23 research outputs found

    Transnational agricultural land acquisitions threaten biodiversity in the Global South

    Get PDF
    Agricultural large-scale land acquisitions have been linked with enhanced deforestation and land use change. Yet the extent to which transnational agricultural large-scale land acquisitions (TALSLAs) contribute to—or merely correlate with—deforestation, and the expected biodiversity impacts of the intended land use changes across ecosystems, remains unclear. We examine 178 georeferenced TALSLA locations in 40 countries to address this gap. While forest cover within TALSLAs decreased by 17% between 2000 and 2018 and became more fragmented, the spatio-temporal patterns of deforestation varied substantially across regions. While deforestation rates within initially forested TALSLAs were 1.5 (Asia) to 2 times (Africa) higher than immediately surrounding areas, we detected no such difference in Europe and Latin America. Our findings suggest that, whereas TALSLAs may have accelerated forest loss in Asia, a different mechanism might emerge in Africa where TALSLAs target areas already experiencing elevated deforestation. Regarding biodiversity (here focused on vertebrate species), we find that nearly all (91%) studied deals will likely experience substantial losses in relative species richness (−14.1% on average within each deal)—with mixed outcomes for relative abundance—due to the intended land use transitions. We also find that 39% of TALSLAs fall at least partially within biodiversity hotspots, placing these areas at heightened risk of biodiversity loss. Taken together, these findings suggest distinct regional differences in the nature of the association between TALSLAs and forest loss and provide new evidence of TALSLAs as an emerging threat to biodiversity in the Global South

    Organ-Specific Expression of IL-1 Receptor Results in Severe Liver Injury in Type I Interferon Receptor Deficient Mice

    Get PDF
    Upon treatment with polyinosinic:polycytidylic acid [poly(I:C)], an artificial double-stranded RNA, type I interferon receptor-deficient (IFNAR−/−) mice develop severe liver injury seen by enhanced alanine aminotransferase (ALT) activity in the serum that is not observed in their wildtype (WT) counterparts. Recently, we showed that liver injury is mediated by an imbalanced expression of interleukin (IL)-1β and its receptor antagonist (IL1-RA) in the absence of type I IFN. Here we show that despite comparable expression levels of IL-1β in livers and spleens, spleens of poly(I:C)-treated IFNAR−/− mice show no signs of injury. In vitro analyses of hepatocytes and splenocytes revealed that poly(I:C) had no direct toxic effect on hepatocytes. Furthermore, expression levels of cytokines involved in other models for liver damage or protection such as interferon (IFN)-γ, transforming growth factor (TGF)-β, IL-6, IL-10, IL-17, and IL-22 were comparable for both organs in WT and IFNAR−/− mice upon treatment. Moreover, flow cytometric analyses showed that the composition of different immune cells in livers and spleens were not altered upon injection of poly(I:C). Finally, we demonstrated that the receptor binding IL-1β, IL1R1, is specifically expressed in livers but not spleens of WT and IFNAR−/− mice. Accordingly, mice double-deficient for IFNAR and IL1R1 developed no liver injury upon poly(I:C) treatment and showed ALT activities comparable to those of WT mice. Collectively, liver injury is mediated by the organ-specific expression of IL1R1 in the liver

    A Zebrafish Genetic Screen Identifies Neuromedin U as a Regulator of Sleep/Wake States

    Get PDF
    Neuromodulation of arousal states ensures that an animal appropriately responds to its environment and engages in behaviors necessary for survival. However, the molecular and circuit properties underlying neuromodulation of arousal states such as sleep and wakefulness remain unclear. To tackle this challenge in a systematic and unbiased manner, we performed a genetic overexpression screen to identify genes that affect larval zebrafish arousal. We found that the neuropeptide neuromedin U (Nmu) promotes hyperactivity and inhibits sleep in zebrafish larvae, whereas nmu mutant animals are hypoactive. We show that Nmu-induced arousal requires Nmu receptor 2 and signaling via corticotropin releasing hormone (Crh) receptor 1. In contrast to previously proposed models, we find that Nmu does not promote arousal via the hypothalamic-pituitary-adrenal axis, but rather probably acts via brainstem crh-expressing neurons. These results reveal an unexpected functional and anatomical interface between the Nmu system and brainstem arousal systems that represents a novel wake-promoting pathway

    Global transpiration data from sap flow measurements : the SAPFLUXNET database

    Get PDF
    Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The "sapfluxnetr" R package - designed to access, visualize, and process SAPFLUXNET data - is available from CRAN.Peer reviewe

    Especiação e seus mecanismos: histórico conceitual e avanços recentes

    Full text link

    Transnational agricultural land acquisitions threaten biodiversity in the Global South

    No full text
    Agricultural large-scale land acquisitions have been linked with enhanced deforestation and land use change. Yet the extent to which transnational agricultural large-scale land acquisitions (TALSLAs) contribute to—or merely correlate with—deforestation, and the expected biodiversity impacts of the intended land use changes across ecosystems, remains unclear. We examine 178 georeferenced TALSLA locations in 40 countries to address this gap. While forest cover within TALSLAs decreased by 17% between 2000 and 2018 and became more fragmented, the spatio-temporal patterns of deforestation varied substantially across regions. While deforestation rates within initially forested TALSLAs were 1.5 (Asia) to 2 times (Africa) higher than immediately surrounding areas, we detected no such difference in Europe and Latin America. Our findings suggest that, whereas TALSLAs may have accelerated forest loss in Asia, a different mechanism might emerge in Africa where TALSLAs target areas already experiencing elevated deforestation. Regarding biodiversity (here focused on vertebrate species), we find that nearly all (91%) studied deals will likely experience substantial losses in relative species richness (−14.1% on average within each deal)—with mixed outcomes for relative abundance—due to the intended land use transitions. We also find that 39% of TALSLAs fall at least partially within biodiversity hotspots, placing these areas at heightened risk of biodiversity loss. Taken together, these findings suggest distinct regional differences in the nature of the association between TALSLAs and forest loss and provide new evidence of TALSLAs as an emerging threat to biodiversity in the Global South

    A Zebrafish Genetic Screen Identifies Neuromedin U as a Regulator of Sleep/Wake States

    Get PDF
    Neuromodulation of arousal states ensures that an animal appropriately responds to its environment and engages in behaviors necessary for survival. However, the molecular and circuit properties underlying neuromodulation of arousal states such as sleep and wakefulness remain unclear. To tackle this challenge in a systematic and unbiased manner, we performed a genetic overexpression screen to identify genes that affect larval zebrafish arousal. We found that the neuropeptide neuromedin U (Nmu) promotes hyperactivity and inhibits sleep in zebrafish larvae, whereas nmu mutant animals are hypoactive. We show that Nmu-induced arousal requires Nmu receptor 2 and signaling via corticotropin releasing hormone (Crh) receptor 1. In contrast to previously proposed models, we find that Nmu does not promote arousal via the hypothalamic-pituitary-adrenal axis, but rather probably acts via brainstem crh-expressing neurons. These results reveal an unexpected functional and anatomical interface between the Nmu system and brainstem arousal systems that represents a novel wake-promoting pathway
    corecore