572 research outputs found

    Biologically induced phosphorus precipitation in aerobic granular sludge process

    Get PDF
    Aerobic granular sludge is a promising process for nutrient removal in wastewater treatment. In this work, for the first time, biologically induced precipitation of phosphorus as hydroxyl-apatite (Ca5(PO4)3(OH)) in the core of granules is demonstrated by direct spectral and optical analysis: Raman spectroscopy, Energy dispersive X-ray (EDX) coupled with Scanning Electron Microscopy (SEM), and X-ray diffraction analysis are performed simultaneously on aerobic granules cultivated in a batch airlift reactor for 500 days. Results reveal the presence of mineral clusters in the core of granules, concentrating all the calcium and considerable amounts of phosphorus. Hydroxyapatite appears as the major mineral, whereas other minor minerals could be transiently produced but not appreciably accumulated. Biologically induced precipitation was responsible for 45% of the overall P removal in the operating conditions tested, with pH varying from 7.8 to 8.8. Major factors influencing this phenomenon (pH, anaerobic phosphate release, nitrification denitrification) need to be investigated as it is an interesting way to immobilize phosphorus in a stable and valuable product

    Location and chemical composition of microbially induced phosphorus precipitates in anaerobic and aerobic granular sludge

    Get PDF
    This work focuses on combined scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX) applied to granular sludge used for biological treatment of high-strength wastewater effluents. Mineral precipitation is shown to occur in the core of microbial granules under different operating conditions. Three dairy wastewater effluents, from three different upflow anaerobic sludge blanket (UASB) reactors and two aerobic granular sequenced batch reactors (GSBR) were evaluated. The relationship between the solid phase precipitation and the chemical composition of the wastewater was investigated with PHREEQC software (calculation of saturation indexes). Results showed that pH, Ca:P ratios and biological reactions played a major role in controlling the biomineralization phenomena. Thermodynamics calculations can be used to foresee the nature of bio-precipitates, but the location of the mineral concretions will need further investigation as it is certainly due to local microbial activity

    Parameters influencing calcium phosphate precipitation in granular sludge sequencing batch reactor

    Get PDF
    Parameters influencing calcium phosphate precipitation in Calcium phosphate precipitation inside microbial granules cultivated in a granular sequenced batch reactor (GSBR) has been demonstrated to contribute to phosphorus removal during wastewater treatment. Whereas hydroxyapatite (HAP) is proven to accumulate in the granule, the main calcium phosphate precursors that form prior to HAP are here investigated. A separate batch reactor was used to distinguish reactions involving biological phosphate removal from physicochemical reactions involving phosphateprecipitation in order to establish the kinetics and stoichiometry of calcium phosphate formation. Experiments and simulations with PHREEQC and AQUASIM software support the assumption that amorphous calciumphosphate (ACP) is the intermediary in HAP crystallization. The results provide the kinetic rate constants and thermodynamic constants of ACP. The formation of bioliths inside biological aggregates as well as the main parameters that drive their formations are discussed here. Finally, the influence of pH and calcium and phosphate concentrations in the influent was also assessed, in order to determine the contribution of precipitation in the different operating conditions

    Stability and performance of two GSBR operated in alternating anoxic/aerobic or anaerobic/aerobic conditions for nutrient removal

    Get PDF
    Two granular sludge sequencing batch reactors (GSBR) with alternating anoxic/aerobic (R1) and anaerobic/aerobic (R2) conditions were operated with a 4-carbon-source synthetic influent. The physical properties of the granular sludge were very good (SVI≈20 mL g−1) and high solid concentrations (up to 35 g L−1) were obtained in the bioreactor operated with a pre-anoxic phase with additional nitrate (R1). In contrast, performance and granule settleability were lower in R2 due to the development of filamentous heterotrophic bacteria on the surface of granules. These disturbances were linked to the fact that a fraction of COD remained during the aerobic phase, which was not stored during the anaerobic period. To stabilize a GSBR with a mixture of organic carbon sources, it is thus necessary to maximize the amount of substrate used during the non-aerated, anaerobic or anoxic, phase. Comparable phosphate removal efficiency was observed in both systems; enhanced biological P removal being greater in anaerobic/aerobic conditions, while the contribution of precipitation (Ca–P) was more significant in anoxic/aerobic conditions

    Phosphorus removal and induced precipitation in aerobic granular sludge process for wastewater treatment

    Get PDF
    Over the last decade, aerobic granulation processes have araised as a promising technology for treating wastewater effluents containing high nitrogen, phosphorus and carbon concentrations. The microbial complexity of granules and the mechanisms by which they acquire excellent settleability properties, still constitute important research goals to investigate. This thesis is focused on a mechanism that has been little addressed in literature, that is, phosphate precipitation in the core of aerobic granules. Different analytical techniques, sometimes adapted for the first time to this type of systems, like Raman spectroscopy, have let an exhaustive characterization of biominerals in the core of granules. Analyses performed on aerobic granules grown with synthetic fed in a lab-scale SBR (Sequential Batch Reactor), revealed a calcium phosphate core made of hydroxyapatite [Ca5(PO4)3(OH)]. This precipitation phenomenon is induced by local pH and supersaturation gradients issued of biological reactions inside granules. The study of the biomineralization phenomenon has been extended into anaerobic granules coming from UASB reactors at different cheese wastewater treatment plants. A physico-chemical model has been described in a form of matrix with AQUASIMÂź software, and coupled with a thermodynamic database (PHREEQCÂź), in an attempt to hypothesize the mechanisms that influence the biomineralization phenomena. It has been proposed the formation of an amorphous precursor (ACP) prior hydroxyapatite precipitation in the core of granules, suggesting the thermodynamic constant (pKsp|20ÂșC=28.07±0.58) and kinetic constants at different operating conditions. It has been also estimated the contribution of the biomineralization to the overall phosphorus removal process (up to 46% at the operating conditions tested), thanks to the development and study of a GSBR (Granular Sludge Batch Reactor) in labscale, for more than 900 days. The fate of the biomineralization process in granules, regarding the contribution to their stabilization and physical properties, has been also dealt in this thesis. The reactor stability and performances have been assessed by alternating anoxic/aerobic and anaerobic/aerobic cycles, in sights of a future industrial application. The induction of precipitation by local variation of pH and supersaturation issued of biological reactions has been here introduced, although it will need further investigation

    Immobilisation du phosphore par précipitation induite dans un procédé aérobie à biomasse granulaire

    Get PDF
    Depuis une dizaine d'annĂ©es, les procĂ©dĂ©s de granulation aĂ©robie sont apparus comme une technologie prometteuse pour le traitement des effluents fortement chargĂ©s en azote, phosphore et carbone, tels que ceux issus de l'agro-industrie. La complexitĂ© microbienne de ces granules et les mĂ©canismes qui leur donnent des propriĂ©tĂ©s exceptionnelles de dĂ©cantation et de cohĂ©sion, constituent encore des axes de recherche importants. Dans cette thĂšse, le travail s'est axĂ© sur un mĂ©canisme encore non Ă©tudiĂ© : les processus de prĂ©cipitation des phosphates au cƓur des granules microbiennes. DiffĂ©rentes techniques d'analyses spectrales, parfois adaptĂ©s pour la premiĂšre fois Ă  ce type de systĂšmes, comme la spectroscopie Raman, ont permis de caractĂ©riser la nature de ces minĂ©raux formĂ©s au cƓur des granules. L'analyse menĂ©e sur des rĂ©acteurs de laboratoires a dĂ©montrĂ© la prĂ©sence des phosphates de calcium sous forme d'hydroxyapatite [Ca5(PO4)3(OH)]. Cette prĂ©cipitation est potentiellement induite par les variations locales de pH et de sursaturation provoquĂ©s par les rĂ©actions microbiennes Ă  l'intĂ©rieur des granules. L'Ă©tude des phĂ©nomĂšnes de biominĂ©ralisation Ă  Ă©tĂ© Ă©tendu aux granules anaĂ©robies issus des rĂ©acteurs de type UASB de l'industrie laitiĂšre. Un modĂšle physico-chimique sur les processus de prĂ©cipitation sous forme matriciel sur AQUASIMÂź, couplĂ© avec des bases de calcul de sursaturation (PHREEQCÂź), ont permis d'avancer des hypothĂšses sur les mĂ©canismes influençant ces processus de biominĂ©ralisation, tels que la formation d'un prĂ©curseur amorphe de l'hydroxyapatite (ACP), ainsi que d'identifier les constantes de prĂ©cipitation thermodynamiques (pKsp|20ÂșC=28.07±0.58) et cinĂ©tiques dans diffĂ©rentes conditions opĂ©ratoires. GrĂące au suivi d'un systĂšme biologique GSBR (Granular Sludge Sequenced Batch Reactor) pendant plus de 900 jours, la contribution de ce phĂ©nomĂšne aux processus de dĂ©phosphatation a Ă©tĂ© estimĂ© (46% dans les conditions testĂ©es). L'utilisation de ce processus pour immobiliser efficacement le phosphore et apporter des propriĂ©tĂ©s physiques stables aux granules a Ă©tĂ© Ă©galement discutĂ©e. Une Ă©valuation des performances et de la stabilitĂ© du rĂ©acteur Ă  Ă©tĂ© mis en Ɠuvre en alternant des cycles anoxies/aĂ©robies ou anaĂ©robies/aĂ©robies vis-Ă -vis d'une future application industrielle. L'induction locale de la prĂ©cipitation par les variations de pH et par le relargage des phosphates par les rĂ©actions microbiennes, nĂ©cessite une modĂ©lisation appropriĂ©e, qui a Ă©tĂ© Ă©galement initiĂ©e dans cette thĂšse. ABSTRACT : Over the last decade, aerobic granulation processes have araised as a promising technology for treating wastewater effluents containing high nitrogen, phosphorus and carbon concentrations. The microbial complexity of granules and the mechanisms by which they acquire excellent settleability properties, still constitute important research goals to investigate. This thesis is focused on a mechanism that has been little addressed in literature, that is, phosphate precipitation in the core of aerobic granules. Different analytical techniques, sometimes adapted for the first time to this type of systems, like Raman spectroscopy, have let an exhaustive characterization of biominerals in the core of granules. Analyses performed on aerobic granules grown with synthetic fed in a lab-scale SBR (Sequential Batch Reactor), revealed a calcium phosphate core made of hydroxyapatite [Ca5(PO4)3(OH)]. This precipitation phenomenon is induced by local pH and supersaturation gradients issued of biological reactions inside granules. The study of the biomineralization phenomenon has been extended into anaerobic granules coming from UASB reactors at different cheese wastewater treatment plants. A physico-chemical model has been described in a form of matrix with AQUASIMÂź software, and coupled with a thermodynamic database (PHREEQCÂź), in an attempt to hypothesize the mechanisms that influence the biomineralization phenomena. It has been proposed the formation of an amorphous precursor (ACP) prior hydroxyapatite precipitation in the core of granules, suggesting the thermodynamic constant (pKsp|20ÂșC=28.07±0.58) and kinetic constants at different operating conditions. It has been also estimated the contribution of the biomineralization to the overall phosphorus removal process (up to 46% at the operating conditions tested), thanks to the development and study of a GSBR (Granular Sludge Batch Reactor) in labscale, for more than 900 days. The fate of the biomineralization process in granules, regarding the contribution to their stabilization and physical properties, has been also dealt in this thesis. The reactor stability and performances have been assessed by alternating anoxic/aerobic and anaerobic/aerobic cycles, in sights of a future industrial application. The induction of precipitation by local variation of pH and supersaturation issued of biological reactions has been here introduced, although it will need further investigation

    Development of a Bead-Based Multiplex Assay for the Analysis of the Serological Response against the Six Pathogens HAV, HBV, HCV, CMV, T. gondii, and H. pylori

    Get PDF
    The spread of infectious diseases and vaccination history are common subjects of epidemiological and immunological research studies. Multiplexed serological assays are useful tools for assessing both current and previous infections as well as vaccination efficacy. We developed a serological multi-pathogen assay for hepatitis A, B and C virus, cytomegalovirus (CMV), Toxoplasma gondii, and Helicobacter pylori using a bead-based multiplex assay format. The multi-pathogen assay consisting of 15 antigens was utilized for the analysis of the serological response in elderly individuals of an influenza vaccination study (n = 34). The technical assay validation revealed a mean intra-assay precision of coefficient of variation (CV) = 3.2 ± 1.5% and a mean inter-assay precision of CV = 8.2 ± 5.3% across all 15 antigens and all tested samples, indicating a robust test system. Furthermore, the assay shows high sensitivities (ranging between 94% and 100%) and specificities (ranging between 93% and 100%) for the different pathogens. The highest seroprevalence rates in our cohort were observed for hepatitis A virus (HAV; 73.5%), followed by CMV (70.6%), T. gondii (67.6%) and H. pylori (32.4%). Seroprevalences for hepatitis B virus (HBV, 8.8%) and hepatitis C virus (HCV, 0%) were low. The seroprevalences observed in our study were similar to those from other population-based studies in Germany. In summary, we conclude that our multiplex serological assay represents a suitable tool for epidemiological studies

    MUSiC : a model-unspecific search for new physics in proton-proton collisions at root s=13TeV

    Get PDF
    Results of the Model Unspecific Search in CMS (MUSiC), using proton-proton collision data recorded at the LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1), are presented. The MUSiC analysis searches for anomalies that could be signatures of physics beyond the standard model. The analysis is based on the comparison of observed data with the standard model prediction, as determined from simulation, in several hundred final states and multiple kinematic distributions. Events containing at least one electron or muon are classified based on their final state topology, and an automated search algorithm surveys the observed data for deviations from the prediction. The sensitivity of the search is validated using multiple methods. No significant deviations from the predictions have been observed. For a wide range of final state topologies, agreement is found between the data and the standard model simulation. This analysis complements dedicated search analyses by significantly expanding the range of final states covered using a model independent approach with the largest data set to date to probe phase space regions beyond the reach of previous general searches.Peer reviewe

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Measurement of prompt open-charm production cross sections in proton-proton collisions at root s=13 TeV

    Get PDF
    The production cross sections for prompt open-charm mesons in proton-proton collisions at a center-of-mass energy of 13TeV are reported. The measurement is performed using a data sample collected by the CMS experiment corresponding to an integrated luminosity of 29 nb(-1). The differential production cross sections of the D*(+/-), D-+/-, and D-0 ((D) over bar (0)) mesons are presented in ranges of transverse momentum and pseudorapidity 4 < p(T) < 100 GeV and vertical bar eta vertical bar < 2.1, respectively. The results are compared to several theoretical calculations and to previous measurements.Peer reviewe
    • 

    corecore