81 research outputs found

    Modeling deadwood for rockfall mitigation assessments in windthrow areas

    Get PDF
    Studying how deadwood mitigates the rockfall hazard in mountain forests is key to understanding the influence of climate-induced disturbances on the protective capacity of mountain forests. Both experimental quantification and numerical process modeling are needed to address this question. Modeling provides detailed insights into the rock–deadwood interaction and can therefore be used to develop effective forest management strategies. Here, we introduce an automatic deadwood generator (ADG) for assessing the impact of fresh woody storm debris on the protective capacity of a forest stand against rockfall. The creation of various deadwood scenarios allows us to directly quantify the mitigation potential of deadwood. To demonstrate the functionality of the proposed ADG method, we compare deadwood log patterns, deadwood effective height, and mesoscale surface ruggedness observed in field surveys in a natural windthrow area with their simulated counterparts. Specifically, we consider two sites near Lake Klöntal, Switzerland, where a major windthrow event occurred in 2019. We perform rockfall simulations for the time (a) before, (b) directly after, and (c) 10 years after the windthrow event. We further compare the results with (d) a simulation with complete clearing of the thrown wood: in other words, a scenario with no standing forest remaining. We showcase an integration of deadwood into rockfall simulations with realistic deadwood configurations alongside a diameter at breast height (DBH)- and rot-fungi-dependent maximum deadwood breaking energy. Our results confirm the mitigation effect of deadwood, which significantly reduces the jump heights and velocities of 400 kg rocks. Our modeling results suggest that, even a decade after the windthrow event, deadwood has a stronger protective effect against rockfall than that provided by standing trees. We conclude that an ADG can contribute to the decision-making involved in forest and deadwood management after disturbances.</p

    Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)d

    Get PDF
    N6-methyladenosine (m6A) is the most abundant mRNA modification in eukaryotes, playing crucial roles in multiple biological processes. m6A is catalyzed by the activity of Mettl3, which depends on additional proteins whose precise functions remain poorly understood. Here we identified Flacc/Zc3h13 as a novel interactor of m6A methyltransferase complex components in Drosophila and mouse. Like other components of this complex, Flacc controls m6A levels and is involved in sexdetermination in Drosophila. We demonstrate that Flacc promotes m6A deposition by bridging Fl(2)d to the mRNA binding factor Nito. Altogether, our work advances our molecular understanding of conservation and regulation of the m6A machinery

    Knee Extensors Muscle Plasticity Over a 5-Years Rehabilitation Process After Open Knee Surgery

    Get PDF
    We investigated molecular and cellular parameters which set metabolic and mechanical functioning of knee extensor muscles in the operated and contralateral control leg of 9 patients with a chronically insufficient anterior cruciate ligament (ACL; 26.6 ± 8.3 years, 8 males, 1 female) after open reconstructive surgery (week 0), after ambulant physiotherapy under cast immobilization (week 9), succeeding rehabilitation training (up to week 26), and subsequent voluntary physical activity (week 260). Clinical indices of knee function in the operated leg were improved at 52 weeks and remained at a comparable level at week 260. CSA of the quadriceps (-18%), MCSA of muscle fibers (-24%), and capillary-to-fiber ratio (-24%) in m. vastus lateralis from the ACL insufficient leg were lower at week 0 than reference values in the contralateral leg at week 260. Slow type fiber percentage (-35%) and mitochondrial volume density (-39%) were reduced in m. vastus lateralis from the operated leg at weeks 9 and 26. Composition alterations in the operated leg exceeded those in the contralateral leg and, with the exception of the volume density of subsarcolemmal mitochondria, returned to the reference levels at week 260. Leg-specific deterioration of metabolic characteristics in the vasti from the operated leg was reflected by the down-regulation of mitochondrial respiration complex I-III markers (-41–57%) at week 9. After rehabilitation training at week 26, the specific Y397 phosphorylation of focal adhesion kinase (FAK), which is a proxy for mechano-regulation, was elevated by 71% in the operated leg but not in the contralateral leg, which had performed strengthening type exercise during ambulant physiotherapy. Total FAK protein and Y397 phosphorylation levels were lowered in both legs at week 26 resulting in positive correlations with mitochondrial volume densities and mitochondrial protein levels. The findings emphasize that a loss of mechanical and metabolic characteristics in knee extensor muscle remains detectable years after untreated ACL rupture, which may be aggravated in the post-operative phase by the deterioration of slow-oxidative characteristics after reconstruction due to insufficient load-bearing muscle activity. The reestablishment of muscle composition subsequent to years of voluntary physical activity reinforces that slow-to-fast fiber transformation is reversible in humans

    Silent chromatin at the middle and ends: lessons from yeasts

    Get PDF
    Eukaryotic centromeres and telomeres are specialized chromosomal regions that share one common characteristic: their underlying DNA sequences are assembled into heritably repressed chromatin. Silent chromatin in budding and fission yeast is composed of fundamentally divergent proteins tat assemble very different chromatin structures. However, the ultimate behaviour of silent chromatin and the pathways that assemble it seem strikingly similar among Saccharomyces cerevisiae (S. cerevisiae), Schizosaccharomyces pombe (S. pombe) and other eukaryotes. Thus, studies in both yeasts have been instrumental in dissecting the mechanisms that establish and maintain silent chromatin in eukaryotes, contributing substantially to our understanding of epigenetic processes. In this review, we discuss current models for the generation of heterochromatic domains at centromeres and telomeres in the two yeast species

    Innovation in gene regulation: The case of chromatin computation

    Full text link

    Chromatin-associated ncRNA activities

    Get PDF

    RNA turnover and chromatin-dependent gene silencing

    No full text
    Over the last few years, there has been a convergence of two seemingly disparate fields of study: chromatin-dependent gene silencing and RNA turnover. In contrast to RNA turnover mechanisms that operate on a truly posttranscriptional level, we are at the beginning of studies leading the way toward a model in which RNA turnover mechanisms are also involved in chromatin-dependent gene regulation. In particular, data from a variety of organisms have shown that the assembly of silent chromatin coincides with the presence or absence of non-protein-coding RNAs (ncRNAs). These range from long ncRNAs that have been classically implicated in the regulation of dosage compensation and genomic imprinting to small ncRNAs which are involved in heterochromatin assembly via the RNA interference (RNAi) pathway. This raises the question of how common ncRNAs are used to control gene expression at the level of chromatin. It is known at least, that they are present, as recent findings indicate that transcription of eukaryotic genomes is much more widespread than previously anticipated. However, the existence of a ncRNA does not prove its biological significance. Thus, a future challenge will be to distinguish the ncRNAs that are in some way meaningful to the organism from those that arise from the imperfect fidelity of the transcription machinery. Finally, no matter whether functional or not, RNAs transcribed from supposedly silent chromatin seem to be processed rapidly. Recent data from both fission and budding yeast suggest that chromatin-dependent gene silencing is achieved, at least in part, through RNA turnover mechanisms that use components of the RNAi pathway as well as polyadenylation-dependent RNA decay. Hence, silent chromatin is not only controlled transcriptionally, but also on co- and posttranscriptional levels

    The determinants of brand loyalty of football supporters : a study of Bundesliga

    No full text
    The dissertation addresses the factors which influence loyalty for football supporters with re-gards to the Bundesliga. Success seemed to be important for football clubs and logically to be important for having a large group of supporters. In terms of membership numbers, the Bun-desliga shows a different result. There are several clubs which are not that successful in terms of performance but have a big amount of members. The dissertation gives a deeper insight on this problem and this can be seen in the main research question, that is the determinants influ-ence on loyalty of football supporters, especially for the Bundesliga. The results of online sur-vey of 167 respondents suggest that group affiliation, emotional stimulation, economic motives and self-identity correlate positively with loyalty. Interestingly, the factor of success does not appeal to be of an influence on loyalty of supporters. Additionally, four in-depth interviews with football supporters were conducted to gain a deeper insight. The results of the in-depth interviews have strength the results of the questionnaire and gave a further insight that values of the club, local proximity, being with friends and sharing memories are the main drivers for loyalty. The research serves as a contribution to the scientific process as preliminary work for metaregression.A dissertação aborda os factores que influenciam a lealdade dos adeptos de futebol no que diz respeito à Bundesliga. O sucesso tende a ser importante para os clubes de futebol e, logicamente, é importante ter um grande grupo de adeptos. Em termos de número de membros, a Bundesliga apresenta um resultado diferente. Há vários clubes que não são tão bem sucedidos em termos de desempenho, mas que têm um grande número de membros. A dissertação dá uma visão mais profunda sobre este problema e isto pode ser visto na principal questão de investigação, ou seja, a influência dissuasora na lealdade dos adeptos de futebol, especialmente para a Bundesliga. Os resultados da pesquisa online de 167 inquiridos sugerem que a filiação em grupo, a estimulação emocional, os motivos económicos e a auto-identidade correlacionam-se positivamente com a lealdade. Curiosamente, o factor de sucesso não apela a uma influência sobre a lealdade dos adeptos. Além disso, foram realizadas quatro entrevistas aprofundadas com adeptos de futebol para obter uma visão mais profunda. Os resultados das entrevistas aprofundadas reforçaram os resultados do questionário e deram uma visão adicional de que os valores do clube, a proximidade local, estar com amigos e partilhar memórias são os principais motores da lealdade. A investigação serve como um contributo para o processo científico como trabalho preliminar para a meta-regressão
    corecore