102 research outputs found

    A systematic overview of dental methods for age assessment in living individuals: from traditional to artificial intelligence-based approaches

    Get PDF
    Dental radiographies have been used for many decades for estimating the chronological age, with a view to forensic identification, migration flow control, or assessment of dental development, among others. This study aims to analyse the current application of chronological age estimation methods from dental X-ray images in the last 6 years, involving a search for works in the Scopus and PubMed databases. Exclusion criteria were applied to discard off-topic studies and experiments which are not compliant with a minimum quality standard. The studies were grouped according to the applied methodology, the estimation target, and the age cohort used to evaluate the estimation performance. A set of performance metrics was used to ensure good comparability between the different proposed methodologies. A total of 613 unique studies were retrieved, of which 286 were selected according to the inclusion criteria. Notable tendencies to overestimation and underestimation were observed in some manual approaches for numeric age estimation, being especially notable in the case of Demirjian (overestimation) and Cameriere (underestimation). On the other hand, the automatic approaches based on deep learning techniques are scarcer, with only 17 studies published in this regard, but they showed a more balanced behaviour, with no tendency to overestimation or underestimation. From the analysis of the results, it can be concluded that traditional methods have been evaluated in a wide variety of population samples, ensuring good applicability in different ethnicities. On the other hand, fully automated methods were a turning point in terms of performance, cost, and adaptability to new populationsOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work has received financial support from Consellería de Cultura, Educación e Ordenación Universitaria (accreditation 2019–2022 ED431G-2019/04 and Group with Growth Potential ED431B 2020–2022 GPC2020/27) and the European Regional Development Fund (ERDF), which acknowledges the CiTIUS-Research Center in Intelligent Technologies of the University of Santiago de Compostela as a Research Center of the Galician University SystemS

    Evidence of telomere attrition and a potential role for DNA damage in systemic sclerosis

    Get PDF
    [Background]: To investigate the role of cell senescence in systemic sclerosis (SSc), we analyzed telomere shortening (TS) in SSc patients and the effect of targeting DNA damage in the bleomycin model of skin fibrosis. [Results]: Telomere length (TL) in blood leukocytes of 174 SSc patients and 68 healthy controls was measured by Southern blot, and we found shorter age-standardized TL in SSc patients compared to healthy controls. TL was shorter in SSc patients with ILD compared to those without ILD and in anti-topoisomerase I positive compared to anti-centromere positive patients. To analyze the potential role of DNA damage in skin fibrosis, we evaluated the effects of the DNA protective GSE4 peptide in the bleomycin mouse model of scleroderma and the fibrotic response of cultured human dermal fibroblasts. Administration of GSE4-nanoparticles attenuated bleomycin-induced skin fibrosis as measured by Masson’s staining of collagen and reduced Acta2 and Ctgf mRNA expression, whereas transduction of dermal fibroblasts with a lentiviral GSE4 expression vector reduced COL1A1, ACTA2 and CTGF gene expression after stimulation with bleomycin or TGF-β, in parallel to a reduction of the phospho-histone H2A.X marker of DNA damage. [Conclusions]: SSc is associated with TS, particularly in patients with lung disease or anti-topoisomerase I antibodies. Administration of GSE4 peptide attenuated experimental skin fibrosis and reduced fibroblast expression of profibrotic factors, supporting a role for oxidative DNA damage in scleroderma.The authors received financial support from Fondo de Investigación Sanitaria, Instituto de Salud Carlos III (PI19/01129, PI20/00335, and RIER network RD16/0012 RETICS program), co-financed by the European Regional Development Fund (FEDER)

    The systemic lupus erythematosus IRF5 risk haplotype is associated with systemic sclerosis

    Get PDF
    Systemic sclerosis (SSc) is a fibrotic autoimmune disease in which the genetic component plays an important role. One of the strongest SSc association signals outside the human leukocyte antigen (HLA) region corresponds to interferon (IFN) regulatory factor 5 (IRF5), a major regulator of the type I IFN pathway. In this study we aimed to evaluate whether three different haplotypic blocks within this locus, which have been shown to alter the protein function influencing systemic lupus erythematosus (SLE) susceptibility, are involved in SSc susceptibility and clinical phenotypes. For that purpose, we genotyped one representative single-nucleotide polymorphism (SNP) of each block (rs10488631, rs2004640, and rs4728142) in a total of 3,361 SSc patients and 4,012 unaffected controls of Caucasian origin from Spain, Germany, The Netherlands, Italy and United Kingdom. A meta-analysis of the allele frequencies was performed to analyse the overall effect of these IRF5 genetic variants on SSc. Allelic combination and dependency tests were also carried out. The three SNPs showed strong associations with the global disease (rs4728142: P = 1.34×10<sup>−8</sup>, OR = 1.22, CI 95% = 1.14–1.30; rs2004640: P = 4.60×10<sup>−7</sup>, OR = 0.84, CI 95% = 0.78–0.90; rs10488631: P = 7.53×10<sup>−20</sup>, OR = 1.63, CI 95% = 1.47–1.81). However, the association of rs2004640 with SSc was not independent of rs4728142 (conditioned P = 0.598). The haplotype containing the risk alleles (rs4728142*A-rs2004640*T-rs10488631*C: P = 9.04×10<sup>−22</sup>, OR = 1.75, CI 95% = 1.56–1.97) better explained the observed association (likelihood P-value = 1.48×10<sup>−4</sup>), suggesting an additive effect of the three haplotypic blocks. No statistical significance was observed in the comparisons amongst SSc patients with and without the main clinical characteristics. Our data clearly indicate that the SLE risk haplotype also influences SSc predisposition, and that this association is not sub-phenotype-specific

    Cannabinoid CB2 Receptors Modulate Microglia Function and Amyloid Dynamics in a Mouse Model of Alzheimer's Disease

    Get PDF
    The distribution and roles of the cannabinoid CB2 receptor in the CNS are still a matter of debate. Recent data suggest that, in addition to its presence in microglial cells, the CB2 receptor may be also expressed at low levels, yet biologically relevant, in other cell types such as neurons. It is accepted that the expression of CB2 receptors in the CNS is low under physiological conditions and is significantly elevated in chronic neuroinflammatory states associated with neurodegenerative diseases such as Alzheimer's disease. By using a novel mouse model (CB2EGFP/f/f), we studied the distribution of cannabinoid CB2 receptors in the 5xFAD mouse model of Alzheimer's disease (by generating 5xFAD/CB2EGFP/f/f mice) and explored the roles of CB2 receptors in microglial function. We used a novel selective and brain penetrant CB2 receptor agonist (RO6866945) as well as mice lacking the CB2 receptor (5xFAD/CB2-/-) for these studies. We found that CB2 receptors are expressed in dystrophic neurite-associated microglia and that their modulation modifies the number and activity of microglial cells as well as the metabolism of the insoluble form of the amyloid peptide. These results support microglial CB2 receptors as potential targets for the development of amyloid-modulating therapies.Funding The present work has been supported by a grant from Ministerio de Ciencia e Innovacion (ref PID2019-108992RB-I00 and ref PID2019-107548RB-I00) to JR and PG, respectively, by the Basque Government (ref IT1230-19) to PG, and the Research and Education Component of the Advancing a Healthier Wisconsin Endowment at the Medical College of Wisconsin to CJH

    A genome-wide association study follow-up suggests a possible role for PPARG in systemic sclerosis susceptibility

    Get PDF
    Introduction: A recent genome-wide association study (GWAS) comprising a French cohort of systemic sclerosis (SSc) reported several non-HLA single-nucleotide polymorphisms (SNPs) showing a nominal association in the discovery phase. We aimed to identify previously overlooked susceptibility variants by using a follow-up strategy.<p></p> Methods: Sixty-six non-HLA SNPs showing a P value <10-4 in the discovery phase of the French SSc GWAS were analyzed in the first step of this study, performing a meta-analysis that combined data from the two published SSc GWASs. A total of 2,921 SSc patients and 6,963 healthy controls were included in this first phase. Two SNPs, PPARG rs310746 and CHRNA9 rs6832151, were selected for genotyping in the replication cohort (1,068 SSc patients and 6,762 healthy controls) based on the results of the first step. Genotyping was performed by using TaqMan SNP genotyping assays. Results: We observed nominal associations for both PPARG rs310746 (PMH = 1.90 × 10-6, OR, 1.28) and CHRNA9 rs6832151 (PMH = 4.30 × 10-6, OR, 1.17) genetic variants with SSc in the first step of our study. In the replication phase, we observed a trend of association for PPARG rs310746 (P value = 0.066; OR, 1.17). The combined overall Mantel-Haenszel meta-analysis of all the cohorts included in the present study revealed that PPARG rs310746 remained associated with SSc with a nominal non-genome-wide significant P value (PMH = 5.00 × 10-7; OR, 1.25). No evidence of association was observed for CHRNA9 rs6832151 either in the replication phase or in the overall pooled analysis.<p></p> Conclusion: Our results suggest a role of PPARG gene in the development of SSc

    Replication of recently identified systemic lupus erythematosus genetic associations: a case–control study

    Get PDF
    Introduction We aimed to replicate association of newly identified systemic lupus erythematosus (SLE) loci. Methods We selected the most associated SNP in 10 SLE loci. These 10 SNPs were analysed in 1,579 patients with SLE and 1,726 controls of European origin by single-base extension. Comparison of allele frequencies between cases and controls was done with the Mantel–Haenszel approach to account for heterogeneity between sample collections. Results A previously controversial association with a SNP in the TYK2 gene was replicated (odds ratio (OR) = 0.79, P = 2.5 × 10-5), as well as association with the X chromosome MECP2 gene (OR = 1.26, P = 0.00085 in women), which had only been reported in a single study, and association with four other loci, 1q25.1 (OR = 0.81, P = 0.0001), PXK (OR = 1.19, P = 0.0038), BANK1 (OR = 0.83, P = 0.006) and KIAA1542 (OR = 0.84, P = 0.001), which have been identified in a genome-wide association study, but not found in any other study. All these replications showed the same disease-associated allele as originally reported. No association was found with the LY9 SNP, which had been reported in a single study. Conclusions Our results confirm nine SLE loci. For six of them, TYK2, MECP2, 1q25.1, PXK, BANK1 and KIAA1542, this replication is important. The other three loci, ITGAM, STAT4 and C8orf13-BLK, were already clearly confirmed. Our results also suggest that MECP2 association has no influence in the sex bias of SLE, contrary to what has been proposed. In addition, none of the other associations seems important in this respectThe present work was supported by Fondo de Investigacion Sanitaria of the Instituto de Salud Carlos III (Spain), grants 04/1651 and 06/0620 that are partially financed by the Fondo Europeo de Desarrollo Regional program of the European Union, by grants from the Xunta de Galicia, and by BMBF KN Rheuma grant C2.12 (to TW)S

    Immunochip analysis identifies multiple susceptibility loci for systemic sclerosis

    Get PDF
    In this study, 1,833 systemic sclerosis (SSc) cases and 3,466 controls were genotyped with the Immunochip array. Classical alleles, amino acid residues, and SNPs across the human leukocyte antigen (HLA) region were imputed and tested. These analyses resulted in a model composed of six polymorphic amino acid positions and seven SNPs that explained the observed significant associations in the region. In addition, a replication step comprising 4,017 SSc cases and 5,935 controls was carried out for several selected non-HLA variants, reaching a total of 5,850 cases and 9,401 controls of European ancestry. Following this strategy, we identified and validated three SSc risk loci, including DNASE1L3 at 3p14, the SCHIP1-IL12A locus at 3q25, and ATG5 at 6q21, as well as a suggested association of the TREH-DDX6 locus at 11q23. The associations of several previously reported SSc risk loci were validated and further refined, and the observed peak of association in PXK was related to DNASE1L3. Our study has increased the number of known genetic associations with SSc, provided further insight into the pleiotropic effects of shared autoimmune risk factors, and highlighted the power of dense mapping for detecting previously overlooked susceptibility loci

    Evaluation of 12 GWAS-drawn SNPs as biomarkers of rheumatoid arthritis response to TNF inhibitors. A potential SNP association with response to etanercept

    Get PDF
    Research in rheumatoid arthritis (RA) is increasingly focused on the discovery of biomarkers that could enable personalized treatments. The genetic biomarkers associated with the response to TNF inhibitors (TNFi) are among the most studied. They include 12 SNPs exhibiting promising results in the three largest genome-wide association studies (GWAS). However, they still require further validation. With this aim, we assessed their association with response to TNFi in a replication study, and a meta-analysis summarizing all nonredundant data. The replication involved 755 patients with RA that were treated for the first time with a biologic drug, which was either infliximab (n = 397), etanercept (n = 155) or adalimumab (n = 203). Their DNA samples were successfully genotyped with a single-base extension multiplex method. Lamentably, none of the 12 SNPs was associated with response to the TNFi in the replication study (p > 0.05). However, a drug-stratified exploratory analysis revealed a significant association of the NUBPL rs2378945 SNP with a poor response to etanercept (B = -0.50, 95% CI = -0.82, -0.17, p = 0.003). In addition, the metaanalysis reinforced the previous association of three SNPs: rs2378945, rs12142623, and rs4651370. In contrast, five of the remaining SNPs were less associated than before, and the other four SNPs were no longer associated with the response to treatment. In summary, our results highlight the complexity of the pharmacogenetics of TNFi in RA showing that it could involve a drug-specific component and clarifying the status of the 12 GWAS-drawn SNPsThis work was supported by the Instituto de Salud Carlos III (ISCIII, Spain) through grants PI14/01651, PI17/01606 and RD16/0012/0014 to AG and PI12/01909 to JJG-R. These grants are partially financed by the European Regional Development Fund of the EU (FEDER

    Evaluation of 12 GWAS-drawn SNPs as biomarkers of rheumatoid arthritis response to TNF inhibitors. A potential SNP association with response to etanercept

    Get PDF
    Research in rheumatoid arthritis (RA) is increasingly focused on the discovery of biomarkers that could enable personalized treatments. The genetic biomarkers associated with the response to TNF inhibitors (TNFi) are among the most studied. They include 12 SNPs exhibiting promising results in the three largest genome-wide association studies (GWAS). However, they still require further validation. With this aim, we assessed their association with response to TNFi in a replication study, and a meta-analysis summarizing all non-redundant data. The replication involved 755 patients with RA that were treated for the first time with a biologic drug, which was either infliximab (n = 397), etanercept (n = 155) or adalimumab (n = 203). Their DNA samples were successfully genotyped with a single-base extension multiplex method. Lamentably, none of the 12 SNPs was associated with response to the TNFi in the replication study (p > 0.05). However, a drug-stratified exploratory analysis revealed a significant association of the NUBPL rs2378945 SNP with a poor response to etanercept (B = -0.50, 95% CI = -0.82, -0.17, p = 0.003). In addition, the meta-analysis reinforced the previous association of three SNPs: rs2378945, rs12142623, and rs4651370. In contrast, five of the remaining SNPs were less associated than before, and the other four SNPs were no longer associated with the response to treatment. In summary, our results highlight the complexity of the pharmacogenetics of TNFi in RA showing that it could involve a drug-specific component and clarifying the status of the 12 GWAS-drawn SNP
    corecore