1,387 research outputs found

    Mass transfer properties of Acacia mangium plantation wood

    Get PDF
    This study investigated the mass transfer properties (permeability and mass diffusivity) in the longitudinal, radial and tangential directions of plantation-grown Acacia mangium in VinhPhuc province,northeast, Vietnam. These properties will be used to complement a conventional drying model in the future. Measurements of gas and liquid permeability were performed using a Porometer (POROLUXTM1000). Mass diffusivity was determined in a constant humidity and temperature chamber using PVC-CHA vaporimeters. Results showed the gas permeability was significant higher than liquid with the descending order of longitudinal, radial, and tangential directions. The permeability anisotropy ratios from the longitudinal to transverse directions of Acacia mangium were much lower than other published species. However, the obvious anisotropy ratios from radial to tangential for both permeability and diffusivity, is one of concerns as they can exacerbate defects during drying. Besides, the high permeability and diffusivity of Acaciamangium compared to some other species reported compounds its relatively fast drying rate

    On the Convergence of Kergin and Hakopian Interpolants at Leja Sequences for the Disk

    Full text link
    We prove that Kergin interpolation polynomials and Hakopian interpolation polynomials at the points of a Leja sequence for the unit disk DD of a sufficiently smooth function ff in a neighbourhood of DD converge uniformly to ff on DD. Moreover, when ff is CC^\infty on DD, all the derivatives of the interpolation polynomials converge uniformly to the corresponding derivatives of ff

    Integrated silicon photonic crystals toward terahertz communications

    Get PDF
    Published online: June 25, 2018The terahertz frequency range locates between 0.1 and 10 THz. This range accommodates atmospheric windows with staggering absolute bandwidth. It holds a potential for point-to-point wireless communications with an aggregate capacity reaching terabit per second in a range up to a kilometer. This unique capability is envisaged for backhauls between base stations and for local area networks. To this end, efficiency and compactness of the transceivers are crucial for successful large-scale adoption. However, stateof- the-art terahertz front ends are based on radio-frequency or photomixing technologies that are inefficient, bulky, or complicated. In principle, as a neighbor of the microwave and optics domains, the terahertz band can leverage technologies from both sides to overcome those challenges. Recently, low-loss integrated circuits based on photonic crystal waveguides are developed for routing terahertz waves. Here, a progress report on core components, including waveguides and diplexers, is presented. Additionally, the interfacing of the platform with electronic sources and detectors on one end, and with antennas for free-space coupling on the other end, is discussed. Currently, the platform can support terahertz communications at a data rate over 10 Gbit s⁻¹. Challenges and opportunities are discussed in the light of future development in this area.Withawat Withayachumnankul, Masayuki Fujita, and Tadao Nagatsum

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
    corecore