8 research outputs found

    Impact des processus de surface sur la déformation actuelle des Pyrénées et des Alpes

    No full text
    When mountain ranges upper parts express crustal extension direction collinear to the convergence direction, it is traditionally accepted that the extensive motor is gravitational collapse. However, recent studies challenge this paradigm by showing that erosion induces uplift and extension in the central part of the low convergent mountain ranges. Our goal is to investigate the impact of the denudation on the seismotectonic regime of mountain ranges.In order to identify a relationship between seismotectonic regime and erosion, the first part of this work presents a compilation of data in the mountain ranges. Based on these observations, a simple kinematic model is proposed to predict the seismotectonic regime of the chain. Thus, for low convergence rate chains with a moderate mean elevation, this model predicts an extension regime when the denudation rate is 15% higher than the convergence rate.The second part is devoted to the development of thermomechanical 2D finite element model to study the impact of surface processes on the deformation of the Pyrenees. The results show that the isostatic response to erosion reactivates pre-existing structures. The kinematics of an inherited fault plane can be predicted due to the gradient of the horizontal surface velocities profile. Thus, a plane located in the eroded zone is reactivated in normal fault when in a border area of this same plane is reactivated in reverse fault. These results suggest that the current deformation in the North Pyrenean Zone could be the result of surface processes.Given the small number of studies quantifying erosion rates in the Pyrenees, the models developed in the second part suffer from high uncertainty. To remedy this, we sought to quantify it in the central Pyrenees through a study that combines two types of data: watershed denudation rates from cosmogenic isotopes concentration, and incision rates from sediments buried in the karst. These results are presented in chapter 3. Denudation profiles obtained are consistent with a replay of a normal fault plane located in the North Zone of the Central Pyrenees.In the Alps, a good correlation appears between the value of the rate of erosion and geodetic vertical velocities, which raises the question of the impact of the late-wĂŒrmian deglaciation in the Alps on the present deformation. A numerical model detailing this relationship is presented in the fourth chapter. The results show that deglaciation of the western Alps is controlled by the rheological heterogeneity of the crust. Some of our models predict uplift rates consistent with those highlighted by geodesy.Lorsque l’extension de la croĂ»te sous les parties hautes des chaĂźnes de montagnes est colinĂ©aire Ă  la direction de convergence, il est traditionnellement admis que le moteur est l’effondrement gravitaire. Pourtant, des Ă©tudes rĂ©centes remettent en cause ce paradigme en montrant que l’érosion induit un soulĂšvement et de l’extension dans la partie centrale des chaĂźnes de montagne Ă  faible taux de convergence. L’objectif de notre Ă©tude est d’étudier l’impact de la dĂ©nudation de la topographie sur le rĂ©gime sismo-tectonique des chaĂźnes de montagnes.La premiĂšre partie de ce travail prĂ©sente une compilation de donnĂ©es dans les chaĂźnes de montagnes afin de dĂ©gager des relations entre rĂ©gime sismo-tectonique et Ă©rosion. Sur la base de ces observations, un modĂšle cinĂ©matique simple permettant de prĂ©voir le rĂ©gime de la chaĂźne est proposĂ©. Ainsi, pour les chaĂźnes Ă  faible taux de convergence et d’élĂ©vation moyenne, ce modĂšle prĂ©dit de l’extension lorsque le taux de dĂ©nudation est 15% plus Ă©levĂ© que le taux de convergence.La deuxiĂšme partie est consacrĂ©e au dĂ©veloppement d’un modĂšle thermo-mĂ©canique 2D en Ă©lĂ©ments finis pour Ă©tudier l’impact des processus de surface sur la dĂ©formation des PyrĂ©nĂ©es. Les rĂ©sultats montrent que la rĂ©ponse isostatique Ă  l’érosion permet de rĂ©activer des structures prĂ©-existantes. La cinĂ©matique d’un plan de faille hĂ©ritĂ© peut ĂȘtre prĂ©dite grĂące au gradient du profil des vitesses de surface horizontales. Ainsi, un plan situĂ© dans la zone d’érosion est rĂ©activĂ© en faille normale alors qu’en bordure de cette zone une faille est rĂ©activĂ©e en rĂ©gime inverse. Ces rĂ©sultats suggĂšrent que la dĂ©formation actuelle des PyrĂ©nĂ©es pourrait ĂȘtre la consĂ©quence d’un processus d’érosion.Compte tenu du faible nombre d’études quantifiant les taux d’érosion dans les PyrĂ©nĂ©es, les modĂšles dĂ©veloppĂ©s dans la deuxiĂšme partie souffrent d’une forte incertitude. Pour y remĂ©dier, nous avons cherchĂ© Ă  les quantifier dans les PyrĂ©nĂ©es Centrales grĂące Ă  une Ă©tude qui combine deux types de donnĂ©es : taux de dĂ©nudation des bassins versants Ă  partir des isotopes cosmogĂ©niques, et vitesses d’incision Ă  partir des sĂ©diments piĂ©gĂ©s dans les karsts). Ces rĂ©sultats sont prĂ©sentĂ©s dans la troisiĂšme partie. Les profils de dĂ©nudation obtenus sont compatibles avec un rejeu en faille normale d’un plan situĂ© dans la Zone Nord PyrĂ©nĂ©enne des PyrĂ©nĂ©es Centrales. Dans les Alpes, une bonne corrĂ©lation apparaĂźt entre la valeur du taux d’érosion et la vitesse verticale gĂ©odĂ©sique, ce qui pose la question de l’impact de la dĂ©glaciation tardi-Wurmienne dans les Alpes sur la dĂ©formation actuelle. Un modĂšle numĂ©rique dĂ©taillant cette relation est prĂ©sentĂ© dans le quatriĂšme chapitre. Les rĂ©sultats montrent que la dĂ©glaciation des Alpes occidentales est contrĂŽlĂ©e par l’hĂ©tĂ©rogĂ©nĂ©itĂ© rhĂ©ologique de la croute. Certains de nos modĂšles prĂ©disent des vitesses de surrection compatibles avec celles mises en Ă©vidence par la gĂ©odĂ©sie

    Non renseigné

    No full text
    Lorsque l’extension de la croĂ»te sous les parties hautes des chaĂźnes de montagnes est colinĂ©aire Ă  la direction de convergence, il est traditionnellement admis que le moteur est l’effondrement gravitaire. Pourtant, des Ă©tudes rĂ©centes remettent en cause ce paradigme en montrant que l’érosion induit un soulĂšvement et de l’extension dans la partie centrale des chaĂźnes de montagne Ă  faible taux de convergence. L’objectif de notre Ă©tude est d’étudier l’impact de la dĂ©nudation de la topographie sur le rĂ©gime sismo-tectonique des chaĂźnes de montagnes.La premiĂšre partie de ce travail prĂ©sente une compilation de donnĂ©es dans les chaĂźnes de montagnes afin de dĂ©gager des relations entre rĂ©gime sismo-tectonique et Ă©rosion. Sur la base de ces observations, un modĂšle cinĂ©matique simple permettant de prĂ©voir le rĂ©gime de la chaĂźne est proposĂ©. Ainsi, pour les chaĂźnes Ă  faible taux de convergence et d’élĂ©vation moyenne, ce modĂšle prĂ©dit de l’extension lorsque le taux de dĂ©nudation est 15% plus Ă©levĂ© que le taux de convergence.La deuxiĂšme partie est consacrĂ©e au dĂ©veloppement d’un modĂšle thermo-mĂ©canique 2D en Ă©lĂ©ments finis pour Ă©tudier l’impact des processus de surface sur la dĂ©formation des PyrĂ©nĂ©es. Les rĂ©sultats montrent que la rĂ©ponse isostatique Ă  l’érosion permet de rĂ©activer des structures prĂ©-existantes. La cinĂ©matique d’un plan de faille hĂ©ritĂ© peut ĂȘtre prĂ©dite grĂące au gradient du profil des vitesses de surface horizontales. Ainsi, un plan situĂ© dans la zone d’érosion est rĂ©activĂ© en faille normale alors qu’en bordure de cette zone une faille est rĂ©activĂ©e en rĂ©gime inverse. Ces rĂ©sultats suggĂšrent que la dĂ©formation actuelle des PyrĂ©nĂ©es pourrait ĂȘtre la consĂ©quence d’un processus d’érosion.Compte tenu du faible nombre d’études quantifiant les taux d’érosion dans les PyrĂ©nĂ©es, les modĂšles dĂ©veloppĂ©s dans la deuxiĂšme partie souffrent d’une forte incertitude. Pour y remĂ©dier, nous avons cherchĂ© Ă  les quantifier dans les PyrĂ©nĂ©es Centrales grĂące Ă  une Ă©tude qui combine deux types de donnĂ©es : taux de dĂ©nudation des bassins versants Ă  partir des isotopes cosmogĂ©niques, et vitesses d’incision Ă  partir des sĂ©diments piĂ©gĂ©s dans les karsts). Ces rĂ©sultats sont prĂ©sentĂ©s dans la troisiĂšme partie. Les profils de dĂ©nudation obtenus sont compatibles avec un rejeu en faille normale d’un plan situĂ© dans la Zone Nord PyrĂ©nĂ©enne des PyrĂ©nĂ©es Centrales. Dans les Alpes, une bonne corrĂ©lation apparaĂźt entre la valeur du taux d’érosion et la vitesse verticale gĂ©odĂ©sique, ce qui pose la question de l’impact de la dĂ©glaciation tardi-Wurmienne dans les Alpes sur la dĂ©formation actuelle. Un modĂšle numĂ©rique dĂ©taillant cette relation est prĂ©sentĂ© dans le quatriĂšme chapitre. Les rĂ©sultats montrent que la dĂ©glaciation des Alpes occidentales est contrĂŽlĂ©e par l’hĂ©tĂ©rogĂ©nĂ©itĂ© rhĂ©ologique de la croute. Certains de nos modĂšles prĂ©disent des vitesses de surrection compatibles avec celles mises en Ă©vidence par la gĂ©odĂ©sie.When mountain ranges upper parts express crustal extension direction collinear to the convergence direction, it is traditionally accepted that the extensive motor is gravitational collapse. However, recent studies challenge this paradigm by showing that erosion induces uplift and extension in the central part of the low convergent mountain ranges. Our goal is to investigate the impact of the denudation on the seismotectonic regime of mountain ranges.In order to identify a relationship between seismotectonic regime and erosion, the first part of this work presents a compilation of data in the mountain ranges. Based on these observations, a simple kinematic model is proposed to predict the seismotectonic regime of the chain. Thus, for low convergence rate chains with a moderate mean elevation, this model predicts an extension regime when the denudation rate is 15% higher than the convergence rate.The second part is devoted to the development of thermomechanical 2D finite element model to study the impact of surface processes on the deformation of the Pyrenees. The results show that the isostatic response to erosion reactivates pre-existing structures. The kinematics of an inherited fault plane can be predicted due to the gradient of the horizontal surface velocities profile. Thus, a plane located in the eroded zone is reactivated in normal fault when in a border area of this same plane is reactivated in reverse fault. These results suggest that the current deformation in the North Pyrenean Zone could be the result of surface processes.Given the small number of studies quantifying erosion rates in the Pyrenees, the models developed in the second part suffer from high uncertainty. To remedy this, we sought to quantify it in the central Pyrenees through a study that combines two types of data: watershed denudation rates from cosmogenic isotopes concentration, and incision rates from sediments buried in the karst. These results are presented in chapter 3. Denudation profiles obtained are consistent with a replay of a normal fault plane located in the North Zone of the Central Pyrenees.In the Alps, a good correlation appears between the value of the rate of erosion and geodetic vertical velocities, which raises the question of the impact of the late-wĂŒrmian deglaciation in the Alps on the present deformation. A numerical model detailing this relationship is presented in the fourth chapter. The results show that deglaciation of the western Alps is controlled by the rheological heterogeneity of the crust. Some of our models predict uplift rates consistent with those highlighted by geodesy

    Ice cap melting and low-viscosity crustal root explain the narrow geodetic uplift of the Western Alps

    No full text
    International audienceMore than 10 years of geodetic measurements demonstrate an uplift rate of 1–3 mm/yr of the high topography region of the Western Alps. By contrast, no significant horizontal motion has been detected. Two uplift mechanisms have been proposed: (1) the isostatic response to denudation responsible for only a fraction of the observed uplift and (2) the rebound induced by the Wurmian ice cap melting which predicts a broader uplifting region than the one evidenced by geodetic observations. Using a numerical model to fit the geodetic data, we show that a crustal viscosity contrast between the foreland and the central part of the Alps, the latter being weaker with a viscosity of 1021 Pa s, is needed. The vertical rates are enhanced if the strong uppermost mantle beneath the Moho is interrupted across the Alps, therefore allowing a weak vertical rheological anomaly over the entire lithosphere

    Impact of gravity forces and topography denudation on normal faulting in Central-Western Pyrenees: Insights from 2D numerical models

    Get PDF
    Normal faulting mechanisms observed in the northern foothills of the Central–Western Pyrenees are remarkable, since one expects thrust faults at a convergent plate boundary. To understand the mechanisms involved, we used numerical modeling and investigated the impact of the following processes: gravitational potential energy associated with topography and dense crustal blocks; isostatic compensation in response to denudation and/or sedimentation. To decipher the effects of each process, we designed three model geometries and added a pre-existing weak fault where most of the seismicity occurs. To evaluate our model results, we derived the fault slip rate from the focal mechanisms in the region where we have the fault in our model. We found a slip rate of ∌15 m/Ma, which is in agreement with our modelling results. We conclude that flexural rebound induced by surface processes is able to explain the seismicity in Central–Western Pyrenees

    Formation of ophiolite-bearing tectono-sedimentary melanges in accretionary wedges by gravity driven submarine erosion: Insights from analogue models and case studies

    No full text
    International audienceOrogenic wedges locally present chaotic tectonostratigraphic units that contain exotic blocks of various size, origin, age and lithology, embedded in a sedimentary matrix. The occurrence of ophiolitic blocks, sometimes huge, in such “mĂ©langes” raises questions on (i) the mechanisms responsible for the incorporation of oceanic basement rocks into an accretionary wedge and (ii) the mechanisms allowing exhumation and redeposition of these exotic elements in “mĂ©langes” during wedge growth.To address these questions, we present the results of a series of analogue experiments performed to characterize the processes and parameters responsible for accretion, exhumation and tectonosedimentary reworking of oceanic basement lithospheric fragments in an accretionary wedge.The experimental setup is designed to simulate the interaction between tectonics, erosion and sedimentation. Different configurations are applied to study the impact of various parameters, such as irregular oceanic floor due to structural inheritance, or the presence of layers with contrasted rheology that can affect deformation partitioning in the wedge (frontal accretion vs basal accretion) influencing its growth. Image correlation technique allows extracting instantaneous velocity field, and tracking of passive particles. By retrieving the particle paths determined from models, the pressure-temperature path of mĂ©lange units or elementary blocks can be discussed. The experimental results are then compared with observations from ophiolite-bearing mĂ©langes in Taiwan (Lichi and Kenting mĂ©langes) and Raman spectroscopy of carbonaceous material (RSCM) Thermometry data on rocks from the northern Apennines (Casanova mĂ©lange). A geological scenario is proposed following basic observations. The tectonic evolution of the retroside of doubly vergent accretionary wedges is mainly controlled by backthrusting and backfolding. The retro wedge is characterized by steep slopes that are prone to gravitational instabilities. It triggers submarine landslides inducing huge mass transfers. This erosion combined with backthrusting could favour exhumation of the ophiolitic fragments formerly accreted at the base of the wedge along the rough seafloor-sediments interface. Such an exhumed material can be reworked and deposited as debris- flows in proximal basins located at the foot of the retrowedge slope forming a tectono-sedimentary mĂ©lange. These syntectonic basins are continuously deformed and involved in prograding backthrusting-induced deformation

    Active landscapes of Iberia

    No full text
    The recent geodynamic evolution of Iberia is recorded in its topography. Geomorphic markers and their dating; morphometric indices estimated through cutting-edge DEM analysis techniques; and the link of all this data with results of geophysical studies allow discussing why Iberia displays the highest average elevation in Europe and shows a particular topography with such diversity of landscapes. For example, the region of the Iberian (or Hesperian) Massif, the western sector of Iberia, shows an anomalous average elevation without a satisfactory explanation. On the other hand, different explanations about the recent evolution of the Alpine mountain ranges of the eastern sector of Iberia have come to light after macroscale landscape analyses. This is strengthening the debate on the driving force behind the actual topography of the Pyrenees, Cantabrian Mountains, Iberian Chain and Betics
    corecore