204 research outputs found

    Evolutionary versatility of the avian neck

    Get PDF
    Bird necks display unparalleled levels of morphological diversity compared to other vertebrates, yet it is unclear what factors have structured this variation. Using three-dimensional geometric morphometrics and multivariate statistics, we show that the avian cervical column is a hierarchical morpho-functional appendage, with varying magnitudes of ecologically driven osteological variation at different scales of organization. Contrary to expectations given the widely varying ecological functions of necks in different species, we find that regional modularity of the avian neck is highly conserved, with an overall structural blueprint that is significantly altered only by the most mechanically demanding ecological functions. Nevertheless, the morphologies of vertebrae within subregions of the neck show more prominent signals of adaptation to ecological pressures. We also find that both neck length allometry and the nature of neck elongation in birds are different from other vertebrates. In contrast with mammals, neck length scales isometrically with head mass and, contrary to previous work, we show that neck elongation in birds is achieved predominantly by increasing vertebral lengths rather than counts. Birds therefore possess a cervical spine that may be unique in its versatility among extant vertebrates, one that, since the origin of flight, has adapted to function as a surrogate forelimb in varied ecological niches

    A Methodological approach to supporting organisational learning

    Get PDF
    Many organizations need to respond quickly to change and their workers need to regularly develop new knowledge and skills. The prevailing approach to meeting these demands is on-the-job training, but this is known to be highly ineffective, cause stress and devalue workplace autonomy. Conversely, organizational learning is a process through which workers learn gradually in the work context through experience, reflection on work practice and collaboration with colleagues. Our approach aims to support and enhance organizational learning around enriched work representations. Work representations are tools and documents used to support collaborative working and learning. These are enriched through associations with formal knowledge models and informal discourse. The work representations, informal discourse and associated knowledge models together form on organizational memory from which knowledge can be retrieved later. Our methodological approach to supporting organizational learning is drawn from three industrial case studies concerned with machine maintenance, team planning and hotline support. The methodology encompasses development and design activities, a description of the roles and duties required to sustain the long-term use of the tools, and applicability criteria outlining the kind of organizations that can benefit from this approach

    Phytosulfokine stimulates cell divisions in sugar beet (Beta vulgaris L.) mesophyll protoplast cultures

    Get PDF
    The aim of this work was to improve plating efficiency of sugar beet mesophyll protoplast cultures. Preliminary experiments showed that cultures of good quality, viable protoplasts were obtained in rich media based on the Kao and Michayluk formulation and with the calcium alginate as an embedding matrix. Nevertheless, in these cultures cell divisions were either not observed or very seldom confirming earlier reported recalcitrance of sugar beet protoplasts. The recalcitrant status of these cultures was reversed upon application of exogenous phytosulfokine (PSK)—a peptidyl plant growth factor. The highest effectiveness of PSK was observed at 100 nM concentration. Plating efficiencies obtained in the presence of PSK reached approximately 20% of the total cultured cells. The stimulatory effect of phytosulfokine was observed for all tested breeding stocks of sugar beet. Our data indicate that PSK is a powerful agent able to overcome recalcitrance of plant protoplast cultures

    PAAR-repeat proteins sharpen and diversify the Type VI secretion system spike

    Get PDF
    The bacterial type VI secretion system (T6SS) is a large multi-component, dynamic macromolecular machine that plays an important role in the ecology of many Gram negative bacteria. T6SS is responsible for translocation of a wide range of toxic effector molecules allowing predatory cells to kill both prokaryotic as well as eukaryotic prey cells1-5. The T6SS organelle is functionally analogous to contractile tails of bacteriophages and is thought to attack cells by initially penetrating them with a trimeric protein complex called the VgrG spike6,7. Neither the exact protein composition of the T6SS organelle nor the mechanisms of effector selection and delivery are known. Here we report that proteins from the PAAR (Proline-Alanine-Alanine-aRginine) repeat superfamily form a sharp conical extension on the VgrG spike, which is further involved in attaching effector domains to the spike. The crystal structures of two PAAR-repeat proteins bound to VgrG-like partners show that these proteins function to sharpen the tip of the VgrG spike. We demonstrate that PAAR proteins are essential for T6SS- mediated secretion and target cell killing by Vibrio cholerae and Acinetobacter baylyi. Our results suggest a new model of the T6SS organelle in which the VgrG-PAAR spike complex is decorated with multiple effectors that are delivered simultaneously into target cells in a single contraction-driven translocation event

    Derivation of consistent hard rock (1000<Vs<3000 m/s) GMPEs from surface and down-hole recordings: Analysis of KiK-net data

    Get PDF
    A key component in seismic hazard assessment is the estimation of ground motion for hard rock sites, either for applications to installations built on this site category, or as an input motion for site response computation. Empirical ground motion prediction equations (GMPEs) are the traditional basis for estimating ground motion while VS30 is the basis to account for site conditions. As current GMPEs are poorly constrained for VS30 larger than 1000 m/s, the presently used approach for estimating hazard on hard rock sites consists of “host-to-target” adjustment techniques based on VS30 and κ0 values. The present study investigates alternative methods on the basis of a KiK-net dataset corresponding to stiff and rocky sites with 500 < VS30 < 1350 m/s. The existence of sensor pairs (one at the surface and one in depth) and the availability of P- and S-wave velocity profiles allow deriving two “virtual” datasets associated to outcropping hard rock sites with VS in the range [1000, 3000] m/s with two independent corrections: 1/down-hole recordings modified from within motion to outcropping motion with a depth correction factor, 2/surface recordings deconvolved from their specific site response derived through 1D simulation. GMPEs with simple functional forms are then developed, including a VS30 site term. They lead to consistent and robust hard-rock motion estimates, which prove to be significantly lower than host-to-target adjustment predictions. The difference can reach a factor up to 3–4 beyond 5 Hz for very hard-rock, but decreases for decreasing frequency until vanishing below 2 Hz

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Rapid and sustained reduction of serum growth hormone and insulin-like growth factor-1 in patients with acromegaly receiving lanreotide Autogel® therapy: a randomized, placebo-controlled, multicenter study with a 52 week open extension

    Get PDF
    The study was designed to evaluate the long-term efficacy and safety of the 28-day prolonged-release Autogel formulation of the somatostatin analogue lanreotide (Lan-Autogel) in unselected patients with acromegaly. The study comprised four phases: washout; a double-blind comparison with placebo, at a single randomized dose (60, 90 or 120 mg) of Lan-Autogel; a single-blind, fixed-dose phase for four injections (placebo group was re-allocated to active treatment); and eight injections with doses tailored according to biochemical response. Serum samples were assessed for growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels, at weeks 4, 13, 14, 15, 16, 32 and 52. 108 patients were enrolled and 99 completed 52 weeks’ treatment. Four weeks after the first injection, serum GH levels decreased by >50% from baseline in 63% of patients receiving Lan-Autogel compared with 0% receiving placebo (P < 0.001). After four injections, 72% of patients had a >50% reduction in GH levels; 49% patients achieved GH levels ≤ 2.5 ng/ml; 54% had normalized IGF-1; and 38% achieved the combined criterion of GH level ≤ 2.5 ng/ml and normalized IGF-1. The corresponding proportions by week 52 were 82, 54, 59 and 43%, respectively. In patients not requiring dose escalation to 120 mg, 85% achieved biochemical control (combined criterion). Treatment was well tolerated by all patients. In conclusion, Lan-Autogel was effective in controlling GH and IGF-1 hypersecretion in patients with acromegaly and showed a rapid onset of action

    Variations in Suppressor Molecule CTLA-4 Gene Are Related to Susceptibility to Multiple Myeloma in a Polish Population

    Get PDF
    Various phenotype and functional T-cell abnormalities are observed in multiple myeloma (MM) patients. The aim of this study was to investigate the association between polymorphisms in the gene encoding cytotoxic T-lymphocyte antigen-4 (CTLA-4), a negative regulator of the T-lymphocyte immune response and susceptibility to multiple myeloma in a Polish population. Two hundred MM patients and 380 healthy subjects were genotyped for the following polymorphisms: CTLA-4c.49A>G, CTLA-4g.319C>T, CTLA-4g.*642AT(8_33), CT60 (CTLA-4g.*6230G>A), Jo31 (CTLA-4g.*10223G>T). Our study is the largest and most comprehensive evaluation to date of the association between genetic polymorphisms in the CTLA-4 molecule and multiple myeloma. It was found that CTLA-4c.49A>G[G], CT60[G], and Jo31[G] alleles were more frequently observed in MM patients than in controls (0.50 vs. 0.44, p = 0.03, 0.65 vs. 0.58, p = 0.04, and 0.63 vs. 0.57, p = 0.03, respectively). Moreover, the haplotype CTLA-4c.49A>G[G], CTLA-4g.319C>T[C], CTLA-4g.*642AT(8_33) [8], CT60[G], Jo31[G] including all susceptibility alleles increases the risk of MM about fourfold (OR: 3.79, 95%CI: 2.08–6.89, p = 0.00001). These findings indicate that genetic variations in the CTLA-4 gene play role in susceptibility to multiple myeloma and warrant further investigation through replication studies

    Genetic and Chemical Modifiers of a CUG Toxicity Model in Drosophila

    Get PDF
    Non-coding CUG repeat expansions interfere with the activity of human Muscleblind-like (MBNL) proteins contributing to myotonic dystrophy 1 (DM1). To understand this toxic RNA gain-of-function mechanism we developed a Drosophila model expressing 60 pure and 480 interrupted CUG repeats in the context of a non-translatable RNA. These flies reproduced aspects of the DM1 pathology, most notably nuclear accumulation of CUG transcripts, muscle degeneration, splicing misregulation, and diminished Muscleblind function in vivo. Reduced Muscleblind activity was evident from the sensitivity of CUG-induced phenotypes to a decrease in muscleblind genetic dosage and rescue by MBNL1 expression, and further supported by the co-localization of Muscleblind and CUG repeat RNA in ribonuclear foci. Targeted expression of CUG repeats to the developing eye and brain mushroom bodies was toxic leading to rough eyes and semilethality, respectively. These phenotypes were utilized to identify genetic and chemical modifiers of the CUG-induced toxicity. 15 genetic modifiers of the rough eye phenotype were isolated. These genes identify putative cellular processes unknown to be altered by CUG repeat RNA, and they include mRNA export factor Aly, apoptosis inhibitor Thread, chromatin remodelling factor Nurf-38, and extracellular matrix structural component Viking. Ten chemical compounds suppressed the semilethal phenotype. These compounds significantly improved viability of CUG expressing flies and included non-steroidal anti-inflammatory agents (ketoprofen), muscarinic, cholinergic and histamine receptor inhibitors (orphenadrine), and drugs that can affect sodium and calcium metabolism such as clenbuterol and spironolactone. These findings provide new insights into the DM1 phenotype, and suggest novel candidates for DM1 treatments

    Optical Control of Metabotropic Glutamate Receptors

    Get PDF
    G-protein coupled receptors (GPCRs), the largest family of membrane signaling proteins, respond to neurotransmitters, hormones and small environmental molecules. The neuronal function of many GPCRs has been difficult to resolve because of an inability to gate them with subtype-specificity, spatial precision, speed and reversibility. To address this, we developed an approach for opto-chemical engineering native GPCRs. We applied this to the metabotropic glutamate receptors (mGluRs) to generate light-agonized and light-antagonized “LimGluRs”. The light-agonized “LimGluR2”, on which we focused, is fast, bistable, and supports multiple rounds of on/off switching. Light gates two of the primary neuronal functions of mGluR2: suppression of excitability and inhibition of neurotransmitter release. The light-antagonized “LimGluR2block” can be used to manipulate negative feedback of synaptically released glutamate on transmitter release. We generalize the optical control to two additional family members: mGluR3 and 6. The system works in rodent brain slice and in zebrafish in vivo, where we find that mGluR2 modulates the threshold for escape behavior. These light-gated mGluRs pave the way for determining the roles of mGluRs in synaptic plasticity, memory and disease
    corecore