changes in the cell areas of NB
spheroids were monitored and quantified over the culturing period
(Fig. 5B): the corresponding growth curves (expressed in μm2) allowed
us to study the size of the spheroids over time, which increased from
381(154) μm2 at day 0 up to 10 199(2384) μm2 at day 7. No significant dif-
ferences were found between the biological replicates in pairing days.
We closely observed the spheroid populations and determined that they
displayed a narrow morphology spectrum. Specifically, a morphology
analysis of individual cell clusters using bright-field imaging revealed
a predominant phenotype at 6mgml−1, with most of the spheroids
presenting circular structures without elongations or protrusions on
their surface. We measured the circularity of clonal cell clusters over
time (Fig. 5C) and found high circularity values, i.e., high circularities
of the projected area of the spheroids (with the median values ranging
from 0.92 to 0.97 at various time points) confirming the predominance
of a single spheroid phenotype. The lower circularity values found
during the first culture days might be due to a small inherent error
in measuring perimeters on small pixelated objects or the lack of total
compactness during this time frame.

8 In the rejuvenation step, we use a random walk Metropolis kernel as
he MCMC transition kernel, where the covariance matrix of the proposal
istribution is set proportionally to the empirical variance of the particles [94].
n adaptive tempering scheme [94] was employed such that the ratio between

wo subsequent tempering exponents equals 0.95.
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To further support our observations, we performed confocal imaging
and 3D reconstructions from light-sheet microscopy. Immunofluores-
cence against filamentous actin (F-actin) revealed that most of the NB
spheroids presented a round shape with a highly compacted cytoskele-
ton, very few protrusions and a smooth surface (Fig. 5D). Finally,
the 3D projection displayed morphological non-invasive and rounded
shape structures (Fig. 5E). This phenotype is typically associated with
high cell–cell adhesion due to the high compressive forces acting on
the spheroids in the 3D hydrogel. Both cell spreading and tumour
invasion were greatly reduced, and most of the cells remained as dense
and isolated aggregates, with minor motility through the collagen gel
compared with previously studied cancer types [2].

3.2. Global sensitivity analysis

We now determine the first- and the total-order Sobol indices to
enable us to separate uncertain input parameters of high influence from
non-influential ones.

Table 2 lists all eleven uncertain input parameters together with the
corresponding probability distributions based on (experimental) data
taken from the literature. The quantity of interest is the tumour volume.

We estimate the Sobol indices separately for each time point in the
experimental measurements, i.e., from day zero to day seven. For this
purpose, we train a Gaussian process in which the scalar quantity of
interest is the tumour volume at the corresponding time point. This is
based on 460 training samples and results in a Nash–Sutcliffe efficiency
(see Eq. (14)) of the surrogate model of 𝑄2 > 0.96 for all cases. First-
and total-order Sobol indices are estimated for 1, 3, 5, and 7 days of
growth.

Only five input parameters have a major impact on the tumour
volume, these being the interfacial tension (𝜎𝑡𝑙), the dynamic viscosity
of the tumour cell phase (𝜇𝑡), the relative permeability exponent of the
tumour cell phase (𝐴𝑡), the tumour-growth coefficient (𝛾 𝑡growth) and the
intrinsic permeability of the ECM (𝑘). The remaining six parameters
have a first- and total-order Sobol index of less than 0.01 (see Table B.1
for the Sobol indices and Table B.2 for the confidence intervals). We
thus conclude that these parameters are non-influential in the given
setup and can be fixed at any value within the studied ranges.

The Sobol index estimates for the most influential parameters are
shown in Fig. 6. For all five of the most influential parameters, the
total-order Sobol index is considerably higher than the first-order index,
which indicates the presence of higher-order interaction effects. We
therefore estimate the second-order Sobol indices for the influential
parameters: the results confirm that interactions are indeed present,
in particular interaction of the dynamic viscosity 𝜇𝑡 and the growth
coefficient 𝛾 𝑡growth (see Table B.3).

Comparing the estimated Sobol indices for the various time points
reveals that while the total-order Sobol index of the growth coefficient
𝛾 𝑡growth dominates the GSA, the corresponding first-order Sobol index
decreases over time. At the same time, the influence of the dynamic
viscosity 𝜇𝑡 of the tumour cell phase increases, in particular the total-
order Sobol index. This could be because the cells are initially more
independent as they are separated from each other. In contrast, once
the spheroid has grown, cells behave like a cluster and no longer as
individual entities. Our results highlight the increasing influence of the
mechanical properties of the tumour (in this case its dynamic viscosity)
the longer the tumour grows. Moreover, the influence of interactions of
different parameters also increases over time.

The results of the GSA show that six out of the eleven uncertain
input parameters have a total-order Sobol index close to zero. This
suggests that these parameters are non-influential w.r.t. the quantity
of interest, i.e., the tumour volume, and can hence be fixed anywhere
with the range given in Table 2. As a result, the number of input space
dimensions that have to be included in the subsequent calibration can
be reduced to the number of influential parameters. To validate this

assumption, we fix the non-influential parameters at the mean value of
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Fig. 5. 3D growth of neuroblastoma spheroids in microfluidic devices. (A) Representative bright-field time-lapse images showing the formation of neuroblastoma spheroids in
collagen-I on days 1, 3, 5 and 7 (Scale bars: 250 μm). Yellow contours indicate the leading edges of the clusters. (B) Evolution of the spheroid area of individual spheroids over
time. Data is expressed as mean ± SEM (standard error of the mean). (C) Evolution of the spheroid circularity of individual spheroids over time. Data is expressed as mean ± SD
(standard deviation). (D) Z-stack (up) and orthogonal projection (down) from NB spheroids after one week of incubation in microfluidic devices in collagen-I hydrogels. Projections
were obtained from Z-stacks analysed with a Zeiss LSM 880 confocal microscope using fluorescent dyes (Merge channels (left), blue nuclear (blue nuclear counterstain with DAPI
and Phalloidin-TRITC in red to stain Actin filaments) Scale bars: 50 μm). (E) 3D projection of NB spheroids containing histone 2B fused to GFP imaged with Lattice Lightsheet 7
microscope (Zeiss) lapse imaging. Images were taken on day 7, processed and 3D volume was projected with Zen 3.5 Blue software (Zeiss).
the corresponding probability distributions and compare the resulting
PDF of the tumour volume to the original PDF with all eleven uncertain
input parameters: the resulting distributions show very good agreement
for all time points (see Fig. B.1), and we therefore conclude that fixing
the six non-influential parameters is justified.

3.3. Bayesian calibration

Based on the results of the GSA, only the most influential parameters
are included in the Bayesian calibration of the multiphase model.
Hence, we analyse five parameters: �̂� = [𝜎𝑡𝑙 , 𝜇𝑡, 𝐴𝑡, 𝑘, 𝛾 𝑡growth]. We define
the priors 𝑝(�̂�) of each parameter as uniform distributions, following
the ranges established in the GSA (see Table 2). The observations 𝒚obs
are the tumour volumes measured at eight different time points in the
in vitro spheroid experiments as described in Section 2.1. The physics-
based tumour model 𝑓 is replaced by the posterior mean of a Gaussian
surrogate model 𝑓GP trained on the following data set: the time is
used as an additional input space dimension, and hence 536 training
samples, each taken at eight time points, result in a training data set
containing 4288 data points. To do this, we use a sparse variational
Gaussian process to reduce both computational complexity and storage
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demands [107]. This results in a Nash–Sutcliffe efficiency of 𝑄2 > 0.98
for the surrogate model. The posterior 𝑝(�̂�|𝒚obs) is approximated with
20 000 particles and 5 SMC rejuvenation steps. The noise variance 𝜎2𝑁
is fixed at 1 × 1012 μm6 (see Eq. (16)).

In the following, we consider the results of the Bayesian calibration
from two perspectives. First, we analyse the output distribution of
the calibrated model 𝑝(𝑉 𝑡

|𝒚obs) (in the output space, i.e., the tumour
volume). This allows us to compare the remaining uncertainty in the
tumour volume 𝑉 𝑡 with the experimental data. We then analyse the
posterior distribution 𝑝(�̂�|𝒚obs) of the input parameters themselves (in
the input parameter space).

The results of the Bayesian calibration in the output space are
shown in Fig. 7 together with the experimental data. We evaluate the
maximum a posteriori density estimate (MAP)9 in both the tumour-
growth model 𝑓 and the Gaussian process surrogate mode 𝑓GP, and
the corresponding results are depicted as brown dashed and continu-
ous lines, respectively (Fig. 7). These plots confirm that the Gaussian

9 The combination of parameters that results in the MAP density estimate
is �̂�MAP: 𝜎𝑡𝑙 = 49.898mN∕m, 𝜇𝑡 = 706.56 Pa s, 𝐴𝑡 = 2.5259, 𝑘 = 0.8201 × 10−9 mm2,
𝛾 𝑡 = 1.7919 × 10−8 g∕(mm3 s).
growth
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Fig. 6. First- and total-order Sobol indices for 1, 3, 5, and 7 days of growth. First-
order Sobol indices are shown as bold bars, while total-order Sobol indices are shown
as dashed bars in the background. The error bars indicate 99% confidence intervals
for the corresponding Sobol index estimates.

process surrogate model emulates the tumour-growth model reasonably
well. We also exploit the capacity of the Bayesian approach to represent
uncertainty in the output space. The probability distribution of the
tumour volume 𝑝(𝑉 𝑡

|𝒚obs) that emerges from a forward uncertainty
quantification using the posterior distribution is plotted in light blue. It
estimates the probability density function of the spheroid volume over
time. The mean tumour volume E𝑝(�̂�|𝒚obs)

[𝑉 𝑡(�̂�)] of the calibrated model
is plotted in dark blue. It is noteworthy that the results of the Bayesian
calibration match the experimental variability.

To gain a better understanding of the five calibrated parameters,
we consider the posterior distribution 𝑝(�̂�|𝒚𝑜𝑏𝑠) in the input parameter
space. Since we are interested in the implications for each individual
parameter, we first focus on 1D marginal posteriors 𝑝(𝜃𝑖|𝒚obs). We will
then analyse the 2D marginal posteriors for parameter pairs, as the GSA
indicates the presence of interactions between the input parameters.
The overall results are shown in Fig. 8. It should be borne in mind
that the 1D and 2D marginal distributions all are projections of the
five-dimensional posterior distribution 𝑝(�̂�|𝒚𝑜𝑏𝑠) to lower dimensions.

The marginal posterior of the growth coefficient 𝛾 𝑡growth presents a
higher probability mass clustered around the value 2 × 10−8 g∕(mm3 s).
Therefore, we conclude that the lower values obtained from the lit-
erature are unlikely to fit the experimental NB spheroid growth. The
marginal posterior of the growth coefficient is significantly different
from the other four (𝜎𝑡𝑙, 𝜇𝑡, 𝐴𝑡 and 𝑘). This is in agreement with the
GSA, which indicates that the growth coefficient is the most influential
parameter. Thus, we consider that the identification of a more probable
range of values for this parameter is a solid outcome of the Bayesian
calibration. Nevertheless, the plot does not reveal a clear peak at
any certain value, presumably due to the need to explain the high
variability of the experimental data.

Fig. 8 further shows that the 1D marginal posterior distributions
for the interfacial tension 𝜎𝑡𝑙 and permeability 𝑘 of the ECM are
uninformative. This finding is in agreement with the output of the
GSA, in which both parameters are the least influential of the five
parameters selected for the Bayesian calibration. The flat marginal pos-
teriors indicate that no information about the effect of each individual
parameter can be extracted separately from the available data. This
is assumed to be due to the small influence of these parameters on
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the resulting tumour volume. Also, the forward model may allow for
a wide range of parameters without resulting in a drastic change in the
outcome. A further hypothesis is that this is due to the low data regime,
which comprises only eleven spheroid data points per time step. The
1D marginal posterior distribution of the dynamic viscosity 𝜇𝑡 reveals
a slightly higher probability mass for values below 500 Pa s.

We now consider the 2D marginal posteriors. Fig. 8 reveals that
the dynamic viscosity 𝜇𝑡 has a negative correlation to the relative
permeability exponent 𝐴𝑡, in other words, that large 𝜇𝑡 values have a
high density in combination with small 𝐴𝑡 values. Also, a slightly higher
density occurs when high values of 𝜎𝑡𝑙 are combined with higher values
of 𝜇𝑡, although low values of viscosity worked with the whole support
of the interfacial tension. The 2D marginal posterior of the interfacial
tension also results in higher probability values when combined with
high values of 𝑘. Hence, future experimental and computational anal-
ysis should also consider the possible interaction of scaffold stiffness
and dynamic viscosity of tumour cells. Otherwise, the combination of
dynamic viscosity 𝜇𝑡 and permeability 𝑘 of the ECM is uninformative.
The marginal posterior distribution for the interfacial tension 𝜎𝑡𝑙 and
the relative permeability exponent 𝐴𝑡 does not reveal a clearly defined
peak. The 2D marginal posterior of 𝐴𝑡 and 𝑘 shows a higher probability
for low 𝐴𝑡 values.

To conclude the Bayesian calibration results, we relate them back
to the theoretical framework of our computational model. In the TCAT
framework, the interfacial tension (together with the interfacial cur-
vature) causes the pressure difference between the cell phase and the
surrounding medium at the microscale. However, at the macroscale,
which is where all model equations are formulated, the use of Eq. (4)
is only a heuristically proposed relation [51]. The interfacial tension
influences the density of the tumour. Here, we only used the tumour
volume for the Bayesian calibration, which is why it is not possible
to distinguish between two spheroids of the same volume but with
different densities. This might explain why the marginal posterior for
the interfacial tension does not show a clear peak. With the inclusion
of additional data, such as cell count, tumour mass or density, a
more pronounced posterior may be possible. Similarly, Eq. (3) is also
a heuristical relation to include interaction forces between the cell
phase and the surrounding medium at the macroscale [51], which
again is not consistent with the TCAT framework. Further experimental
analyses of how tumour cells interact with their surroundings (ECM
and other phases) are clearly necessary. From the mathematical side
however, [25] have already proposed a theoretically sound version
which considers the interfaces between the phases.

4. Discussion

The current study presents a new methodology which combines
in vitro experiments with computational modelling to investigate the
growth of tumour spheroids subject to regulation by their microen-
vironment. We present a complete workflow, beginning with a de-
scription of the experiments, which are simulated by a multiphase
poroelastic model. The model is calibrated by the experiments under
uncertainty using Bayesian techniques. This multidisciplinary study in-
tegrates various technologies, which combine ideally in advancing our
understanding of how in vitro growth of tumour spheroids is regulated
by the surrounding microenvironment. The methodology we present
goes one step beyond those presented in the literature [35–38] and it
is applied for the first time to neuroblastoma cancer.

We start by describing the in vitro development and growth of
tumour spheroids by means of microfluidic-based chips, with a focus
on neuroblastoma cells. We employ 3D experiments because they have
the advantage of better reproducing the spatial organisation of cells
and enabling control of the microenvironmental conditions. We present
a novel, low-cost, and accessible method for the rapid characteri-
sation of 3D cell clusterization using microfluidic chips that allow
the culture of NB cells on collagen-type I hydrogels. The potential
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Fig. 7. Spheroid tumour volume over time. In green solid lines, the growth of each spheroid from the experimental data set is plotted. The outcome of the surrogate model
evaluated at �̂�MAP is plotted in brown, and the outcome of the forward model in dashed brown line using the same point estimate �̂�MAP. The distribution of the tumour volume
𝑝(𝑉 𝑡

|𝒚obs) of the calibrated model is evaluated at each experimental time point and shown in light blue. The mean of the tumour volume of the calibrated model is plotted in
dark blue.
Fig. 8. 1D and 2D marginal posterior PDFs. Yellow colours indicate high values of the posterior densities, whereas purple colours indicate small values. The diagonal, in light
lue, shows the 1D marginal posterior distribution for a single parameter.
mpact of 3D cultures has strongly been emphasised previously, and
uthors have provided a variety of techniques for introducing 3D cul-
ure systems with the aim of attaining more reliable and comprehensive
esults [108]. Efforts to transfer the experiments to 3D have also been
ade in NB [109–113]. The hanging drop method has traditionally

een used to study spheroid growth. The principle is that the cells are
eposited by gravity at the bottom of the hanging droplets, where they
radually form a spheroid. However, there is no scaffold to provide
upport and mimic a natural tumour microenvironment for spheroids
s missing, which makes this approach unsuitable for reproducing in
vivo tumour formation. Our in vitro experiments were carried out in
microfluidic platforms that support NB proliferation and have the ad-
vantage of making in vivo follow-up and spheroid analysis easier thanks
to their good compatibility with imaging technologies. The collagen
hydrogel network enhances the study of 3D growth models in a more
12

reliable approach, and its usefulness for the study and characterisation
of different tumours (including infant and brain-derived) has been
widely reported [79,114]. Previous studies have reviewed the role of
ECM in NB progression, evidencing that alterations of the ECM are
tumour progression mediators [81,115]. Moreover, stiffness regulates
the neuroblastoma dynamics and behaviour [79,116] as well as the
chemotherapeutic distribution and efficacy [111]. The main limitation
of spheroids is that they are formed from a single cell type. Although
culturing them from single cells embedded in hydrogels allows us to
produce spheroids without the need for aggregation techniques, they
are still a simplified model. Spheroids lag behind other more complex
models where multiple cell types interact and where physiological
functions are more clearly defined, e.g., in organotypic cultures. The
combination of long-term 3D culture and microfluidic devices paves the
way to a better understanding of tumour spheroid formation, offering
a fine methodology with which to feed the computational models.

Additionally, in order to create a tumour-on-a-chip platform which
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closely recreates in vivo tumour growth, flow has to be incorporated
into the microfluidic devices [3,117,118]. On the computational side,
models must then replicate the complex tumour structure, integrating
the vascular network to simulate in vivo dynamic flow and drug trans-
port in the tumour microenvironment. This is directly enabled by our
modelling approach [24,31].

A multiphase poroelastic model based on porous media is chosen
for the simulation of spheroid growth, to better account for the fea-
tures of the experimental setup. A wide range of models is presented
in the literature [16,20,27,28,30]. Hydrogels are network polymeric
materials with highly hydrophilic polymeric chains and are hence
associated with large quantities of water, which accounts for their
biocompatibility. As with most polymers, the hydrogels exhibit time-
dependent mechanical behaviour due to the intrinsic viscoelasticity of
the polymeric network. Our modelling approach offers the advantage of
seamlessly incorporating recent scientific findings on the importance of
hydrogel viscoelasticity [119,120] by applying a viscoelastic material
law for the scaffold. To better characterise the multiphase nature of
hydrated materials (like the collagen hydrogels of these spheroids),
poroelastic approaches are seen as the best solution [121]. In our
porohyperelastic material model, the solid phase is assumed to have
a Neo-Hookean formulation (although this model could be a future
line to work in) [122]. A further advantage is that the multiphase
model presented here allows us to replicate the experimental setup,
as the biophysical properties of the hydrogel scaffold (i.e., stiffness,
porosity and permeability) are valuable inputs in the model. A current
limitation is that we do not include the fibre orientation of the collagen
gels and the ECM deposition, which could be the subject of potential
future research. Finally, studying tumour growth in a heterogeneous
microenvironment (asymmetric as opposed to spherical growth) is a
further area in which the experimental and computational models
complement each other in a feedback loop.

Combining the experimental activity with the poroelastic model is
crucial to improving our understanding of the biological processes,
i.e., the onset, formation and growth of tumour spheroids. To do
this, we first assess the model’s parameter sensitivity towards the
relevant output quantity over time, i.e., the tumour volume. This
reveals an overall dominant effect of the input parameter accounting
for growth. The other influential input parameters concern the bio-
physical properties of the tumour cells and their interaction with the
microenvironment—a fact that confirms the importance of understand-
ing the links between cancer biophysics and biology [1]. These findings
emphasise the advantage of a genuinely global method of sensitivity
analysis, such as the Sobol method, which enables detailed insights
rather than local estimates. We then estimate the model parameters
using Bayesian calibration, as it is intrinsically able to capture the un-
certainties present in experimental measurements, which is the biggest
advantage of the Bayesian approach. Bayesian calibration also enables
prior knowledge to be seamlessly integrated. The predictive probabil-
ity density of the tumour volume resulting from forward uncertainty
quantification using the obtained posterior clearly reflects the ability of
Bayesian methodology to capture the entire in vitro variability. In future
studies, the Bayesian approach offers a natural way of integrating
additional data as it becomes available: knowledge of the uncertain
input parameters can be further updated using the posterior obtained
in the present study as a prior. Further research could entail modelling
other sources of uncertainty, such as the effect of spatial- and/or
time-variable nutrient distribution. Such effects can be included in the
analysis as additional random variables, in a similar way to [123], and
might indeed result in a more expressive posterior.

This study aims at gaining a better understanding of how spheroid
growth evolves over time and how it is regulated by mechanical stimuli.
In this context, we are able to monitor tumour-spheroid growth under
physiological conditions using 3D microfluidic devices and collagen
hydrogels to mimic the ECM. Nevertheless, it is not possible to measure
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certain properties of cells or organoids in such experiments, which is
a drawback of the presented workflow. To characterise the mechanical
properties of the spheroids, they usually must be separated from the
collagen network and subjected to further tests, such as atomic force
microscopy. This is rather complicated and no longer physiological
in nature because cells have to be separated from the organoid. The
presented workflow may be more appropriate, as it not only allows the
properties of the whole spheroid to be estimated but also focuses on
the properties of the cells embedded in the spheroid.

The workflow described here enables an indirect measurement of
the mechanical properties of tumour-spheroid growth purely from
the images acquired directly in the course of the experiment, while
also paving the way to future patient-specific models. Development
of patient-specific models usually focuses on tumour growth from a
macroscopic point of view, and such models are fed by magnetic
resonance imaging data, such as tumour geometry, cellularity or the
vascular network [18,19]. A further step would be to incorporate
genetic information and specific cell behaviour for each individual
patient. Due to its high complexity, the integration of all these patient-
specific quantities is not presented in the emerging research. In this
work, a patient-specific cell line is used in the experimental tests and
its evolution is studied through a multiphase porous media model.
Therefore, the presented workflow prepares the ground for a patient-
specific cell parameter characterisation which can then be coupled to
clinical imaging data and large-scale, physics-based models.

Additionally, being able to replicate the experimental outcomes
leads to a significant reduction in cost, since it allows new experimental
scenarios to be tested computationally a priori. This is of major im-
portance when we study infant cancer, where early diagnosis is key.
In paediatric malignancies, trial sample sizes are kept as low as pos-
sible while maintaining the ability and power to address the scientific
objectives of interest. Therefore, the availability of childhood cancer
cells, and here specifically NB cells, is low, and hence computational
modelling has an important role to play in the exploration of these
cancers.

5. Conclusion

Two notable challenges currently hinder the way towards clinical
application of tumour-growth simulations as a prognostic tool: the
limited integration of in silico studies with experiments, and missing
characterisation of uncertainties in the models and the data [124].
In addition, the tumour microenvironment is now known to be an
active promoter of tumour growth and must hence be taken into
account [125]. To tackle all of these challenges, we combine novel
in vitro experiments with a computational model in such a way that
both include the interactions with the tumour microenvironment. This
unique combination is the essential building block which then allows
us to infer knowledge about our model parameters by applying state-
of-the-art techniques: our global sensitivity analysis based on the Sobol
method and our Bayesian calibration based on the sequential Monte
Carlo approach (both using Gaussian processes as a surrogate model)
account for the underlying uncertainties.

Properly identifying the posterior distributions by Bayesian cali-
bration for such a complex model (as our multiphase porous media
tumour-growth model) is often limited by insufficient and noisy ex-
perimental data. The required experimental design needs to be able to
precisely monitor the spatiotemporal evolution of the spheroid while
also providing a stable and controlled microenvironment—a challeng-
ing task given the currently available technologies [124]. This study
reveals that the knowledge gain for the uncertain parameters is obvi-
ously still limited. However, our results show that the inferred posterior
distribution allows us to match the experimental data, including the
high variability. Hence, the demonstrated workflow shall be considered
a first step towards a Bayesian calibration of all uncertain parameters,
which suggests which next steps shall be taken: from the experimental

side, additional data such as cell count, tumour mass or density is
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required, and from the mathematical side, future improvements of the
model need to consider the interfaces between the phases [25].

On the way towards predicting the patient-specific evolution of
tumours, we believe that we should not limit ourselves to finding the
final, perfect model with all parameters precisely determined as such
a thing does not even exist in the real world—we must rather focus
on building incomplete, tentative and falsifiable models in the most
predictive and expressive fashion currently feasible [126].
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Appendix A. Porous multiphase tumour-growth model equations

The main equations of the tumour-growth model will now be pre-
sented.

ECM. The ECM as the solid phase is governed by the balance of
momentum

∇0 ⋅
(

𝑭 ⋅
(

𝑺eff − 𝑝𝑠𝐽𝑪−1)) = 𝟎 (A.1)

with the right Cauchy–Green tensor 𝑪 and the Jacobian determinant 𝐽
of the deformation gradient 𝑭 . Further, 𝑺eff denotes the effective sec-
ond Piola–Kirchhoff stress tensor, and the solid pressure contribution
𝑝𝑠 = 𝑆𝑡𝑝𝑡 + 𝑆𝑙𝑝𝑙 (where 𝑆𝑡 and 𝑆𝑙 are the tumour cells and interstitial
fluid phase saturation, respectively) [44].

We assume a visco-elastic constitutive law for the solid phase. Its
hyperelastic part is assumed to follow a compressible Neo-Hookean
model with a strain energy function given by

𝛹∞
NH =𝐺

2
(tr(𝑪) − 3) + 𝐺

2𝛽
(

𝐽−2𝛽 − 1
)

with 𝛽 = 𝜈
1 − 2𝜈

(A.2)

and the shear modulus 𝐺 and the Poisson’s ratio 𝜈 [127]. The viscous
part is added to the hyperelastic part in the form of a generalised
Maxwell model [49], and we assume that a dashpot in parallel with
a spring is described by the following strain energy function

𝛹 = 𝛹∞ + 𝛾(𝑪 , 𝛤 ) (A.3)
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Table A.1
Mass transfer for the different phases of the tumour-growth model.

Phase Symbol Term

Tumour cells ∑

𝑘∈𝜏𝑐𝑡

𝑘→𝑡
𝑀 =

𝑙→𝑡
𝑀growth

Medium ∑

𝑘∈𝜏𝑐𝑙

𝑘→𝑙
𝑀 = −

𝑙→𝑡
𝑀growth

with the dissipative potential 𝛾. This results in the fictitious stress tensor
𝑸 and its kinematic conjugate 𝛤

𝑸 = −2
𝜕𝛾
𝜕𝛤

(A.4)

similar to the right Cauchy–Green strain tensor 𝑪 and its kinematic con-
jugate being the second Piola–Kirchhoff stress tensor 𝑺. The Maxwell
model follows as

�̇� + 1
𝜏
𝑸 = �̇� (A.5)

ith the relaxation time 𝜏. The global stress tensor is thus given by
= 𝑺∞ +𝑸.
Based on the shear modulus 𝐺 and the dynamic viscosity of the ECM

𝑠, we calculate

= 2𝐺(1 + 𝜈) and 𝜏 =
𝜇𝑠

𝐺
.

Fluid phases. The set of primary variables of the fluid phases is given as
𝝍 = [𝑝𝑡𝑙 , 𝑝𝑙] with the differential pressure between the two fluid phases
𝑝𝑡𝑙 and the pressure of the medium 𝑝𝑙. The mass balance equation of
tumour cells is then given by

𝜀
∑

𝛽=𝑡,𝑙

𝜕𝑆𝑡

𝜕𝜓𝛽
𝜕𝜓𝛽

𝜕𝑡

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐𝑿
+ 𝑆𝑡𝛁 ⋅ 𝒗𝑠 − 𝛁 ⋅

(

𝒌𝑡
𝜇𝑡

∑

𝛽=𝑡,𝑙

𝜕𝑝𝑡

𝜕𝜓𝛽
𝛁𝜓𝛽

)

= 1
𝜌𝑡
𝑙→𝑡
𝑀 growth

(A.6)

and of the medium

𝛁 ⋅ 𝒗𝑠 −
∑

𝛾=𝑡,𝑙

(

𝛁 ⋅

(

𝒌𝛾
𝜇𝛾

∑

𝛽=𝑡,𝑙

𝜕𝑝𝛾

𝜕𝜓𝛽
𝛁𝜓𝛽

))

=
∑

𝛾=𝑡,𝑙

⎛

⎜

⎜

⎝

1
𝜌𝛾

∑

𝜅∈𝑐𝛾

𝜅→𝛾
𝑀

⎞

⎟

⎟

⎠

(A.7)

with the mass transfer terms on the right-hand side of the equation
summarised in Table A.1.

Species. Two species are considered, namely oxygen and necrotic tu-
mour cells. We consider oxygen (denoted by the superscript 𝑛) to be
the only nutrient which governs the growth of the tumour. Oxygen
is transported in the medium and limits the growth of the tumour
spheroid. The mass balance equation for oxygen with mass fraction 𝜔𝑛𝑙
is given by

𝜌𝑙𝜀𝑆𝑙 𝜕𝜔
𝑛𝑙

𝜕𝑡

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐𝑿
− 𝜌𝑙 𝒌

𝑙

𝜇𝑙
𝛁𝑝𝑙 ⋅ 𝛁𝜔𝑛𝑙 − 𝛁 ⋅

(

𝜌𝑙𝜀𝑆𝑙𝐷𝑛𝑙
eff𝛁𝜔

𝑛𝑙
)

= −
𝑛𝑙→𝑡
𝑀cons + 𝜔𝑛𝑙

𝑙→𝑡
𝑀 growth

(A.8)

where the terms on the right-hand side of the equation describe the
mass transfer of species between the different phases.

We further include necrotic tumour cells (denoted by the superscript
𝑁) as part of the tumour cell phase. Assuming that the cells cannot
diffuse, the mass balance equation for necrotic tumour cells reduces to

𝜌𝑡𝜀𝑆𝑡 𝜕𝜔
𝑁𝑡

𝜕𝑡

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐𝑿
− 𝜌𝑡 𝒌

𝑡

𝜇𝑡
𝛁𝑝𝑡 ⋅ 𝛁𝜔𝑁𝑡 = 𝜀𝑡𝑟𝑁𝑡 − 𝜔𝑁𝑡

𝑙→𝑡
𝑀 growth (A.9)
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Fig. B.1. Probability density functions (PDFs) for different numbers of uncertain input parameters. The solid lines show the distributions with all 11 uncertain input parameters
as listed in Table 2. The dashed lines represent the distributions with the six non-influential parameters fixed at their mean values.
t

Computation of tumour volume. The tumour volume is given by

𝑡 = ∫ 
(

𝑆𝑡 − 0.1
)

d𝛺 (A.10)

with the Heaviside function . The tumour is defined as the part of
he domain where the saturation of tumour cells is greater than 0.1
𝑆𝑡 > 0.1). Since the NB spheroids observed in the experimental tests
row in the form of packed aggregates, we assume that a threshold of
.1 is representative for these particular experiments.

ppendix B. Additional results

Table B.1
First- and total-order Sobol indices. All values are rounded to three decimal places.

Parameter Day 1 Day 3 Day 5 Day 7

𝑖  𝑡𝑜𝑡
𝑖 𝑖  𝑡𝑜𝑡

𝑖 𝑖  𝑡𝑜𝑡
𝑖 𝑖  𝑡𝑜𝑡

𝑖

𝜎𝑡𝑙 0.014 0.040 0.038 0.091 0.035 0.105 0.032 0.110
𝜇𝑡 0.055 0.238 0.112 0.274 0.152 0.436 0.175 0.532
𝐴𝑡 0.087 0.251 0.061 0.154 0.059 0.213 0.062 0.269
𝐴𝑙 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
𝛾 𝑡growth 0.632 0.679 0.521 0.739 0.344 0.665 0.250 0.605
𝛾 𝑡necrosis 0.0 0.0 0.0 0.0 0.001 0.001 0.001 0.001
𝛾𝑛𝑡growth 0.0 0.0 0.0 0.001 0.0 0.002 0.0 0.001
𝑘 0.003 0.015 0.009 0.023 0.008 0.027 0.007 0.027
𝜈 0.001 0.003 0.0 0.0 0.0 0.001 0.0 0.001
𝐺 0.001 0.004 0.0 0.001 0.0 0.004 0.0 0.005
𝜇𝑠 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table B.2
99% confidence intervals (CI) due to Monte Carlo (MC) integration and the use of
the Gaussian process (GP) metamodel for total-order Sobol index at day 7 rounded to
four decimal places. Estimation based on 10 000 Monte Carlo samples, 300 bootstrap
amples, and 500 realisations of the trained Gaussian process surrogate.
Parameter  𝑡𝑜𝑡

𝑖 CIMC CIGP

𝜎𝑡𝑙 0.1102 0.0116 0.0020
𝜇𝑡 0.5322 0.0570 0.0062
𝐴𝑡 0.2687 0.0334 0.0040
𝐴𝑙 0.0 0.0 0.0
𝛾 𝑡growth 0.6049 0.0658 0.0057
𝛾 𝑡necrosis 0.0015 0.0001 0.0001
𝛾𝑛𝑡growth 0.0014 0.0001 0.0001
𝑘 0.0269 0.0030 0.0007
𝜈 0.0012 0.0001 0.0001
𝐸 0.0051 0.0005 0.0003
𝜇𝑠 0.0 0.0 0.0
15
Table B.3
Second-order Sobol indices at day 7 rounded to three decimal places. Estimation based
on 100 000 Monte Carlo samples, 300 bootstrap samples, and 500 realisations of the
rained Gaussian process surrogate.
Parameter 𝜇𝑡 𝐴𝑡 𝛾 𝑡growth 𝑘

𝜎𝑡𝑙 0.014 0.009 0.032 0.003
𝜇𝑡 0.067 0.188 0.007
𝐴𝑡 0.059 0.0
𝛾 𝑡growth 0.004
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