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GENERAL INTRODUCTION 

This dissertation makes part of a Ph.D program financed by the  French 

government (Ministère de l’Education Nationale) in cooperation with the Laboratoire 

d’Ingénierie des Systèmes Biologiques et des Procédés (LISBP), at the Institut National 

des Sciences Appliquées, and the Laboratoire de Génie Chimique (LGC) at the Institut 

National Polytechnique, in Toulouse, France.  The work developed during this Ph.D has 

also contributed to some tasks in two different national projects: VALORCAP (2009-

2010) and PHOSPH’OR (2010-2011) aiming the Valorisation of Carbon, Nitrogen and 

Phosphorus, from agriculture and Industry wastes: modelling of nitrogen and 

phosphorus transformation processes”, being this thesis focused on the phosphorus 

transformation processes. 

Phosphorus is a non-renewable resource and an important macronutrient on 

which life depends and for which there is no substitute. Reserves are unevenly spread 

on the Earth, but almost all phosphorus used by society is mined from a comparatively 

small number of commercially exploitable deposits in the world, making phosphorus 

recovery necessary in the coming decades. On the other hand, in response to the 

increasing eutrophication phenomena in aquatic systems all over the world, 

phosphorus is a target nutrient on which legislation is becoming more stringent.   

Aerobic granulation technology has been proven to withstand high organic 

loads in compact systems, as well as a promising technology regarding the 

performances of simultaneous nitrification, denitrification and phosphate (SNDP) 

removal process. Previous work in the laboratory (Wan J. thesis in 2009), with a hybrid 

aerobic granulation process, revealed that stable aggregates could form by alternating 

anoxic/aerobic conditions in a SBR, identifying 3 main research axis to overcome: the 

first one, consists on the comprehension of the nitrogen removal processes involving a 

floccular and granular hybrid sludge process (Thesis of A. Filali, 2011); the second one 

consists on the characterization of the EPS (exopolymeric substances) and its role in 

the granular aggregation mechanism (Thesis of C. Caudan, 2011); and the third one, 

implicates the study of the phosphorus processes that take place in a granular sludge 

batch reactor (GSBR).  

This thesis has focused in particular on a biomineralization phenomenon of 

phosphorus immobilization inside the aerobic granules, and the particular objectives 

will be specified in section I.5. The thesis is structured in four result chapters, each of 

them, aimed to constitute the basis of a peer-reviewed publication in different 

international scientific journals (see section List of publications and collaborations 

below).  
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RÉSUMÉ: 

Depuis une dizaine d’années, les procédés de granulation aérobie sont apparus 

comme une technologie prometteuse pour le traitement des effluents fortement 

chargés en azote, phosphore et carbone, tels que ceux issus de l’agro-industrie. La 

complexité microbienne de ces granules et les mécanismes qui leur donnent des 

propriétés exceptionnelles de décantation et de cohésion, constituent encore des axes 

de recherche importants. Dans cette thèse, le travail s’est axé sur un mécanisme 

encore non étudié : les processus de précipitation des phosphates au cœur des 

granules microbiennes. 

 Différentes techniques d’analyses spectrales, parfois adaptés pour la première 

fois à ce type de systèmes, comme la spectroscopie Raman, ont permis de caractériser 

la nature de ces minéraux formés au cœur des granules. L’analyse menée sur des 

réacteurs de laboratoires a démontré la présence des phosphates de calcium sous 

forme d’hydroxyapatite [Ca5(PO4)3(OH)]. Cette précipitation est potentiellement  

induite par les variations locales de pH et de sursaturation provoqués par les réactions 

microbiennes à l’intérieur des granules. L’étude des phénomènes de biominéralisation 

à été étendu aux granules anaérobies issus des réacteurs de type UASB de l’industrie 

laitière. Un modèle physico-chimique sur les processus de précipitation sous forme 

matriciel sur AQUASIM®, couplé avec des bases de calcul de sursaturation (PHREEQC®), 

ont permis d’avancer des hypothèses sur les mécanismes influençant ces processus de 

biominéralisation, tels que la formation d’un précurseur amorphe de l’hydroxyapatite 

(ACP), ainsi que d’identifier les constantes de précipitation thermodynamiques 

(pKsp|20ºC=28.07±0.58) et cinétiques dans différentes conditions opératoires.  

Grâce au suivi d’un système biologique GSBR (Granular Sludge Sequenced Batch 

Reactor) pendant plus de 900 jours, la contribution de ce phénomène aux processus de 

déphosphatation a été estimé (46% dans les conditions testées). L’utilisation de ce 

processus pour immobiliser efficacement le phosphore et apporter des propriétés 

physiques stables aux granules a été également discutée. Une évaluation des 

performances et de la stabilité du réacteur à été mis en œuvre en alternant des cycles 

anoxies/aérobies ou anaérobies/aérobies vis-à-vis d’une future application industrielle. 

L’induction locale de la précipitation par les variations de pH et par le relargage des 

phosphates par les réactions microbiennes, nécessite une modélisation appropriée, qui 

a été également initiée dans cette thèse. 
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SUMMARY: 

Over the last decade, aerobic granulation processes have araised as a promising 

technology for treating wastewater effluents containing high nitrogen, phosphorus and 

carbon concentrations. The microbial complexity of granules and the mechanisms by 

which they acquire excellent settleability properties, still constitute important research 

goals to investigate. This thesis is focused on a mechanism that has been little 

addressed in literature, that is, phosphate precipitation in the core of aerobic granules. 

Different analytical techniques, sometimes adapted for the first time to this 

type of systems, like Raman spectroscopy, have let an exhaustive characterization of 

biominerals in the core of granules. Analyses performed on aerobic granules grown 

with synthetic fed in a lab-scale SBR (Sequential Batch Reactor), revealed a calcium 

phosphate core made of hydroxyapatite [Ca5(PO4)3(OH)]. This precipitation 

phenomenon is induced by local pH and supersaturation gradients issued of biological 

reactions inside granules. The study of the biomineralization phenomenon has been 

extended into anaerobic granules coming from UASB reactors at different cheese 

wastewater treatment plants. A physico-chemical model has been described in a form 

of matrix with AQUASIM® software, and coupled with a thermodynamic database 

(PHREEQC®), in an attempt to hypothesize the mechanisms that influence the 

biomineralization phenomena. It has been proposed the formation of an amorphous 

precursor (ACP) prior hydroxyapatite precipitation in the core of granules, suggesting 

the thermodynamic constant (pKsp|20ºC=28.07±0.58) and kinetic constants at different 

operating conditions.  

It has been also estimated the contribution of the biomineralization to the 

overall phosphorus removal process (up to 46% at the operating conditions tested), 

thanks to the development and study of a GSBR (Granular Sludge Batch Reactor) in lab-

scale, for more than 900 days. The fate of the biomineralization process in granules, 

regarding the contribution to their stabilization and physical properties, has been also 

dealt in this thesis. The reactor stability and performances have been assessed by 

alternating anoxic/aerobic and anaerobic/aerobic cycles, in sights of a future industrial 

application. The induction of precipitation by local variation of pH and supersaturation 

issued of biological reactions has been here introduced, although it will need further 

investigation.   
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RESUMEN: 

Los procesos de granulación aerobia han emergido durante la última década 

como una tecnología eficaz para el tratamiento de efluentes con elevado contenido en 

nitrógeno, fósforo y materia orgánica. La complejidad microbiana de los gránulos, así 

como los mecanismos por los cuales adquieren excelentes propiedades de agregación 

y decantación, constituyen aún importantes líneas de investigación en el seno del 

tratamiento de aguas residuales. Esta tesis se focaliza en un mecanismo aún poco 

estudiando en profundidad, que consiste en la precipitación de fosfatos en el núcleo 

de los gránulos aerobios.  

Para ello, diferentes técnicas analíticas han sido empleadas, y algunas de ellas como la 

espectroscopia Raman, adaptadas por primera vez en estos sistemas, con el fin de 

llevar a cabo una caracterización exhaustiva de los biominerales precipitados en el 

interior de los gránulos. Estos análisis en gránulos aerobios cultivados en reactores de 

tipo SBR alimentado con un efluente sintético, revelan la precipitación en el interior de 

los agregados, de fosfato de calcio en forma de hidroxiapatita [Ca5(PO4)3(OH)]. Dicho 

fenómeno de precipitación se debe a la aparición de gradientes locales de pH y 

supersaturación, inducidos por las mismas reacciones biológicas y productos 

metabólicos.  

El estudio del fenómeno de la biomineralización se ha extendido a los gránulos 

anaerobios provenientes de digestores anaerobios UASB de diferentes plantas de 

fabricación de derivados lácteos. Un modelo físico-químico ha sido descrito en forma 

matricial con AQUASIM®, junto con un programa de cálculo de disociación de especies 

(PHREEQC®), con el objetivo de proponer hipótesis sobre los mecanismos que 

influencian los fenómenos de biomineralización. La formación de hydroxyapatita 

mediante un precursor amorfo (ACP) ha sido propuesto, así como la determinación de 

la constante temodinámica (pKsp|20ºC=28.07±0.58) y cinéticas en diferentes 

condiciones de operación.  

También se ha estimado la contribución de la biomineralización a la eliminación 

total del fósforo (hasta un 46% en las condiciones testadas), gracias al seguimiento de 

un piloto GSBR durante más de 900 días de operación. La importancia de los procesos 

de biomineralización en los gránulos ha sido abordada igualmente en la tesis.  

En vista de la aplicación industrial del proceso, la estabilidad del reactor y los 

rendimientos alcanzados se han evaluado mediante un estudio comparativo entre dos 

reactores, trabajando con ciclos anóxicos/aerobios y anaerobios/aerobios, 

respectivamente.   
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Abbreviation Meaning Units/ Formula 

ACP Amorphous calcium phosphate Ca3(PO4)2 

AOB Ammonium Oxidizing Bacteria  

ARAG Aragonite CaCO3 

BARDENPHO Barnard Denitrification Phosphorus Removal Process  

BMP Biological Methane Potential  

CAL Calcite CaCO3 

COD Chemical Oxygen Demand  (mg /L) 

DCPA Phosphate dicalcic anhydrous, Monetite CaHPO4 

DCPD Brushite CaHPO4: 2H2O 

DG Mean equivalent diameter of granule (mm) 

DM Dried Matter  

DO Dissolved oxygen concentration mg/L 

DOL Dolomite CaMg(CO3)2 

EBPR Enhanced biological phosphate removal  

EPS Extracellular Polymeric Substances  

GSBR Granular sludge Sequencing Batch Reactor  

HAP Hydroxyapatite Ca5(PO4)3(OH) 

HDP Hydroxy dicalcium phosphate Ca2HPO4(OH)2 

HRT Hydraulic Retention Time h 

IAP Ionic Activity Product  

Ic Ionic strength mol/kg 

ISAH Institut für Siedlungswasserwirtschaft und 

Abfalltechnik der Universität Hannover 

 

JHB Johannesburg process  

Ksp Thermodynamic equilibrium of precipitation 

constant 

 

LMF Mineral matter fraction contained in the mixed liquor (%) 

MAG Magnesite MgCO3 

MAP Struvite (Magnesium Ammonium Phosphate) MgNH4PO4·6H2O 

MF Mineral Matter in the mixed liquor g/L 

MIPP Microbially Induced Phosphate Precipitation  

MKP Potassium struvite  MgKPO4 : 6H20 

MLSS Mixed Liquor Suspended Solids g/L 

MLVSS Mixed Liquor Volatile Suspended Solids g/L 

MM Mineral Matter g/L 

MUCT Modified University of Cape Town Process  

MWH Magnesium whitlockite Ca18Mg2H2(PO4)14 

NEW Newberite MgHPO4 : 3H2O 

NOB Nitrite Oxidizing Bacteria  

OCP Octacalcium Phosphate Ca8(HPO4)2(PO4)4:5H2O 

OLR Organic Loading Rate kgCOD·m-3·d-1 

PAO Polyphosphate Accumulating Organisms  

PCA Cold Perchloric Acid  

PE Population Equivalent  

NOMENCLATURE 
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PHOREDOX Phosphorus Reduction Oxidation Process  

PP Polyphosphate  

SAV Superficial Air Velocity cm/s 

SBR Sequencing Batch Reactor  

SI Saturation Index Log Ω 

SMF Sludge Mineral Fraction/ash content (%) 

SNDP Simultaneous nitrification, denitrification and 

Phosphorus Removal 

 

SRT Solid Retention Time d 

SVI Sludge Volume Index mL/g 

TCP Tricalcium Phosphate Ca3(PO4)2 

TIC Total Inorganic Carbon  

TKN Total Kjeldahl Nitrogen mgN/L 

TN Total  Nitrogen mgN-/L 

TSS Total Suspended Solids g/L 

UASB Upflow Anaerobic Sludge Blanket  

UCT University of Cape Town Process  

VER Volume Exchange Ratio  

VFA Volatile Fatty Acids mg/L 

VSS Volatile Suspended Solids g/L 

WWTP Wastewater Treatment Plant  

ϋ Raman shift (cm-1) 

Ω Supersaturation ratio  
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CHAPTER I:  

GENERAL OBJECTIVES AND LITERATURE 

OVERVIEW 
 

 

 

 

‘‘Life can multiply until all the phosphorus has gone and then there is an inexorable halt 
which nothing can prevent. We may be able to substitute nuclear power for coal, and 
plastics for wood, and yeast for meat, and friendliness for isolation - but for phosphorus 
there is neither substitute nor replacement.” 
 

 Isaac Asimov, 1974 
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I.1. PHOSPHORUS: FROM EXCESS TO SCARCITY 

Phosphorus was discovered by the German alchemist Hennig Brandt in 1669 

(Ashley et al., 2011). During his search for the legendary “Philosopher’s Stone”, he made 

experiments by boiling urine but what he found was the glowing molecules of oxidized 

phosphorus, immortalized in Joseph Wright’s painting (figure I.1). Phosphorus has three 

allotropes (white, red and black), but due to its extremely high reactivity, it is always 

found in nature combined with other elements (HPO42-, PO4-3, P2O5, etc…), although only 

the inorganic ortho-phosphate is bioavailable.  

 

 

 

 

 

 

 

 

 

 

Phosphorus is a key element of life for which there is no substitute. Human adults 

contain approximately 0.7 Kg of phosphorus in their bodies, around 85% in the form of 

calcium phosphate salts forming bones and teeth (Lehninger, 1988). It also makes part of 

the polynucleotide structures (DNA, RNA), as well as being present in the lipids of its 

membranes. It also plays an essential role in photosynthesis as it is part of the ATP, a key 

molecule involved in the energy transport in the metabolic functions of living beings. From 

the basis, phosphorus is incorporated in feed (around 1.7 g/day, according to FAO annual 

report, 2004), and its presence in the soil is one of the main requirements in intensive 

agriculture.  As shown in figure I.2, the 95% of the phosphorus used for fertilizing 

purposes comes from the phosphate rock deposits which contain on average around 33% 

of P2O5 (Vaccari, 2011). However, it is a non-renewable source of phosphorus that takes 

between 10 to 15 million years to form (White, 2000).  

At the annual consumption rate in 2011 (19 million tonnes per year), current 

phosphate rock resources are estimated to run-off in the coming century, and this 

Figure I. 1: The Alchemist in Search of the 

Philosopher’s Stone, Joseph Wright (1771.) 
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depletion could be exacerbated by growing crop demand linked to the population 

increase, which implies between 2.7 to 4.4% of P annual growing demand (CEEP, 2011).   

Not so far from the Malthussian concern about food scarcity for a growing 

population, Hubbert (1949) anticipated the actual fuel oil crisis that we are suffering 

nowadays, and that similarly, could implicate phosphorus as well in the next years. 

Furthermore, 85% of the major mining deposits are shared by only among 5 countries all 

over the Globe, namely: Marocco, United States, China, South Africa and Jordan, being the 

first three, the principal phosphate exporters (Cordell et al., 2011).  

  

 

 
 

 

 

 

 

 

 

 

 
 

On the opposite side of scarcity, phosphorus has been reported together with 

nitrogen, as targeted elements responsible for the eutrophication phenomenon 

(Golterman and De Oude, 1991), which affects more than 50% of the lakes and reservoirs 

all over the world (WRC, 2008). In Europe, the regulation of P released into the aquatic 

systems is integrated in the frame of a 2000/60/EC directive, being, the maximum 

concentrations allowed are between 2-0.5 mgP/L. However, green tides and algae bloom 

problems have been increasingly reported over the last few years, harming touristic 

landscapes and constituting a toxicological danger for humans and animals (Charlier et al., 

2008; CEVA, 2011).  

Figure I. 2: Extent of P sources for agriculture since 1800-2010. (Cordell et al., 2009) 
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I.2. PROBLEMATIC OF THE AGRO-INDUSTRIAL EFFLUENTS 

I.2.1. Effluent characteristics 

Faced with the need of making efforts for phosphorus removal on the one hand, 

and, for its recycling through valuable ores, on the other hand, special attention has been 

paid to the agro-food wastewater treatment. According to a CEEP report (2004), more 

than half of the phosphorus coming from wastewater, has an agro-industrial origin (see 

figure I.3).  

 

 
 
 
 
 
 
 
 

In fact, agro-food wastewaters are usually rich in proteins and other bio-molecules, 

which make up an important source of organic nitrogen and phosphorus, especially those 

from the animal industry. One of the complexities linked to agro-industrial wastewater 

treatment is the broad diversity of effluent characteristics. Table I.1 collects some agro-

food wastewater effluents characteristics of different origins.  

 

 

 

 

 

 

 

 

 

 

 

 

12%

23%

55%

10%
Detergents

Human Wastes

Agro-Industry

Natural bed erosion

Figure I. 3: Sources of P sewage according to Centre 

d’Etudes Européen des Phosphates, 2004. 
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Table I. 1: wastewater characterization from different agro-industrial sectors. 

Origin COD* BOD5
* VFA* TKN* NH4

+* Pt* TSS* 

BOD/ 

COD 

BOD/ 

NTK 

BOD/ 

Pt 
Reference 

Dairy Factory 4000 2600 400 55 - 35 675 0.7 47.3 74.3 [1] 
Whey 61250 - - 2500 - 533 5077 - - 46 [1] 

Cheese and whey 
recover 

3500 2000 - 50 - 0.1** 500 0.6 40.0 30-90 [2] 

Milk powder 2800 1600 - 80 - 0.04** - 0.6 20.0 - [2] 
Milk, derivates, Egg 3390 1855 253 120 83 4.72 - 0.5 15.5 393.0 [3] 

General 
Slaughterhouse 

4200-
8500 

1600-
300 

100-
200 

114-
148 

65-
87 

20-30 - - - - [1] 

Thin piggery 
manure fraction 

3969 1730 - 1700 - 147 - 0.4 1.0 11.8 [4] 

Pig Slaughterhouse 5200 2000 1100 300 - 60 2250 0.4 6.7 33.3 [2] 
Primary treated 

abattoir 
wastewater 

2000-
6200 

- 
40-
600 

- 
20-
30 

15-40 - - - - [5] 

Primary treated 
abattoir 

wastewater 

490-
2050 

- 
250-
990 

105-
170 

26-
116 

25-47 - - - - [6] 

Wine 25000 10000 - 150 - 50 1600 0.4 66.7 200.0 [2] 
Cidrery 4718   42.95  14.52 1487 0.0 0.0 0.0 [2] 

Coke, soda and 
beer  factory 

3256 1639 189 - 11.3 114.11 688 0.5 - 14.4 [3] 

ERU 544 248 - 31 - 12.8 195 0.5 8 19.4 [7] 

*Concentrations in mg/L ; **gP/L dry milk 
References: [1]- Doble et al., 2005 [2]- Moletta (2006) [3]- Confidential (industrial data) [4]- Obaja et 
al., 2003 [5]- Caixeta et al., 2002 [6]- Thayalakumaran et al., 2003b [7]- ERU Aoste de Granieu 

I.2.2. Dairy and cheese wastewater treatment 

Agro-food effluents, and particularly dairy and cheese effluents show a high COD 

and BOD concentration, being favorable for organic matter valorization via anaerobic 

treatment for methane production, coupled with a post-treatment of nutrients. However, 

the need for nutrient removal should be carefully evaluated. The fraction of the incoming 

easily biodegradable organic load is uneven. For some types of effluents (e.g.: abattoir), 

between 40 to 70 % of the COD is slowly biodegradable and not directly available for 

denitrification or biological P removal (Yilmaz et al., 1997). In the case of cheese and whey 

wastewaters, the BOD/N and BOD/P ratios are low, compared to the bacteria DBO:N:P 

needs (Metcalf and Eddy, 1991; Henze et al., 1997), and the concentrations depend on the 

ratio of whey (highly concentrated) and white washing waters (diluted) in the final 

effluent (Perle et al., 1995).  
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Organic loads from dairy and cheese wastewater treatment plants come from 

degradable carbohydrates, mainly lactose, and from the less biodegradable proteins and 

lipids (Hwang and Hansen, 1998). Casein is the major protein found in these effluents and 

it is usually quickly hydrolyzed, in contrast to lipids (Perle et al., 1995). The latter are less 

bioavailable and their degradation produces glycerol and low fatty acid chains that can be 

inhibitory to certain methanogenic bacteria, overall the unsaturated ones (Koster, 1987; 

Komatsu et al., 1991).  

The main organic nitrogen source comes from the organic proteins, oligopeptides, 

nucleic acids and some additive ingredients (Law, 1997). High nitrogen concentrations 

constitute a source of disturbance for Biological Nutrient Removal (BNR) processes, 

causing for instance ammonia inhibitory effects over nitrification/denitrification 

populations (Anthonisen et al., 1976; Hawkins et al., 2010). Indeed, although high 

concentrations of NH3 and HNO2 can affect both nitrifying microbial populations, Nitrite 

Oxydising Bacteria (NOB) are more sensitive to this factor (Vazquez-Rodríguez et al., 

1997; Pambrun, 2005).  

Another problem linked to the agro-industrial and dairy wastewater is the settling 

sludge problems related to the presence of suspended solids and of fats and grease, 

causing the development of filamentous bacteria, which have competitive advantages over 

other strains when oxygen limitation is present (Danalewich et al., 1998). Although it has 

been reported that high organic loading rates an short SRT reduce bulking problems, high 

SRT  implies higher reactor volumes, leading to a rise in the operating and fixed costs. High 

total suspended solids mainly originate from the coagulated milk, cheese curd fines or 

flavoring ingredients (Demirel et al., 2005). Indeed, high sodium, calcium, and potassium 

concentrations appear in these effluents; e.g.: [Ca2+] = 35-55 mg/L, for dairy industry 

(Demirel et al., 2003) and between 150-950 mg Ca2+/L, in cheese wastewater (Monroy et 

al., 1995). Most calcium concentrations derive from casein and additives like calcium 

phosphate (to improve texture and consistency of cheese) or calcium sulphate (acting as 

desiccant).  

A typical wastewater treatment plant for the cheese industry is schematized in the 

figure I.4. It is constituted by an anaerobic treatment unit, followed by an activated sludge 

process including nitrification (aerobic reactor), denitrification (anoxic reactor) and 

simultaneous P removal by either biological or physical-chemical treatment (Fe or Al 

precipitation). 
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Grit/sand
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Figure I. 4: General Scheme of a WWTP for cheese processing manufacture. 

 

Upflow Anaerobic Sludge Blanket reactors (UASB) have been reported since the 

1970’s as an efficient technology for treating high COD loading rates, and for maintaining 

high stable biomass concentrations in more compact facilities compared to a completely 

mixed anaerobic reactor (Lettinga et al., 1980). These systems are energetic efficient and 

produce low sludge volumes even if it could be difficult to degrade proteins based on 

particulate substrate if residence time is too short, as the hydrolysis of fats is usually a 

limiting step compared to the fatty acids conversion rate to acetic acid (Batstone et al., 

2000). Obviously the UASB processes need complementary nitrogen and phosphorus 

facilities because nutrient requirements of anaerobic organisms are ten times lower than 

those of aerobic ones (Henze et al., 1997), and most of N and P is present in the outlet of 

the anaerobic process in ammonium (due to the proteins hydrolysis) and ortho-phosphate 

forms. 

A first observation is that the surface and volume needs for nutrients post-

treatment is very important (more than that necessary for methanization). A second 

observation is that phosphate is mainly removed with secondary sludge and cannot be 

exploited independently. Finally, a last point is that high phosphorus content in 

wastewater can cause precipitation in the different units. Location of precipitation is still 

difficult to predict. On the one hand, it will cause hydraulic disturbances if they appear on 

walls, pipes, stirrers, etc. On the other hand, the consequence of P precipitation in 

Whey and 

cheese 

influent 
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anaerobic or aerobic sludge requires more attention in order to avoid loss of bacterial 

activity due to external mineralization. 

I.2.3. Case study in France 

In the field of agro-industrial wastewater, we have studied the case of a cheese 

factory wastewater treatment plant (WWTP) in the south of France (see figure I.5). 

According to figure I.5, black, white and process wastewaters coming form the dairy 

factory are first collected in a buffer tank where pH and flow rates are adjusted prior 

physico-chemical treatment. After a primary treatment, where most of the incoming fats 

and grease are removed by aeroflotation, the main stream effluent and the sludge from the 

primary step are treated in methanizers I and II. During the anaerobic digestion, most of 

organic nitrogen is hydrolyzed, resulting in a high ammonium concentration at the outlet 

of both methanizers, but most of the organic load is removed during the anaerobic stage. 

Ammonium is afterwards oxidized during the aerobic stage into nitrates and nitrites 

(nitrification), and finally converted to N2, leading to 84% removal yields for organic 

nitrogen. The pH of effluents coming from the factory is quite acidic (3.5), and it is 

adjusted in the methanizer to control the acetogenesis and methanogenic steps after the 

VFA production. Some of the biogas produced is then collected, purified and cogenerated 

for steam and electricity production for supporting the plant’s energy demand (in the line 

of milk boilers and heating devices).  

 

Figure I.5.: Block diagram of the industrial wastewater treatment plant exploited 

by VALBIO Company. 
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Table I.2 shows the characteristics of the raw influent coming into the WWTP. 

Most of the incoming phosphorus originates from the whey, proteins, additives and from 

the products used in the Clean-In-Place (CIP) units (phosphoric acid solutions). For its 

treatment, secondary precipitation in the aerobic reactor takes place resulting in 40% of 

the removal yield. The remaining phosphorus (32%) is probably removed by spontaneous 

precipitation in the methanizer tank enhanced by high pH (>7.4), raising the question 

about how and which phosphate compounds are formed during this stage. 

 

Indeed, several mineral deposits were found to precipitate in different locations of 

the plant, as shown in figure I.6.  Although the analytical tools for mineral characterization 

will be part of the results of this thesis, preliminary tests revealed that a part of the 

phosphorus was removed as calcium phosphates precipitated on the walls of some devices 

(See chapter II).   

Table I. 2: Wastewater characterization of the influent from the industrial WWTP 

Parameter Value   Parameter Value 

Total Chemical Oxygen Demand (mg/L) 59300 Nitrates (mg NO3
-
/L) 0.49 

 Soluble Chemical Oxygen Demand (mg/L) 37760 Ca
2+

 (mg/L) 211.55 

 Inorganic Phosphorus (mg PO4
3-

/L) 165 Mg
2+ 

(mg/L) 44.3 

Total Phosphorus (mg Pt/L) 320 K
+ 

(mg/L) 822 

Ammonium Nitrogen (mg NH4
+
/L) 175 Na

+ 
(mg/L) 200 

Total  Kjeldahl Nitrogen (mg TKN/L)  945 Cl
-
 (mg/L) 965 

Nitrites (mgNO2
-
/L) 0.00 TSS( g/L) 38 

Nitrates (mg NO3
-
/L) 0.49 pH (15°C) 4.91 
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Figure I. 6: a) Mineral deposits found in anoxic tank walls of industrial site; b) Raman Analysis 

over two precipitated samples. 

 

I.3. SCOPE OF PHOSPHORUS REMOVAL AND/OR RECOVERY  

Precipitation and enhanced biological phosphorus removal (EBPR) are the main 

mechanisms on which the available technologies for phosphorus wastewater treatment 

rely on. Crystallization of phosphate minerals like struvite (MAP) and hydroxyapatite 

(HAP) are the most common minerals researched for valorization purposes.   

I.3.1. Conventional physico-chemical precipitation 

The development of full scale technologies for phosphorus removal started in the 

1950s in response to a reduction in the levels of phosphorus entering surface waters 

leading to eutrophication. But it was long before, that phosphorus removal had been 

achieved by chemical precipitation. In particular, several wastewater streams were 

treated with lime in the XIX century (Wardle, 1893), followed by the use of iron salts 

(Wakeford, 1911). The obtaining of a fertilizer as an end-product was conceived in 1944 

by Sawyer. According to this, and continuing in the line of precipitation, different plant 

configurations were designed, depending on the stage in which reactants were applied 

(Balmer and Hultman, 1988). Conventional chemical precipitation was simple and cheap, 

but produced huge quantities of sludge difficult to manage and handle. However, due to its 

simplicity, nowadays it is still widely used in a lot of Municipal Plants.  

a) b) 
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Via precipitation, a conversion of dissolved phosphates into solid insoluble 

phosphates is obtained. Phosphate precipitation through ferrous or alums salts 

(Aln(OH)n(3-n)) has been well-known for decades, and depending on the stage where 

chemicals are added, we can talk about primary precipitation (before primary 

sedimentation), secondary or simultaneous precipitation (directly to the aeration tank of an 

activated sludge process) and tertiary precipitation (where dosing follows a secondary 

treatment), (Omoike and van Loon, 1999). The most common chemicals used for 

conventional precipitation are: Al2(SO4)3·16 H2O, FeCl3 · H2O, FeSO4·7H2O and Aln(OH)n(3-n), 

because of their relatively low price. They are usually sub-products coming from other 

industries, and lead to high phosphorus removal efficiency (95-99%). However, due to the 

high metal content and low free disposal (Yeoman et al., 1988), the use of these chemicals 

makes the precipitate unrecoverable for possible industrial processing into a fertilizer.  

Another disadvantage that promotes the investment in other technologies, is the huge 

quantity of sludge produced by chemical precipitation, due to parasite reactions that even 

if they enhance flocculation, consume a lot of reagents. The following example shows the 

type of products achieved: 

Primary reaction:  Me3+ + HnPO4n-3  MePO4 + nH+   Equation I.1 

Side reaction:  Me3+ + 3HCO3-  Me(OH)3 + 3CO2                           Equation I.2 

Where “Me” indicates a common metal use 

I.3.2. Biological Phosphorus Removal 

It was not until the middle of the XX century that Enhanced Biological Phosphorus 

Removal (EBPR) seemed feasible, with the concomitant luxury uptake concepts (Levin and 

Shapiro, 1965). Phosphorus is enclosed in the general formula of the biomass constitution: 

C106H180O45N16P (Perry and Green, 1999), implicating up to 1.38 % of phosphorus in their 

weight (Cardot, 1999). Thus, between 0.01-0.02 g P/g VSS can be expected from a classical 

assimilation, which is not enough for legal reject requirements with high strength 

effluents. However, an over accumulation of phosphorus of up to 0.38 gP/ g MVS higher 

than their normally growing needs (Wentzel et al., 1989) can be achieved by Phosphorus 

Accumulating Organisms (PAOs) when alternating anaerobic/aerobic conditions. These 

organisms are a compendium of bacteria like Acinetobacter spp (Cloete and Steyn, 1988), 

Microlunatus Phosphovorus, Lampropedia spp, Rhodocyclus, Aeromonas sp. (Pasteurella, 

Pseudomonas, Moraxella), Acinetobacter sp. (A.calcoaceticus, A. euthrophus),  Phormidi um 
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bonheri, P. Laminosum, P. Tenue, Oscillatoria, Staphilococcus auricularis, Rhodobacter 

capsulatus, Rh. Sphaeroides, Rh. Sphaeroides NR-3, Rh. Seudomonas palustris, Chlorella 

vulgaris, Scenedesmus dimorphus and Spirulina platensis (Mino, 2000; Blackal et al., 2002; 

Seviour et al., 2003), and any of each isolated strain has a 100% PAO metabolism (Wong et 

al., 2005), which is described in Figure I.7. They can absorb low-weight molecular organic 

chains (acetate, propionate) thanks to exopolymeric substances (EPS) under anaerobic 

conditions through Polyhydroxyalkanoates (PHA), which is the general denomination of a 

type of lipids including PHB (Poly--hydroxybutirate) and PHV (Poly--hydroxyvalerate). 

According to Smolders et al. (1994), they can be quickly metabolized (between 4-6 hours 

at 20°C). Glycogen is a carbohydrate which is also stored by these micro organisms in 

counter-phase to PHA, as one is being built up, the other is being degraded. It supplies 

energy for 1-2 days, as well as acting as a regulator on the cell’s red-ox balance. The energy 

required is obtained by hydrolysis of the intracellular polyphosphate stored bounds. 

Polyphosphate is accumulated thanks to the polyphosphatase kinase enzyme, while its 

release is catalyzed by the polyphosphatase. Then, in the aerobic phase, the organic matter 

can be oxidized and the energy released is used for cell growth as well as for the re-

accumulation of phosphates into polyphosphates in their protoplasm. 

 

 

Figure I.7.: Scheme of EBPR mechanism carried out by PAOs. 

The net effect is a surplus of phosphorus content in the bacteria, and hence, a 

phosphate concentration drop in the effluent (Eckenfelder, 1997; Wong et al., 2005). The 
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yields achieved is linked to the ratio between easily biodegradable COD and phosphate in 

the wastewater ((between 60- 75% of P removal with common domestic wastewater), 

which does not always achieve the legal requirements). In fact, phosphorus net removal is 

directly linked to the phosphorus content in PAOs, and in the other bacteria that coexist in 

the bioreactor.  

Panswad et al., (2007) reported the different phosphorus content in PAOs 

regarding the P:COD feeding ratio. Thus, for increasing ratios from 0.02 to 0.16, P sludge 

content varied from 5.3 to 20.5 % in weight, which is not negligible regarding valorization.  

Disruption of EBPR in wastewater treatment plants by the presence of other 

microorganisms called GAO (glycogen accumulating organisms) has been largely 

investigated in the last decade. They compete with PAO for VFA uptake under anaerobic 

conditions, but at the expense of glycogen accumulation instead of polyphosphate as the 

energy source. With regards to the phylogenetic groups of bacteria forming GAOs, Oehmen 

et al., 2010 highlighted Candidatus Competibacter and Defluviicoccus vanus, both having 

several sub-groups with denitrifying capacities. Moreover, they have been reported to be 

the first bacterial group responsible for denitrification in SNDPR processes in granules 

(Zeng et al., 2003a; 2003b), and according to Lemaire (2007), he found GAOs 

preferentially in the center of the granules (coinciding with the anoxic local conditions), 

while PAOs were found mostly in the outer part at 200μm depth.  The parameters that 

favour the selection of one phenotype or another have been studied: the type of VFA 

present in the influent (e.g. acetate or propionate) (Pijuan et al., 2004; Oehmen et al., 

2005a, 2006), pH (Filipe et al., 2001; Oehmen et al., 2005b), temperature (Whang and 

Park, 2006), the phosphorus to VFA ratio (Liu et al., 1997) and the combined effect of such 

parameters ( Lopez-Vazquez et al., 2009).  

Technical configurations like BIODENIPHO (Bungaard et al., 1988), A/O, ISAH, 

JHB, Unitank (Janssen et al., 2002), PhoRedox (3 stage A2/O), or 5-stage BARDENPHO 

(Barnard et al., 1990) were developed in order to produce a P-rich sludge production with 

lower chemical consumption. However, some technical downsides appeared, concerning 

NO3- presence in the anaerobic phase, which led to the switch electron acceptor for 

consuming VFA, instead of accumulating as PHB. Moreover most of these processes had 

been originally conceived for biological nitrogen removal, like BARDENPHO, and 

phosphorus removal yields were not satisfactory with high P loads in the influent. In order 

to solve the nitrate problem, UCT (Siebritz et al., 1983; Brett et al., 1997) and then, MUCT 
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(Farnell et al., 1990) processes were successfully applied full scale for an anaerobic liquor 

digester from a vegetable processing plant in the UK (Upton et al., 1996; Brett et al., 1997). 

Problems related to the necessity of a post sludge treatment for P-extracting or strong 

regulations for sludge spreading, encouraged combined biological-chemical processes, like 

PHOSTRIP -shown in figure I.8- (Levin and Shapiro, 1965; Brett et al., 1997; Upton et al., 

1996), or BCFS (van Loosdrecht et al., 1998).   Although these technologies were more 

environmental-friendly they presented some disadvantages like rich-nutrient sludge 

management and spontaneous struvite accumulation in pipelines (Borgerding, 1972). 

 

Primary
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Clarifier I Clarifier II

Pre-stripperstripper
Ca(OH)2
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Effluent

Sludge
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Precipitation

 

Figure I. 8: Scheme of a PHOSTRIP WWTP in Caorle, Italy (Szpyrkowicz and Zilio-Grandi, 1995) 

 

I.3.3. Crystallization in specific reactors for phosphorus recovery 

The latest trends in phosphorus removal are focused on recovering phosphates as 

marketable fertilizers like hydroxyapatite (HAP) or struvite (MAP) via controlled 

crystallization in specific reactors.  

I.3.3.1. Struvite precipitation 

Struvite or magnesium ammonium phosphate (MAP), was first regarded as a piping 

fouling problem, as it precipitates spontaneously in waste water treatment environments 

where high concentrations of soluble phosphorus and ammonium are present under pH 

higher than 7.5 (Borgerding et al., 1972). The first modelling efforts were focused on 
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avoiding its formation which had been reported to cause high economical impact in 

facilities all over the world (Ohlinger et al., 1998; Doyle et al., 2000). As struvite contains 

both phosphorus and nitrogen, its precipitation will affect the content of both elements in 

the leftover sludge, used by farmers as a soil improvement agent and fertilizer. The 

relation between phosphorus and nitrogen removal is linked to the mass balance; since 

sewage has a typical N:P ratio of 8:1 and struvite 1:1, a theoretical maximum of 12.5% of 

the nitrogen load could be removed as struvite (Bashan et al., 2004). 

Moreover, while sewage sludge applied directly to fields has phosphorus content 

higher than the need of plants, struvite recovery should achieve the legal requirements of 

fertilizers (gathered in the U.E. Directive 97/622). In addition, struvite is an excellent 

slow-release fertilizer that does not burn the roots when over applied, unlike ammonium-

phosphate fertilizers (Hu et al., 1996).  

But other products can be synthesized using recovered struvite crystals. For example, 

the most common used fertilizer, diammonium phosphate (Khan and Jones, 2009), which 

is produced by neutralizing phosphoric acid with ammonia, can be replaced by mixing 

struvite with phosphoric acid. And this might even yield a superior fertilizer made partly 

of slow release: MgHPO4 and partly of fast-release: (NH4)2HPO4.  

As struvite purification technology is still unknown, its use for the cement industry, as 

a fire-resistant material (Sarkar, 1990), or cosmetics or pharmaceutical applications, 

seems not likely in the short term.  

However, the potential of struvite as a fertilizer (Wilsenach et al., 2003; Brett et al., 

1997; Bashan et al., 2004) has reoriented processes and modelling towards its recovery. 

Thus, its crystallization in specific reactors has been widely developed, leading to full scale 

commercial processes, like Kurita® (Joko, 1984) or Phosnix® (Unitika, 1994).  

Struvite is an orthorhombic crystal the formation of which depends on the 

concentration of the constituting ions present in the solution and on other factors, like T, 

pH, solvent nature, hydrodynamic conditions and the presence of other ions (Ali et al., 

2005). Crystallization is a thermodynamic-dependent phenomenon that implicates a 

stable nucleus formation first, followed by a crystal growth. In the processes mentioned 

above, different chemicals are needed to modify the inlet ions concentrations and/or the 

pH. Although the stoichiometry establishes a relation 1(Mg2+):1(NH4+):1(PO43-), 

experiments have shown that an excess of Mg2+ is required, at least in municipal 
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wastewater (and in most of industrial wastewaters), where this ion is lacking. Some 

strategies to precipitate struvite consist on: 

i) Adding Mg(OH)2 or the more effective MgCl2 (Wu and Bishop., 2004). 

ii)Adding a counter current sea-water flow, and adjusting pH to 8.2-8.8, with NaOH 

(Stratful et al., 2004). 

iii)Carrying out air stripping, which is a cheaper method to increase pH (Battistoni 

et al., 1997) or by CO2 stripping based on pH change (Saidou et al., 2009).  

Struvite precipitation can be inhibited by the use of FeCl3, zeolites, NaH2PO4 or 

sodium polyphosphate, as well as a pH or an ion concentration decrease. 

I.3.3.2. Hydroxyapatite precipitation 

Hydroxyapatite precipitation by P-rich sludge can be achieved by adding 

Ca(OH)2/CaO to the influent, but also with CaCl2 without the need of a pH adjustment and 

prior heating of the sludge in order to release the phosphorus. The precipitate contains 

more phosphorus and less Ca2+ than the conventional phosphate rock, but it is a poorly-

soluble phosphate as a fertilizer, so effective means like the use of PSB and PSF 

(Phosphorus solubilising bacteria and fungi), may be required. But problems linked to 

other ions presence, reveal that amorphous apatite does really appear instead of the 

crystalline hydroxyapatite.  The significance of encouraging the second form rather than 

the amorphous one, relies on the better availability for metabolism of plants.  

Hydroxyapatite formation has also been pursued and widely developed in 

crystallization reactors, like the DHV Crystalactor® technology (Morse et al., 1998; 

Montastruc, 2003). Calcium added in the form of lime (Ca(OH)2/CaO) leads to the 

formation of hydroxyapatite (HAP), according to the following formula: 

Primary reaction: 5Ca2+ + 7OH- + 3H2PO4
-  Ca5 (PO4)3 OH + 6H2O   Equation I.3                                       

          Side reaction: Ca2+ + CO32-  CaCO3                                           Equation I.4 

                                                         

The crystalline solid obtained can also precipitate and be formed by the same 

mechanisms as for struvite, but in practice, its production is due to the final stage of a 

series of reactions in which a number of more easily soluble calcium phosphates 

(precursors) are produced, which really determine the phosphate solubility according to 

Henze (1997). Thus, phosphorus removal yields can decrease if other apatite formations 
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take place, by the substitution of OH- ion by F- present in the water, or when PO43- is 

substituted by CO3- and Ca2+  is replaced by Na+, Fe3+, Al3+, Mg2+and Zn2+ ions. But not only 

apatites can spoil the desired crystalline hydroxyapatite formation, as more amorphous 

and soluble compounds can arise: CaHPO4, Ca4H(PO4)3, Ca3(PO4)2. These last components 

will determine the phosphate solubility if high concentration of Mg2+, poly-phosphate or 

HCO3- are present in the wastewater. 

EBPR and crystallisation-precipitation processes can be combined in order to 

improve total P removal efficiency and for recovering phosphorus in a valuable mineral 

form. It is thus possible to take advantage of the biological process to concentrate on a 

phosphate stream (enhance the ion supersaturation) and facilitate precipitation in a 

relatively soluble form (magnesium or calcium phosphate instead of metallic ones). 

Precipitation can be provoked either during the phosphate release at the anaerobic stage 

of the activated sludge system, or in a parallel stream after the anaerobic digestion of the 

sludge. Here, four possibilities are shown for MAP or HAP crystallization:  

i) Selective Ion Exchange, like the RIM-NUT® process (Liberti et al., 1986), in which first 

ammonium and then phosphate are concentrated from the influent thanks to a cationic 

and anionic resin respectively. The main drawbacks of this process are the lack of 

phosphate ions selective sorbents, and thus, the competition with NO3-, HCO32- and 

SO42- ions, on the one hand, and the long resin regeneration times with NaCl, on the 

other hand.  

ii) Precipitation in a continuous stirred reactor, has up to date only been performed 

on a pilot and laboratory scale. Phosphate precipitation and crystallization takes place 

in a mechanical stirred tank where MgCl2 generally is dosed for compensating Mg2+ 

deficiencies (Stratful et al., 2004), as well as NaOH for pH rise. The precipitation of 

struvite in the previous RIM-NUT® process takes place directly in this kind of reactor. 

Another crystallization process using a stirred reactor is the P-ROC® process, 

developed full-scale in Germany (patent from Forschungszentrum Karlsruhe). It 

produces calcium phosphates, HAP and brushite in a stirred reactor seeded with 

tobermorite and Calcium Silicate Hydrates pellets. This type of crystallization reactor 

usually requires a collector and settling zone, and can operate with or without seeding 

materials (Le Corre, 2006).  
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iii) Crystallization in Fluidized bed Reactors is the most common technology for 

recovering phosphorus like MAP or HAP from wastewaters. A column filled with seed 

materials is provided to promote crystal nucleation and growth, and different 

chemicals are added, like NaOH, for pH rising, or magnesium and calcium salts (Seckler 

et al., 1996). Processes like PHOSNIX (Katsuura et al., 1998; Münch et al., 2001), 

CRYSTALACTOR® shown in figure I.9 (Eggers et al., 1991; Piekema and Giesen, 2001), 

or CSIR (Momberg et al., 1992), have been adapted full-scale for a broad type of 

effluent, mainly from anaerobic digester supernatant, abattoir and swine wastes (Brett 

et al., 1997). In some cases, air is pulled upwards not only to favor contact but also for 

pH control (Suzuki et al., 2006), like in Air-Prex process (Stratful et al., 2004). Most of 

them recover phosphorus through MAP, HAP or amorphous phosphates and achieve 

phosphorus removal yields higher than 85%. The recent case of the OSTARA® process 

(Baur et al., 2008). The main advantage of this process is that it provides a phosphorus 

rich product (27% P2O5, 5% N, 10% Mg), commercialized as Crystal Green™, as well as 

struvite, both marketable slow-release fertilizers.  
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Figure I. 9: Scheme of Crystallactor process (Morse et al., 1998) 

 

iv) Crystallization in Packed or Fixed Bed reactors. Processes like KURITA® (Joko, 

1984 ; Brett et al., 1997), where high phosphorus removal yields up to 90% are 

achieved in a fixed packed column seeded with phosphate rock, produces HAP as a 

recovering product, without the need of chemicals. The Organic Fraction Municipal 

Waste and Biological Nutrient Removal process OFMWBNR developed in Italy and 

Spain (Llabres et al., 1999; Cecchi et al., 1994; Battistoni et al., 1997) recovers 

phosphorus from an anaerobic digester of a municipal wastewater plant 100000 PE, in 
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the form of HAP and MAP. In this case, quartz is required as seeding material. Finally, 

other authors focus on the fixed bed column technology for phosphorus removal, 

although instead of recovering it as a crystallize form, it is removed using adsorbents 

coming from other industrial wastes, like the case of the red mud adsorption (Huang et 

al., 2008).  

 

Another path for recovering phosphate consists on treating the P-enriched sludge, for 

example, from EBPR processes previously mentioned. When sludge characteristics are not 

suitable for field spreading (high Cd, Zn or iron content, low nitrogen, magnesium or 

potassium content, etc.), some technologies for extracting and recycling phosphorus are 

developed, like KEPRO process (Sweden), although it produces an iron phosphate difficult 

to solubilise (Kemira Kemi AB patent), Cambi/KEPRO and Bio-Con process. Most of them 

use a thermal/chemical treatment path.  

Although most of the recycling processes are based on Fluidized bed reactors 

(Montastruc, 2003), phosphorus recovery through struvite or hydroxyapatite in these 

systems present some economic drawbacks. On the one hand, there is not a clear 

phosphorus-bench market position, and prices of the recovered minerals are local-

dependent (Shu et al., 2005; Weikard, 2010). On the other hand, the 97% of the operating 

costs come from the pH adjustment and from reagent dosing (CEEP, 2001), and efforts 

must be addressed towards more economical and environmental-friendly sustainable 

processes for P recovery.  

 

I.4. AEROBIC GRANULAR SLUDGE: AN INNOVATIVE PROCESS 

Due to the impossibility of anaerobic granules to perform nutrient removal, 

aerobic granular sludge process emerges as an interesting alternative or complement to 

the UASB process. Mishima and Nakamura first reported aerobic granules in 1991, and the 

first patent of an aerobic granulation sludge process in a SBR was claimed by van 

Loosdrecht and co-workers (1998). Aerobic granulation has been reported as a suitable 

biological technology to treat industrial wastewater due to its small footprint and its 

capacity to withhold high organic loading rates and simultaneous nutrient removal 

(Morgenroth et al., 1997; Beun et al., 1999; Etterer and Wilderer, 2001; Liu and Tay., 

2004). This is due to their capacity to concentrate the biomass in the reactors (ten times 
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more than in conventional activated sludge systems, where VSS concentration is between 

3-5 mg/L. A granule is considered as a dense bio-aggregate involving a lot of different 

types of microorganisms that agglomerate under certain hydrodynamic and feeding 

conditions (De Kreuk et al., 2005). Aerobic granules are conceived as dense spherical 

stratified bio aggregates of 0.2-5 mm diameter. Their specific gravity varies from 1.004 

to1.065 (Etterer and Wilderer, 2001), being the smallest ones, to the denser ones. They 

have a negative-charged porous surface, with porosity channels up to 900μm depth below 

the surface that peak up to 300-500μm above the surface (Liu et al., 2004). Confocal laser 

scanning microscopy combined with different oligonucleotide probes, has served to 

determine a 70-80 μm depth layer from the granule surface, constituted mainly of 

aerobically nitritant microorganisms (Nitrosomonas spp), whereas typical anaerobic 

bacteria were detected at a depth of 800-900 μm (Tay et al., 2002). Heterotrophs are 

classically located in the periphery, followed by autotrophs depending on the oxygen 

diffusion conditions (Lemaire, 2007). Finally a layer of dead microbial cells was located at 

800-1000 μm from the surface (Toh et al., 2003). EPS matrix wrapped the granules and 

penetrated to 400μm depths. Aerobic granules result from the bio-aggregation of different 

types of microbial communities under specific conditions, and have been widely 

developed in Sequencing Batch Reactors, mostly under acetate or glucose synthetic feed. 

Nevertheless, they have also been satisfactory for treating dairy wastewater (Arrojo et al., 

2004; Schwarzenbeck et al., 2005; Wichern et al., 2008), abattoir wastewater (Cassidy et 

al., 2005, Lemaire, 2007), domestic wastewater (De Kreuk, 2006; Coma et al., 2011), soy-

bean processing wastewater (Su and Yu., 2005), brewery wastewater (Wang et al., 2007), 

paper-making wastewater (Wang et al., 2006), heavy metals and dye wastewater (Zhang 

et al., 2005).  

One advantage of aerobic granules compared to flocculated sludge is that they 

have higher settling velocities than flocs: Uaer_g = 18-60 m/h > Uanaer_g = 10 m/h > 

Uflocs = 1-3 m/h (Liu et al., 2003; Qin et al., 2004), enabling the former to settle in the 

same reactor without the need of secondary clarifiers (Etterer et al., 2001). Another 

advantage comes from their dense structure that favors the simultaneous nitrification 

denitrification and phosphorus removal (SNDPR), thanks to the different reactions that 

take place with the stratified microorganisms. In particular, this last is facilitated thanks to 

the DPAOs presence that allows simultaneous NOx reduction (denitrification) and P 
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uptake (Kuba et al., 1993; Lemaire, 2006). The particularity of granules to maintaining 

aerobic and anaerobic zones play a crucial role in the SND process.  

However, incomplete coupling leads to N2O production (Meyer et al., 2005), which 

has been recently targeted as one of the WWTP impacts needing to be further attended 

regarding its contribution to the greenhouse effect. In fact, one of the most suitable 

scenarios for N2O production coincides with that of the better SND operating conditions at 

low oxygen concentrations (0.3-0.5 mg/L), (Kampschreur et al., 2008), both nitrification 

and denitrification producing N2O in this intermediary DO range. Lemaire (2007) 

proposed the limitation of GAOs presence, that appeared to be related to the major N2O 

accumulation, by the enrichment of other carbon sources promoting the growth of another 

denitrifier strains that would minimize the N2O production, for example by bypassing a 

municipal wastewater stream during the anoxic phase. It would appear that the advantage 

of aerobic granules relies on its dense structure, allowing the formation of strict anaerobic 

or anoxic zones thanks to the oxygen-limiting conditions in the center of the granules.  

Although the knowledge of the exact parameters that influence densification of 

floccular mass to form aerobic aggregates still remains ambiguous, here are some 

simplified guidelines from the literature: 

- High Organic Loading Rates (OLRs), (Liu et al., 2005). 

- High Volume Exchange Ratio (VER), (Coma, 2011; Liu et al., 2005). 

- Short settling times to select pressure over the denser aggregates (Adav et al., 

2008; de Kreuk et al., 2007). 

- Long feast/famine periods (Lemaire, 2007; Liu et al., 2005). 

- Alternating anoxic feast/aerobic famine periods (Wan et al., 2009). 

- High presence of particulate matter as nucleation sites on which bacteria could 

start aggregating (Coma, 2011). 

Promoting shear forces in the reactor by aeration (Liu and Tay., 2002), as it 

enhances polysaccharides production leading to heavier sludge particles (Tay et al., 2001; 

Gao et al., 2011). Coma (2011) recently pointed out that one of the effects of increasing the 

OLR would be the enriched PAOs granules obtained, leading to dense packed heterotrophs 

in sludge enhancing granulation.  

Up to now, phosphorus treatment in aerobic granules has been assessed within the 

PAO-GAO development conditions. It is intimately linked with nitrification/denitrification 

processes, as the success of biological phosphorus removal by PAO, depends on the 
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availability of easily degradable organic carbon sources (VFA) and the capacity of PAO to 

use nitrate as electron acceptor (Lemaire, 2007). However, Tchobanouglous et al., (2003) 

pointed out that both nitrite and nitrate enabled P uptake at similar rates, nitrite electron 

acceptor was more effective in bio-P removal when organic matter limitations took place.  

Simultaneously to biological P removal, a parallel phosphorus precipitation 

process in the supernatant of activated sludge has been assessed by several authors (Lan 

et al., 1982; Maurer et al., 1999a and 1999b; Pambrun, 2005; Barat et al., 2008 and 2011). 

Phosphate precipitation in a granular sludge process was assumed (but not directly 

demonstrated) by Yilmaz (2007) and De Kreuk (2005, 2007). Lemaire (2007) predicted 

struvite precipitation in the supernatant of granules in treating abattoir wastewater with 

high ammonium content. By estimating its supersaturation index, Yilmaz et al. (2007) 

suggested that struvite could be transiently formed during the anaerobic phase of the SBR 

cycle. The contribution of this process to overall P removal was estimated to be less than 

10% on the basis of a perchloric acid extraction method (PCA), (Haas et al., 1990; Daumer 

et al., 2008). Similarly, experimental results by De Kreuk (2005) suggest that P-removal 

occurs partly by biologically induced precipitation in granular sludge. Extraction 

techniques indicated that 2.6% of the sludge mass was due to precipitates (P/VSS), but the 

whole contribution of this process compared to biological P removal processes was not 

quantified. For simplicity, precipitation was not included when modelling the process but 

De Kreuk et al. (2007) proposed to increase the maximum fraction of poly-phosphate in 

PAO from 0.35 (Hu et al., 2002) to 0.65 assuming that about 46% of the P removal could be 

due to P precipitation and 54% due to polyphosphate accumulating bacteria. Finally this 

side mechanism has never been quantified directly but has been supposed to contribute 

significantly to P removal in EBPR processes, thus, requiring further attention.  

In addition, some actors have also mentioned the possible accumulation in aerobic 

granules of calcium carbonate (Ren et al., 2008); or calcium and iron phosphates (Juang et 

al., 2010), thanks to simulation tools (for calculating the saturation index of different 

mineral phases regarding the concentrations in the bulk) or VSS/TSS ratio assessment. But 

little work has been done on the possible role of phosphate minerals precipitated inside 

granules over the whole P removal process, and the triggering mechanisms, in spite of its 

possible contribution to the high settling velocity of granules as well as to the particular 

self-immobilized feature. This will be the particular topic of this thesis. 



Chapter I: Literature overview and research outcomes  

 

 

25 

 

I.5. RESEARCH OBJECTIVES 

In the final aim of increasing the phosphorus removal yields as well as 

nitrification/denitrification in a single step (without needing metals for precipitation) the 

implementation of an aerobic granular sludge process has been proposed.  

In the case of a dairy wastewater treatment plant this process could be placed after 

the methanizer unit (UASB). Simultaneous carbon, nitrogen and phosphorus removal in a 

granular sequenced batch reactor (GSBR) could substitute the actual activated sludge 

process (Anoxic and aerobic tanks + secondary clarifier) as a more compact unit (see 

figure I.10).  
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Figure I. 10: Block diagram of the industrial wastewater treatment plant exploited by 

VALBIO Company. 

 

Previous work at LISBP laboratory (Wan, 2009), focused on the stability and 

formation of aerobic granules under anoxic/aerobic cycle conditions, also in a GSBR, 

finding that low oxygen flow rate (SAV=0.63cm/s) as well as the introduction of a pre-

anoxic feast phase, can favor the densification of aggregates and thus, stable granular 

sludge retention (MLSS=10g/L). However, phosphorus removal in this system was not 

further analyzed, constituting one of the starting points of the thesis. Therefore, the 

following 5 chapters aim to study the phosphorus processes that take place in this system, 
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for the sake of accomplishing legal reject requirements, and recovering it in an easy-

handling form in response to the growing phosphorus global demand. The main challenges 

(corresponding to each chapter) that will be dealt in this dissertation are:  

 

1. Demonstrating the biological induced precipitation process inside aerobic 

granules. For that, a stable GSBR system was used for treating synthetic 

wastewater with similar COD/P ratios to that of the high strength effluents (whey, 

slaughterhouse). In fact, Wan (2009) had before assessed the performances and 

stability of a GSBR operated with a pre-anoxic feast phase, during more than 250 

days, and microscopic images on granules arise the first question of the possible 

mineral precipitation inside (figure I.11). Therefore, Chapter II aims to confirm by 

mass balance and analytical techniques, the possible precipitation phenomenon, as 

well as the nature of the bioliths precipitated.  

  

Figure I. 11: Microscopic observation of an aerobic granule from 

the GSBR at the beginning of the thesis dissertation (Scale bar 

represents 400 μm-length) 

 

2. Studying GSBR process at different operating conditions focusing in particular, 

into the phosphorus removal processes with a synthetic fed lab-scale reactor. 

The reactor performances will be mainly assessed in Chapter III, in which two 

GSBRs operating with anoxic/aerobic cycles and anaerobic/aerobic cycles, will be 

compared regarding COD, nitrogen, and phosphorus removal. Several studies with 

GSBR run at anaerobic/aerobic cycles have been carried out by different actors 

regarding with the improvement of biological phosphorus removal, but up to the 

present, no studies with similar COD/N and COD/P ratios had been compared, nor 

any process with MIPP inside granules.    
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3. Analyzing the local formation of minerals in granules from aerobic and 

anaerobic processes. Chapter IV aims to extend the analytical tools (for assessing 

biological induced mineralization in aerobic granules) on anaerobic granules 

coming from the UASB (Methanizer II) from the cheese WWTP study case (figure 

I.5). Here, the biomineralization phenomenon in granules is compared regarding 

the different operating conditions that take place in the different reactors, 

establishing different hypothesis for mineral occurrence and discussing the pros 

and cons of this process regarding nutrient and carbon removal. An important 

question will be discussed: the consistency between the saturation indexes 

calculated with thermodynamical database and the observed minerals. This 

constitutes the first step for developing a prediction approach.   

4. Analyzing the calcium phosphate precipitation and its interactions with 

bioreactions in a granular sludge process. The final information that this work 

tries to provide in chapter V, relies on the influence of the operating conditions 

that can encourage the mineral precipitation in aerobic granules, as well as the 

information necessary (stoichiometry and kinetics) in sights of modeling later, the 

Mineral Induced Phosphorus Precipitation (MIPP) inside aerobic granules.  

Nota: Due to the structure of the dissertation (each chapter has been adapted to constitute a 

published article), some literature staples may be repeated during the different chapters. 

Otherwise, each chapter can be read separately. 
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CHAPTER II:  

MICROBIALLY INDUCED PHOSPHORUS 

PRECIPITATION (MIPP) IN AEROBIC GRANULAR 

SLUDGE PROCESS 
 

 

In this chapter, different analytical techniques are investigated to assess, for the first 
time, the biologically induced precipitation of phosphorus in the core of granules. 
Mineral precipitation of hydroxyapatite (calcium phosphate) is demonstrated by direct 
spectral and optical analysis: Raman spectroscopy, Energy dispersive X-ray (EDX) 
coupled with Scanning Electron Microscopy (SEM), and X-ray diffraction analysis are 
performed simultaneously on aerobic granules cultivated in a batch airlift reactor 
working with anoxic feast/aerobic famine cycles for 500 days. The limitations of the 
different analytical techniques, as well as the mineral implications on the phosphorus 
removal process will also be evaluated in this chapter.  

This chapter corresponds to the article:  

Mañas A., Spérandio M., Biscans B. (2011). Biologically induced phosphorus 
precipitation in aerobic granular sludge process. Water Research 45(12):3776-3786.
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II.1. INTRODUCTION  

Phosphorous is a key nutriment for the development of life, constituting one of the 

major nutrients necessary for agricultural activity. However, the quantities of mineral 

phosphorus resources (phosphate rock) are decreasing in the world, making phosphorus 

recovery necessary in the coming century. On the other hand, the high phosphorus and 

nitrogen content of wastewaters leads to serious problems of eutrophication in ponds, 

rivers and seas. Therefore, research is now focusing increasingly on combined processes 

that remove phosphorous from wastewaters and simultaneously recover it in the form of a 

valuable product, for example, struvite (MAP) or hydroxyapatite (HAP), (de-Bashan and 

Bashan 2004; Shu et al., 2006,  Suzuki et al., 2006). Phosphorous recovery techniques are 

particularly suited to high strength wastewaters produced by anaerobic sludge digestion 

(Demirel et al., 2005; Lemaire, 2007). Calcium or magnesium phosphates can be formed by 

crystallization and recovered in specific reactors via pH control and chemical dosing 

(Seckler et al., 1996; Katsuura et al., 1998; Münch et al. 2001; Giesen et al., 1999; Baur et 

al., 2008). The spontaneous phenomenon has been reported to cause economic damage 

related to pipe clogging when it is not controlled (van Rensburg et al., 2003). In activated 

sludge systems, biologically induced phosphate precipitation has also been reported but 

less investigated (Maurer et al., 1999; Pambrun, 2005; De Kreuk et al, 2005). Calcium 

phosphate precipitation is thought to contribute to P removal in Enhanced Biological 

Phosphorous Removal processes (EBPR) and it is considered to enhance biological P 

removal efficiency (Maurer et al., 1999).  Local precipitation is naturally induced when the 

pH and ion concentrations lead to mineral supersaturation. In the case of calcium or 

magnesium phosphate, their formation can be caused by phosphate release due to 

Polyphosphate Accumulating Organisms (PAO) during the anaerobic phase, but also 

clearly depends on pH. Bioreactions (e.g. nitrification and denitrification) or aeration (CO2 

stripping) lead to pH gradients which can be responsible for mineral precipitation in 

biological sludge (Pambrun et al., 2005; Bogaert et al., 1997; Saidou et al., 2009; Zhu et al., 

2007). These processes still need to be clarified in granular sludge systems. 

The aerobic granular sludge process is a promising technology for wastewater 

treatment because of its small footprint and capacity to treat high organic loading rates 

and its simultaneous nutrient removal through nitrification, denitrification and Bio-P 

accumulating processes (Morgenroth et al., 1997; Etterer and Wilderer, 2001; De Kreuk et 

al., 2005 ; Lemaire, 2007). The dense-spherical structure of granules leads to transfer 
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limitations (Liu et al., 2004; Adav et al., 2008), promoting not only DO gradients but also 

local pH gradients coming from biological reactions, especially in the case of enhanced 

denitrification (Wan and Spérandio, 2009; Wan et al., 2009). As phosphate accumulating 

bacteria can also be present inside the granules (Lemaire et al., 2007), anaerobic 

phosphate release can encourage P precipitation within the core of the microorganisms, 

where subsequent solubilization of the crystals would be more difficult than in the bulk. 

Phosphate precipitation in a granular sludge process was assumed (but not directly 

demonstrated) by Yilmaz (2007) and De Kreuk (2005, 2007). By estimating its 

supersaturation index, Yilmaz et al. (2007) suggested that struvite could be transiently 

formed during the anaerobic phase of the SBR cycle. The contribution of this process to 

overall P removal was estimated to be less than 10% on the basis of a perchloric acid 

extraction method (PCA), (Haas et al., 1990; Daumer et al., 2008). Similarly, experimental 

results by De Kreuk (2005) suggest that P-removal occurs partly by biologically induced 

precipitation in granular sludge. Extraction techniques indicated that 2.6% of the sludge 

mass was due to precipitates (P/VSS), but the whole contribution of this process 

compared to biological P removal processes was not quantified. For simplicity, 

precipitation was not included when modelling the process but De Kreuk et al. (2007) 

proposed to increase the maximum fraction of poly-phosphate in PAO from 0.35 (Hu et al., 

2002) to 0.65 assuming that about 46% of the P removal could be due to P precipitation 

and 54% due to polyphosphate accumulating bacteria. In 1999, Maurer et al. have 

proposed a model for naturally induced P precipitation in activated sludge, which is based 

on the assumption that hydroxyapatite (HAP) and hydroxydicalcium phosphate (HDP) are 

formed. The model can predict calcium and phosphate concentrations at different pH. 

However, in all these studies, phosphate minerals formed in biological granules or flocs 

have never been directly characterized, and the nature of the phosphate precipitate is not 

demonstrated but only indirectly deduced from stoichiometry of soluble species. 

The characterization of precipitates inside aerobic granules is still a relatively 

unexplored field. Minerals involved in phosphorus immobilization have been poorly 

qualified in biological sludge because traditional techniques (like X-ray diffraction) are 

difficult to apply directly in such organic matrices (Cloete and Oosthuizen, 2001). SEM-

EDX analysis has recently been applied to determine calcite formations in granules and in 

nacre shells (Ren et al., 2008). However, calcium or magnesium phosphates have not been 

quantified in previous studies of aerobic granules (Wang et al., 2006; Ren et al., 2008). 
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Therefore, the aim of this study is to reveal the nature of P minerals which can 

accumulate in EBPR granular sludge systems.  In an attempt to determine the chemical 

composition of precipitates in granules, RAMAN spectroscopy, EDX (Energy Dispersive X-

ray) technique coupled with Scanning Electron Microscopy (SEM), and X-ray Diffraction 

analysis (XRD) are evaluated. 

II.2. MATERIAL AND METHODS 

II.2.1. Reactor operating conditions   

Aerobic granules were cultivated in a Sequencing Airlift Batch Reactor (SBAR), 

with a working volume of 17 L, consisting of an airlift column (D=15 cm, H/D ratio = 7) 

with a baffle plate (length/width = 83/15-cm-). An aerating diffuser providing fine 

bubbles 3 mm in diameter was inserted at the bottom of the reactor at one side of the 

baffle plate, achieving mixing during both anoxic and aerobic phases (using nitrogen gas 

for the anoxic phase and air for the aerobic one). Oxygen concentration and pH were 

measured and recorded online with selective probes (WTW TriOxmatic 701). 

Temperature was maintained constant at 20 °C thanks to a water jacket. Details of the 

system schematization can be seen in figure II.1. Process batch cycles of 4 hours length 

were established as follows: anoxic phase (20 minutes), aerobic reaction (145 minutes), 

idle (30 minutes), withdraw (30 minutes) and feed (15 minutes). Hydraulic Retention 

Time (HRT) was fixed at 8.5 hours, with a volumetric exchange ratio of 50%.  The column 

was fed at the bottom with a synthetic substrate (details in Wan et al., 2009) having the 

following composition: COD of 1000 mg/L (25% contribution each of glucose, acetate, 

propionic acid and ethanol); [PO4
3-] = 30 mgP/L , [Ca2+] = 46 mg/L, [HCO3-] = 100 mg/L, 

[MgSO4·7H2O] = 12 mg/L, [NH4
+] = 50 mgN/L, [NO3-] = 100  mgN/L. Therefore, a COD/N-

NH4+ ratio of 20 was maintained, and nitrate was dosed in order to maintain an anoxic 

phase after feeding. Similarly, a COD/P ratio of 33 in feed was imposed. Influent loading 

rates coming into the reactor were as follows: 0.14 gN/L·d for ammonium, 0.08 gP/L·d  for 

ortho-phosphate and 2.82 gCOD/L·d for organic substrate. 
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Figure II. 1: a) Scheme of the GSBR device; b) Picture of the laboratory GSBR 

 

II.2.2. Analytical characterization of the liquid and solid phases   

Chemical analyses were conducted according to standard methods (AFNOR, 1994). 

COD (NFT 90-101), MLSS (NFT 90-105) and MLVSS (NFT 90-106). NO2-, NO3-, PO43-, NH4+, 

Ca2+, K+, Mg2+ concentrations were analyzed by Ion Chromatography after being filtered 

with 0.2 μm pore-size acetate filters. Microscopic observations over the whole sludge 

sample were performed with a Biomed-Litz® binocular photonic microscope. Particle size 

distribution was measured with a Malvern 2000 Mastersizer® analyser. Granules were 

sampled at the end of the aerobic phase. Those analyzed by EDX or Raman Spectroscopy 

had been previously cut into thin slices of 100 μm using a cryo-microtome (Leica CM 

30505 Kryostat). Those analysed by XRD had been previously dried and calcined in an 

oven at 500°C for 2 hours, in order to remove the organic fraction.  

Raman Spectroscopy was performed with an RXN Kaiser Optical Systems INC at a 

wavelength of 785 nm in the visible range. Two different optical fibres were used for the 

incident (50 μm) and collected (100 μm) rays. EDX analysis was performed with a photon 

X analyzer (Quantax Technology Silicon Drift) having a detection limit of 127 eV. It was 

coupled to a SEM (JEOL 5410 LV) which allowed working in a partial pressure chamber. 

The reference samples used for comparing the mineral spectra were: struvite (CAS 

N.13478-16-5), calcite (CAS N. 72608-12-9), magnesite (CAS N. 235-192-7), 

hydroxyapatite (CAS N. 12167-74-7) and brushite (CAS N. 7789-77-7).  

1.a) 1.b

) 
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XRD analyses were performed with a BRUKER D5000 diffractometer, with a cobalt 

tube scattering from 4-70° in 2θ.  

Chemical nitrogen and total phosphorus extractions were performed in 

accordance with standard methods (NFT 90-110 and NFT 90-136 respectively) adapted 

for the granular samples: first a physical separation was made between flocs and granules 

by means of a 315 μm shiver, then granules were rinsed with a volume of ultrapure water 

and the volume of sample extracted was re-established with ultrapure water before 

analysis.  

The Supersaturation Index (SI) for each mineral considered (equation I.1) was 

calculated as the logarithm of supersaturation ratio: 

                    

j

spK

IAP
SI

/1

loglog













                                          Equation I.1 

where IAP is the Ionic Activity Product of the ion activities involved in the mineral 

precipitation, in which the ionic activity coefficients, and the ionization fractions of each 

component (Snoeyink and Jenkins, 1980; Burriel et al., 1985) were considered; j is the 

number of ions of the mineral and Ksp refers to the thermodynamic mineral precipitation 

constant at a given temperature (25ºC). The PHREEQC® software (Parkhurst, 2000) and 

Minteq.v4 database was used to calculate the chemical equilibrium for each sample 

collected in the reactor. Ionic Strength was taken into account as well as the ionic activity 

coefficients by the Davies approach (Parkhurst et al., 1980; Burriel et al., 1985; 

Montastruc, 2003). pKsp of struvite (MAP), hydroxyapatite (HAP), brushite (DCPD), 

amorphous calcium phosphate (ACP) and hydroxyl dicalcium phosphate (HDP) considered 

were respectively: 13.26, 57.5, 6.6, 26.52 and 22.6 (Ohlinger et al., 1998). Supersaturating 

conditions were considered to be achieved when SI > 0.5 (theoretically zero but a security 

margin is usually given (Burriel et al., 1985; Rahaman et al., 2006).   

II.3. RESULTS 

II.3.1. Reactor performance and kinetics assessment   

The sequencing batch reactor was operated for 540 days. Mean efficiencies of COD, 

total Nitrogen and Phosphorous removal, as well as MLSS, MLVSS and SVI30 values are 

shown in table II.1. An SVI5/SVI30 ratio closer to 1, indicates a major presence of granules 

in the whole sludge.  
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Table II. 1: Mean values measured during 500 days of reactor performance, for 
MLSS; soluble COD, Total Nitrogen and Phosphorous efficiencies; MLVSS/MLSS 

ratio, SVI after 30 min and SVI5/SVI30 ratio. 

 

 

 

 

 

 

 

 

 

 

MLVSS and MLSS of the whole sludge were measured regularly in the reactor with 

time, values of 30-35 and 21-25 g/L being achieved for MLSS and MLVSS respectively at 

the end of the study. The MLVSS/MLSS ratio of granules progressively decreased from 

80% to 67%, whilst size and biomass concentration increased, indicating mineral 

accumulation. Final SVI5 achieved was 15 mL/g.  As shown in figure II.2, the mixed liquor 

in the reactor was composed of granules and flocs, the latter disappearing progressively 

with time. Particle size distribution analyses (not shown here) revealed that 800µm was 

the most probable diameter for granules. At the end of the 540 days of reactor run, 

removal efficiencies achieved were 100% for ammonium, 100% for nitrate, 82% for ortho-

phosphates and 99% for soluble COD.  

 

Figure II. 2: granules and flocs in the GSBR 

after 520 days of operation. The bar 

dimension is 2 mm. 

Period of 
Time 

MLSS  η COD η TN η P MLVSS/MLSS SVI30 SVI5/SVI30 

(days) (g/L) (%) (%) (%) - (mL/g) - 

0-100 14 94 92 62 78 33 2.0 

100-200 13 97 100 31 83 34 1.7 

200-300 22 93 96 56 77 22 1.5 

300-400 28 93 96 67 67 15 1.0 

400-500 34 97 97 50 65 15 1.0 
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Kinetic analyses were performed during the batch cycle to assess ammonium, 

nitrate, COD and phosphate removal rates. Figures II.3 and II.4 show typical time-series 

profiles in the reactor obtained with two different aeration flow rates (160 L/h and 350 

L/h respectively). The separation between the anoxic/aerobic phases is depicted by a 

dotted vertical line. Ammonium was first partially removed during the non-aerated phase 

and then during the aerobic phase via nitrification.  

Ammonium consumption during the anoxic phase was due to heterotrophic 

assimilation but it could also be explained by other, non-biotic processes like adsorption 

(because of high MLSS) or precipitation (as struvite for example). Nitrate and nitrite 

concentration remained negligible at all times, confirming that simultaneous nitrification 

and denitrification (SND) occurs in granular sludge. Regarding phosphorus, several 

mechanisms seemed to take place simultaneously. Kinetics in figures II.3.a and II.3.b, show 

slightly phosphorus release during the anaerobic phase and P uptake during the aerobic 

period. 
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Figure II. 3: Variation of NO3
-, PO4

3-, NH4
+ and COD in the reactor bulk during a cycle operation with weak 

aeration (160 L/h) (3.a) and high aeration (350 L/h) (3.b) rates 

3.a) 3.b) 
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Figure II. 4: Variation of K+, Mg2+, Ca2+, pH and O2 in the reactor bulk during a cycle operation 

with weak aeration (160 L/h) (4.a) and high aeration (350 L/h) (4.b) rates 

Meanwhile, biological staining with sudan black and safranin was carried out 

according to the method reported in Pandolfi et al., 2007, revealing lipid and PHB 

accumulations in different granules samples taken during the anoxic phase (results shown 

in chapter III). Both kinetics and color staining results, suggested the presence and activity 

of Polyphosphate Accumulating Organisms (PAO).  Figures II.3.a and II.3.b show that 

phosphate uptake rate was higher for higher aeration rate, because dissolved oxygen was 

limiting at low aeration rate (DO being maintained at 0.3 mg/L). Final phosphate 

concentration was thus lower at the high air flow rate (2.5 mgP/L) compared to the low 

aeration rate (8 mgP/L). Mg2+ and K+ fluctuations followed those of P (figure II.4.a. and 

II.4.b). This was related to poly-phosphate synthesis, which general formula is 

Men+2PnO3n+1, where n indicates the chain length, and Me represents a metal cation (Jardin 

and Pöpel, 1996). In contrast, Ca2+ concentration showed a very different trend. It 

decreased rapidly during the non-aerated period following wastewater feeding. This 

behavior can be explained by a rapid formation of calcium complexes or precipitates, 

which will be demonstrated in the following section.  

Total phosphorus was extracted from granular sludge samples collected at the end 

of the aerobic cycle. It was carried out in triplicate after 520 days of reactor operation 

4.a) 4.b) 
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(according to the method detailed in section II.2.2). Results indicated that P content was 

56 ± 7.3 mgP/gVSS. This value is not really different from values usually reported for 

EBPR sludge. In EBPR systems, this value is related to the polyphosphate content of 

sludge, which depends on various parameters: fraction of PAO in the sludge, wastewater 

COD/P ratio and fraction of volatile fatty acids in wastewater. Li et al. (2005) reported a 

similar P content at a similar P/COD ratio. Indeed, Panswad et al., (2007), reported similar 

P content in sludge enriched with PAOs (5.3-20.5 % P in weight), when P:COD ratios 

varied from 0.02-0.16 respectively.  However, the following section will show that 

phosphorus is not only accumulated in poly-phosphate form but also as a precipitated 

mineral compound. 

In the research of non-destructive techniques for determining the chemical 

composition of minerals in granules, four criteria were established: 

1- Mineral’s chemical structure should not be modified within the sample 

preparing and/or analyze performance. 

2- Precipitated minerals inside granules are in solid phase, so are the mineral 

references used for comparison. The chosen analytical technique should provide results in 

the same physico-chemical state.   

3- The analysis must allow focusing in the microscopic scale, hence, apparatus and 

probes must be able to point at the microns-scale.  

4- The last criterion relates to the rapidity of the analysis, in order to avoid 

changes or degradation of the sample with time. 

II.3.2. Raman analysis 

Raman Analysis is a non-destructive analytical technique that requires limited 

sample preparation (Hollas, 1996 ; Skoog et al., 2003) and that full-filled the 

aforementioned criteria. It was chosen because of its low water background, as well as for 

providing sharper and clearer bands than IR spectra (Barbillat, 2009). It has already been 

proved for the characterization and identification of different biological systems since the 

biologically associated molecules can exhibit a unique spectrum (Ivleva et al., 2009). In an 

attempt to determine the internal structure of the granules, samples were cut into slices of 

100 µm width, prepared as described in section (II.2.2). Previous tests were carried out 

varying the sample slice widths (50-150-200-250 and 300 µm ) and different time of 

exposure to the light source (10s-2 min), showing that 100 µm  and 30s were respectively 
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the optimal conditions to obtain a clear spectrum for the internal part of granules. Then, a 

central slice was chosen and observed with a binocular microscope before being analyzed 

by Raman Spectroscopy. As shown in Figure II.5.a, microscopic observation with polarized 

light of a typical central slice, revealed a white crystalline precipitate in the centre of the 

granule. Spectroscopic analysis was performed at different points of the mineral core (as 

indicated on figure II.5.a). An initial set of tests (not shown) were also conducted 

beforehand with different samples: granules taken at different batch cycle times, 

dehydrated flocs separately, different cuts and thicknesses sliced from the same granule. 

Finally, some pure minerals used as reference products (struvite, hydroxyapatite, 

brushite, calcite and magnesite), were also analyzed with Raman Microscopy and 

compared to the sample spectra. The following conclusions were drawn: (i) Both flocs and 

external granule slices showed a noisy signal (due to organic matter) with no remarkable 

matching peaks (ii) All spectra obtained in the core of granules showed a common and 

reproducible pattern of 8 peaks of different intensities (see figure II.5.b), considering that 

a peak is noted when its intensity is three times the mean background noise; (iii) All 

granule central slices had the same typical peaks regardless of the cycle time.  
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Figure II. 5: a) Central slice from a mature granule after 450 days of reactor run. The 

bar length is 100 μm; b) Spectra of core aerobic granule slices.  

 

According to figure II.5.b., the most important peaks in the sample were found at 

the following Raman shifts (cm-1): 430, 588, 850, 962, 1072, 1135, 1295, 1448.  The 

spectra of granule core samples were compared with those obtained with reference 

minerals. After an individual comparison of frequency-intensity coincidence, it was 

5.a) 5.b) 
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concluded that calcite and magnesite spectra (not shown) did not match the sample at all. 

In figure II.6, the most similar mineral spectra have been depicted in order to compare the 

coincidence of their peaks. Only those which where suspected to form due to high SI 

indexes and occurrency in litterature references, were chosen.  

 

Figure II. 6: Raman spectra of reference minerals compared to a granule central slice 

Brushite shows two or three peaks not far from those of granule spectra, but most 

of the major peaks do not coincide (407, 586, 986, 1056 and 1114 cm-1). Struvite spectrum 

indicates five peaks (421, 563, 944, 1053, 1112 cm-1) which are very similar to those of the 

granule sample, but differences in the Raman shifts are statistically significant. The 

hydroxyapatite spectrum shows 4 peaks, which all match the granule spectra (427, 589, 

962, 1072 cm-1) with differences lower than 3 cm-1. Globally, among all the different pure 

mineral patterns compared, the hydroxyapatite spectrum best fitted the sample in 

intensity and wave number but could not explain all the peaks observed in the granule 

spectra. These results suggest that hydroxyapatite is a major mineral precipitated in the 

aerobic granule cores but the presence of other minerals cannot be totally discounted and 

further techniques must be compared. 
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II.3.3. SEM-EDX analysis 

Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X-ray 

detector (EDX) analyses were carried out on cut mature granules. Typical images are 

shown in figure II.7 for two typical central slices of different granules. It was found that 

inorganic precipitates occupied an important fraction of the total volume of the granule, 

located in different zones, mainly close to the centre. A first scanning map of carbon 

(Figures II.7.c and II.7.d) revealed that the central inorganic zones did not contain large 

amounts of carbon in contrast with peripheral organic biofilm. Similar results were 

observed for nitrogen and magnesium (not shown). In contrast, Ca and P were mainly 

found together in the central precipitates and comparatively poorly in the organic biofilm 

(figures II.7.e-II.7.h). This result again supports the idea that calcium phosphates are 

formed in the core of the granules. Phosphorus was also detected but with lower 

concentration in the organic biofilm zone. It probably came from polyphosphates in PAO 

clusters. Figures II.7.i and II.7.j, focus on the inorganic precipitate with a higher objective. 

Figure II.7.i reveals porous, ordered holes in the solid mineral phase. This could be related 

to the mechanism of precipitate formation around bacterial cells, in relation with gaseous 

transfers between the microorganisms and the extracellular medium. Another interesting 

result can be seen in figure II.7.j, where some prismatic structures appear stacked, similar 

to hydroxyapatite, which crystallizes in the hexagonal system (Morgan et al., 2000), 

although this last information is not conclusive. Furthermore, several localized EDX 

spectral analyses were made, pointing the probe at different locations of the precipitate. 

The spectrum obtained was very reproducible in different locations of the central mineral 

zone. Analysis spectra clearly showed that calcium, phosphate and oxygen were the major 

components observed in the mineral zone whereas magnesium and potassium were 

definitively absent.  
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Figure II. 7: 7.a, b) SEM image of a granule central slice; Fig.7.c, d) Carbon (red) scanning with 

EDX; Fig.7.e, f) P (dark blue) scanning with EDX; Fig.7.g,h) Ca (light blue) scanning with EDX; 

Fig.7.i, j) granule mineral core SEM images 

 

Figure II.8 shows an external SEM analysis on the granule’s surface. EDX probes 

show a different elemental composition with regards to the mineral core (see table II.2). 

 

7.g) 7.h) 

7.i) 7.j) 
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Element External 

(%w) 

Internal 

(%w) 

C 60 18 

O 36 35 

P 2 10 

Mg 0 0 

Ca 1 28 

K 0 0 

Figure II. 8: SEM image of a granule’s 

surface 

Table II. 2: Comparison of the different 

composition according to the location 

of the EDX probes (surface of the 

granule or on the mineral core) 

 

According to table II.2, the most abundant components on average present in the 

periphery of the granule are carbon and oxygen, both making up the most part of the 

surface composition.  The remainder elements are split between phosphorus, calcium and 

some traces (not sown) of basically, sulphur. However, calcium and phosphorus are more 

abundant in the core of the granule, being the former, one of the most abundant elements 

(almost 30 times more than on the surface), counting up for the 30% in weight. 

Quantitative analysis over five different samples showed that the Ca/P mean atomic ratio 

obtained for the mineral precipitate in the core was 1.63 ±0.05, which is quite close to the 

theoretical one for hydroxyapatite (1.67).  

In parallel, scanning analyses on the flocs and supernatant (figure II.9) did not 

reveal any similar calcium phosphates but some sparse mineral particles with high K, Mg 

and P content were found (circled in figure II.9.b). These analyses indicated that calcium 

phosphates were exclusively accumulated in the granules whereas other minerals could 

be formed in the bulk, e.g. magnesium phosphate, ammonium struvite (MgNH4PO4.6H2O) 

or potassium struvite (KMgPO4
.6H2O). However, they were detected in much smaller 

amounts than hydroxyapatite. 
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Figure II. 9: a) SEM image of flocs from the GSBR; b) carbon (red) scanning with EDX; c) 

phosphorus scanning (dark blue) with EDX; d) calcium scanning with EDX probe; e) 

potassium scanning with EDX; f) magnesium scanning with EDX  

 

 

9.a) 9.b) 

9.c) 9.d) 

9.e) 9.f) 
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II.3.4. XRD analysis   

XRD analysis is an efficient tool for distinguishing crystalline minerals from those 

of amorphous structure, so it was also carried out on some granule samples. Three 

different preparations of granular samples were tested. Results of two sample analyses 

(not shown), i.e. a sample of dried pulverized granules and a wet sludge sample, revealed a 

major peak coinciding with calcium phosphate patterns. However, high noise due to the 

organic fraction was present, making any interpretation difficult. Thus, a third granular 

sludge sample was treated to remove the organic matter (described in section II.2.2), 

leading to the diffractogram presented in figure II.10. A number of distinct rays indicate 

the presence of crystalline forms. By comparison with reference spectra, most of the 

peaks, and in particular the bigger ones, coincided with those of the hydroxyapatite 

(Ca5(PO4)3(OH)). The remaining minor peaks coincided with whitlockite 

(Ca18Mg2H2(PO4)14). The large central peaks indicate the possible presence of amorphous 

mineral species. 

It should not be forgotten that, for XRD analysis, the sample was heated to 500°C 

and so some hydroxylation phenomena could have taken place. Considering that 

hydroxyapatite dehydroxilation does not occur under 800°C (Wang et al., 2004), changes 

of this mineral in the original sample, due to heating, would not take place. However, in the 

range of 200-400°C, dehydratation of the lattice and adsorbed water of some other 

minerals could be possible according to Kohutova et al. (2010). The magnesium and 

phosphorus initially present in organic polymers (polyphosphate) could precipitate in a 

new form during heating. Despite the fact that XRD again confirmed the major formation 

of hydroxyapatite, it is still difficult to know whether other intermediates were present or 

not and, in the case of whitlockite (WHT), it might have been formed during the heating 

process.  
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Figure II. 10: XRD diffractogram of a granule sample compared to HAP and WHT 

pattern. 

II.4. DISCUSSION 

II.4.1. Hydroxyapatite: a major phosphate mineral in aerobic 

granules 

All the results (Raman spectroscopy, SEM-EDX, and XRD) support the same 

conclusion: hydroxyapatite (HAP) was the major mineral found inside the phosphorus-

rich granules in this study. Both Raman and SEM-EDX analysis allowed calcium phosphate 

mineral to be identified and XRD analysis confirmed its crystalline form, but also 

suggested the presence of other amorphous minerals. SEM-EDX analysis in Figs II.7.e and 

II.7.f, pointed out that P was also present in the organic fraction of the aggregates, 

probably linked to polyphosphate stored in bacterial biofilm. This last statement may be 

supported by the fact that Mg and K elements, which are linked to polyphosphate 

constitution, were also found sparsely in this area. SEM-EDX indicates very reproducible 
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Ca/P ratios (1.63±0.05) close to that of hydroxyapatite’s (1.67), and notably different from 

other calcium phosphates (e.g. amorphous calcium phosphate: 1.50; hydroxyl dicalcium 

phosphate: 2; whitlockite: 1.3). Considering that most of the calcium was immobilized 

with phosphorus (as indicated by SEM-EDX images) with a Ca/P ratio of 1.67 

(hydroxyapatite), it is possible to estimate the contribution of precipitation to global P 

removal. As Ca2+ removal yield of 46 % was obtained (0.488 mmol/L), it means that about 

0.292 mmolP/L was removed via hydroxyapatite precipitation. This represents about 45% 

of the total P removal in the process (82% of P was removed which represents 0.68 

mmol/L), the rest being explained by biological mechanisms. The precipitation 

contribution is hence much more significant than those estimated in flocculated sludge 

(Haas et al., 1990). But this is in accordance with the data obtained with granular sludge by 

De Kreuk et al. (2005, 2007), which suggest that P accumulation in EBPR granules can 

double the accumulation achieved in flocs, because of precipitation.   

In the calcium phosphate family, hydroxyapatite (HAP) is commonly considered as 

the most stable phase and the most insoluble one. According to Ostwald’s ripening theory 

(Mullen et al., 2001), precursors such as brushite (DCPD), octacalcium phosphate (OCP), 

and amorphous calcium phosphate (ACP) contribute to its formation, brushite being the 

most soluble phase. Hydroxyapatite and brushite were both considered in this study as 

reference samples but brushite was not detected (Raman). In one sense, our results 

confirm the first assumption of Maurer et al. (1999) who supposed that hydroxyapatite 

can be accumulated in EBPR systems. However Maurer et al. (1999) also supposed that 

HDP was formed as an intermediate without any convincing explanation for that choice, 

and this assumption is difficult to confirm in our case.  

Of all the minerals that could be found in wastewater treatment (Musvoto et al., 

2000; van Rensburg et al., 2003; Larsdotter et al., 2007), only a few were expected to 

precipitate in granular sludge, in particular calcium carbonate (Ren at al., 2008; Wang et 

al., 2006), or struvite (Yilmaz et al., 2007). Calcium carbonate in calcite form, was 

previously detected in biological aggregates and aerobic granules (Ren at al., 2008; Wang 

et al., 2006). Due to their competition for calcium (Lin and Singer, 2006) mineral 

phosphate and carbonate can inhibit each other. According to several authors (Montastruc, 

2003), pH plays an important role, favoring phosphate precipitation at pH 7-8.5, whereas 

both carbonates and phosphates co-precipitate at pH 9-11. In our case, absence of calcite 

could be explained simultaneously by low calcium availability due to hydroxyapatite 
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formation and inappropriate pH inside the granules. In contrast with the assumption of 

Yilmaz et al. (2007), no struvite was detected in the granules and struvite precipitation 

seems to have played a minor role in phosphate immobilization in our study. However, 

samples were taken at the end of the aerobic period, and it is possible that struvite had 

been transiently formed in the previous anaerobic phase and afterwards solubilized as 

ammonia was consumed during nitrification, as could be also suggested with results in 

figure 9. These last results could raise a question about the transient precipitation of 

potassium struvite in flocs, but it is difficult to assess, as on the one side, no quantitative 

analyses had been done; and on the other hand, the analysis scaling-frame was too little 

compared to a representative sample of the reactor, and several heterogeneities could 

arise.  

II.4.2 Parameters controlling P precipitation in EBPR granular 

sludge 

Supersaturation index calculations (SI) for the different minerals in the 

supernatant, and for each time of the kinetic cycle, are shown in figure II.11. Saturation 

index was calculated using the Minteq.v4 default database (PHREEQC, software) with the 

pH and concentrations measured in the bulk. Struvite saturation index was negative 

throughout the batch cycle and lessened progressively with ammonia consumption by 

nitrification. This indicates that the ammonium and magnesium concentrations were too 

low to cause struvite precipitation in those conditions. Concerning calcium phosphates, 

the saturation index for brushite and hydroxyl dicalcium phosphate were close to zero, i.e. 

these minerals were not considerably supersaturated. This suggests that the latter were 

poorly or very briefly formed, only during the feeding period. SI for amorphous calcium 

phosphate varied from around 1 to less than 0.5. Finally, the highest value of SI (from 1.7 

to 1.2) was obtained for hydroxyapatite, i.e. the most stable phase among the calcium 

phosphates showed supersaturation conditions throughout the experiment.  In addition, 

for all the compounds studied, SI decreased during the aerobic phase, because phosphate 

concentration lessened (due to P uptake) and pH decreased (due to nitrification). This 

result confirms that precipitation of calcium phosphate is more probable during the initial 

anoxic period, which is in accordance with the tendency observed for calcium (figure II.4). 

Additionally, hydroxyapatite precipitate was observed in the core of granules. This 

means that confined conditions were more favorable for hydroxyapatite formation or 
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accumulation than conditions in the bulk. Three explanations can be proposed: (1) higher 

local phosphate concentration, (2) higher local pH and (3) higher retention time for 

granules. Firstly, higher local phosphate concentration is probably reached during the 

anaerobic period due to phosphate release by PAO in the internal part of granules. 

Simultaneously, calcium was also provided during the anaerobic period by means of 

wastewater feeding. In parallel, observed phosphate release was relatively moderate and 

would probably have been more significant if precipitation had not occurred. This 

suggests that feeding anaerobically is a method that encourages P precipitation (this issue 

will make part of the following chapter). Secondly, pH is obviously an important 

parameter controlling phosphate precipitation (high pH increases hydroxyapatite 

supersaturation). Therefore, another possible explanation for hydroxyapatite 

accumulation in the core of granules is the fact that internal pH can be higher than bulk 

pH, because of denitrification. A last mechanism is the fact that high retention time of 

granules encourages the formation of the most stable calcium phosphate (HAP) due to low 

solubilization rates, whereas other calcium phosphates mentioned before can be 

transiently produced and resolubilized.  
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Figure II. 11: a) Saturation Index for several minerals in the bulk during a cycle with weak 

aerating conditions; b) Saturation Index for several minerals in the bulk during a cycle with 

strong aerating conditions 
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More generally, the importance of calcium precipitate depends on influent 

characteristics. In this work, the range of phosphate concentration was similar to those 

explored by Maurer et al. (2000). It was higher than those found in conventional domestic 

wastewater, but lower than those reported for high strength wastewater like agro-food 

industry waste (Yilmaz et al., 2007). However, COD:P feeding ratios were similar to those 

found for high-strength effluents. Calcium, magnesium, and ammonium concentrations 

were at moderate levels, similar to those found in domestic wastewater. Comparatively to 

other studies, pH was relatively high in this work, ranging from 7.8 to 8.8 in a typical SBR 

cycle. This was due either to bicarbonate stripping (pH was higher at high flow rate) and 

denitrification, and hence, these two processes clearly encourage hydroxyapatite 

precipitation. 

II.4.3 Advantage of HAP accumulation in granular sludge 

Hydroxyapatite is a phosphate compound that is much more stable than bacterial 

polyphosphate. In EBPR systems, sludge containing polyphosphates needs to be extracted 

and removed rapidly from the system in order to avoid problems with secondary P 

release, i.e. the release of phosphorus without the presence of external organic carbon 

(Wouters-Wasiak et al., 1996). This makes it obligatory to restrict the sludge retention 

time to a reasonable value, and then anaerobic storage is impossible as phosphate would 

be released in the liquid phase. In contrast, hydroxyapatite accumulation is advantageous 

because long retention time for granules is possible, as well as storage before agricultural 

use. In addition, to our experience (data not presented), granules with a mineral HAP core 

are very stable and can be easily dehydrated.Finally, induced precipitation in granules 

seems to be completely compatible with biological reactions. In comparison, one of the 

reported drawbacks of simultaneous phosphorus precipitation in activated sludge process 

with calcium (lime) is that precipitation occurs at high pH (e.g. 9), which would be out of 

the optimal pH range for most biological processes (Carlsson et al., 1997 ; Arvin, 1979). 

High reactant excess is also necessary to reach very low P concentration at conventional 

pH. In the Phostrip® process, lime addition is thus performed on a side stream anaerobic 

reactor (Brett et al., 1997). Here, due to important gradients within granules, it is possible 

to maintain conditions in the core (favorable for precipitation) which are different from 

those in the external zone. In contrast with previous experience with flocculated sludge, it 

is shown in this study that hydroxyapatite accumulation in granular sludge is perfectly 
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compatible with major biological reactions. Future work will be necessary to find the 

practical conditions which allow advantage to be taken of this process during the 

treatment of real wastewater.  

II.5. CONCLUSIONS 

For the first time, different analyses (Raman, SEM-EDX, XRD) have revealed the 

nature of phosphorus precipitates in an EBPR granular sludge process. 

Raman analysis provided a repetitive pattern over a granule core sample. The four 

main peaks coincided with those of hydroxyapatite (Ca5(PO4)3(OH)). SEM-EDX 

demonstrated the presence of mineral clusters in the core of granules. These clusters 

concentrated most of calcium and phosphorus and EDX revealed that Ca/P ratios (1.63 ± 

0.05) were close to the ratio of hydroxyapatite. XRD analysis of the mineral fraction of the 

sludge confirmed that the major mineral present was a crystalline hydroxyapatite, 

although it probably coexists with other minor amorphous calcium phosphates.  

This chapter reveals that hydroxyapatite accumulation is an important 

phenomenon in the EBPR granular sludge process and merits attention in the future. In 

the conditions tested, it is estimated that about 45% of the P removal was due to 

biologically induced precipitation. In that sense, next chapter will focus on the operating 

conditions which could favor hydroxyapatite accumulation as it could become an 

interesting way of immobilizing and recycling phosphorus.  
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CHAPTER III:  

STABILITY AND PERFORMANCES OF TWO GSBR 

OPERATED IN ALTERNATING ANOXIC/AEROBIC OR 

ANAEROBIC/AEROBIC CONDITIONS FOR NUTRIENT 

REMOVAL 
 

 

 

 

In this chapter, two aerobic hybrid GSBRs have been compared, working with 
anoxic/aerobic and anaerobic/aerobic cycles, respectively. Carbon and nutrient 
removal (N and P) performances will be assessed in this chapter, as well as microbially 
induced phosphorus precipitation.  

This chapter corresponds to an article entitled: “Stability and performances of two 
GSBRs operated in alternating anoxic/aerobic or anaerobic/aerobic conditions for 
nutrient removal” (recently accepted in Biochemical Engineering Journal: BEJ-D-11-
00811R1) and constitutes a common chapter of two dissertations carried out at LISBP 
by Ahlem Filali and Angela Mañas. 
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III.1. INTRODUCTION  

The aerobic granular sludge process has been proposed as a promising approach 

to biological wastewater treatment (De Kreuk et al., 2007). Thanks to their dense 

structure, aerobic granules have very good settling properties, allowing high biomass 

retention in the bioreactor. This enables the process to withstand high-strength 

wastewater loads and results in a small footprint process in comparison to conventional 

floccular activated sludge systems (Morgenroth et al., 1997, Zheng et al., 2005). Besides, 

the size and density of granules allow maintaining simultaneous nitrification 

denitrification and phosphorous removal, i.e. SNDPR (De Kreuk et al., 2005, Lemaire et al., 

2008, Yilmaz et al., 2007). However the operating conditions which could guaranty 

stability of performances and physical properties of aerobic granular sludge, still need 

further consideration. Although aerobic granulation has been claimed successfully for real 

wastewater treatment (Liu et al., 2010), the bottleneck of this process is the instability and 

loss of granules’ properties that several actors have reported over the last decade (Coma 

et al., 2010; Liu et al., 2010; Nor-Anuar et al., 2012) . This drawback is still more relevant 

among real sewage compared to lab-scale results carried out with purely acetate-fed 

granules (Dangcong et al., 1999; Coma, 2011). The operating conditions and the reactor 

system choice, have also an important influence over the development of unstable sludge 

properties. e.g., SBR reactors have been reported to maintain stable granules for longer 

operating periods than continuous flow systems (CFR), in spite of the relative low 

installation costs of the former (Chen et al., 2009).  

Different operating parameters have been identified regarding the formation of 

aerobic granules in aerobic sequenced batch systems, such as the aeration rate, substrate 

feeding mode, organic loading rate, settling time and cycle operation time (Liu and Tay., 

2002; Moy et al., 2002; Liu et al., 2004; Mc Swain et al., 2004 ; Qin et al., 2004). In granular 

sludge sequencing batch reactors (GSBR) aeration rate plays two major roles: first, it 

imposes the hydrodynamic conditions in the reactor and secondly, it controls the oxygen 

mass transfer in the aggregates. High aeration rate was considered to provide high shear 

force, eroding the surface of granules; as well as to stimulate bacterial strains to secrete 

more extracellular polymeric substances (EPS) for enhancing structural integrity; to 

reduce substrate transfer resistance in the liquid boundary layer at the granule surface 

and to provide enough oxygen for organic substrate degradation (Liu and Tay., 2002; Tay 

et al., 2004). Different studies brought out that a high aeration rate (expressed by the 
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superficial upflow velocity, SAV) accelerates the formation of stable aerobic granules, 

either by promoting fast-growing microorganisms, secreting more EPS or by eroding 

filamentous bacteria (Liu and Liu, 2006; Lee et al., 2010). Meanwhile, Beun et al (1999) 

showed that smooth and stable granules could be obtained only with a SAV above 2.0 

cm·s-1, and in the same line, Tay et al. (2001) reported a minimal of SAV=1.2 cm·s-1. Hence, 

the development of stable aerobic granules in pure aerobic systems is limited because of 

the high energy demand required for aeration and because efficient nitrogen and 

phosphorus removal requires the presence of anaerobic or anoxic and aerobic conditions 

(Tsuneda et al., 2006).  

Both alternating anoxic/aerobic and anaerobic/aerobic conditions have been 

reported to be advantageous for granulation (Wan et al., 2009). Possible explanations for 

this could be the fact that conversion of readily biodegradable COD to internal stored 

biopolymers limits the substrate utilization rate during aerobic phase (Van Loosdrecht et 

al., 1997) or that anoxic growth inside the granule improves heterotrophic growth in the 

core and thus, improving the density of the aggregates (Wan et al., 2009 and 2010). It 

appears that alternating a non-aerated feast period followed by an aerated famine period, 

encourages the selection of slow-growing bacteria (e.g. nitrifiers, Glycogen Accumulating 

Organisms -GAOs-), being supposed to be positive for the densification of bio-aggregates 

(Liu et al., 2004). Indeed, the work of Wan et al., (2010) showed that the strategy of 

feast/famine regime allowed the formation of stable aerobic granules and the 

simultaneous nitrification denitrification (SND) at the reduced air flow rate of SAV =0.6 cm 

s-1.  

However, in sights of applying the aerobic granular process for treating dairy and 

cheese wastewater in the future, a preliminary study of the introduction of a feast 

anaerobic/famine aerobic phase in a GSBR has been carried out in lab-scale. On the other 

hand, alternating anaerobic/aerobic conditions has been widely reported to promote 

internal biopolymers storage and to enhance biological phosphorus removal by 

polyphosphate-accumulating organisms –PAOs-(Levin and Shapiro, 1965; Mino et al., 

1995; Janssen et al., 2002). On the other hand, the most part of nitrogen coming from 

cheese wastewater is in form of ammonium rather than nitrate.  

Therefore, the aim of this study is to compare the effect of alternating 

anoxic/aerobic and anaerobic/aerobic conditions on the performances and stability of an 

aerobic granular sludge process for the simultaneous carbon, nitrogen and phosphorous 
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removal. For this purpose, two reactors were followed in parallel, fed with a mixture of 

different organic substrates and both operated with similar aeration rates. Thus, first 

reactor (R1) was operated with anoxic/aerobic cycles whereas, the second one (R2), was 

operated with alternating anaerobic/aerobic conditions. Processes performances as well 

as the microscale structure of granules were investigated in both reactors. 

III.2. MATERIAL AND METHODS 

III.2.1. Reactor operating conditions:   

The experimental set-up included two geometrically identical Sequencing Batch 

Airlift Reactors (SBAR) each with a working volume of 17 L (internal diameter =15 cm, 

total height =105 cm, H/D ratio = 7). Both reactors were inoculated with the same 

concentration of a stabilized hybrid sludge (containing both flocs and granules) cultivated 

with alternating anoxic/aerobic conditions. The initial MLSS and MLVSS concentrations 

were of 19.5 g L-1 and 13.1 g·L-1, respectively. The initial SVI was of 22 mL·g-1 MLSS. Reactor 

R1 was operated with alternating anoxic/aerobic conditions, whereas the second one (R2) 

was operated with alternating anaerobic/aerobic conditions and seeded from R1 Each 

reactor was operated sequentially with a cycle time of 4 h including: 15 min of feeding; 20 

min of anoxic or anaerobic phase induced by nitrogen gas blowing; 145 min of aerobic 

reaction; 30 min settling and 30 min discharge (with a volumetric exchange ratio of 47%). 

The aeration rate in both reactors was close with a superficial air upflow velocity (SAV) of 

1.1 cm s-1 and 0.94 cm s-1 for R1 and R2, respectively. Both reactors were fed at the bottom 

of the column as aeration was stopped (static fill). The feed consisted of a synthetic 

substrate with the following composition: COD of 1000 mg·L-1 (consisting a 25 % each of 

glucose, acetate, propionic acid and ethanol contribution); [PO43-] = 30 mgP/L , [Ca2+] = 46 

mg L-1, [HCO3-] = 100 mg L-1, [MgSO4
.7H2O] = 12 mg L-1, [NH4+] = 50 mgN L-1. The ratio 

COD/N-NH4
+ maintained was of 20. Nitrate was dosed in R1 in order to maintain anoxic 

conditions after feeding ([NO3
-] = 100 mgN L-1). The pH and DO probes were installed 

online and the data was gathered every 30 s by computer. pH naturally fluctuated during a 

reactor cycle from 7.5-9 and from 7-8.5 in R1 and R2, respectively. The temperature was 

maintained at about 20 ± 2 °C with a water jacket. The reactor performance was 

monitored through weekly cycle studies, where samples were analyzed at regular 

intervals during a SBR cycle. Table III.1 summarizes the main operating conditions of both 

reactors.  
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Due to annual closure, the supply of influent to the reactors was interrupted for two 

consecutive weeks and the cycle of operation was modified: the new 2-h cycle consisted of 

15 min aeration and 105 min settling. This period (from day 105 to day 120) is referred to 

as the “starvation period”. 

Table III. 1: Operating conditions of both reactors 

Parameter R1 R2 

Volumetric exchange ratio (%) 47 47 

Hydraulic retention time (h) 8.5 8.5 

Organic Loading Rate (kg COD·m-3·d-1) 2.8 2.8 

Ammonia loading rate (kgN-NH4·d-1·m-3) 0.14 0.14 

Nitrate loading rate (kg N-NO3·d-1·m-3) 0.28 0 

Phosphorus loading rate (Kg P-PO4·d-1·m-3) 0.08 0.08 

Superficial upflow velocity of N2 (cm·s-1) 1.1±0.1 0.6±0.1 

Superficial upflow velocity of air (cm·s-1) 1±0.1 1±0.1 

Temperature (ºC) 20±2 20±2 

pH (not regulated) 7.5-9.2 7.2-8.5 

 

III.2.2. Analytical characterization of the liquid and solid phases   

Physico-chemical analyses were conducted according to standard methods 

(AFNOR, 1994) for COD (NFT 90-101), MLSS (NFT 90-105) and MLVSS (NFT 90-106). NO2-

, NO3-, PO43-, NH4+, Ca2+, K+, Mg2+ concentrations were analyzed by Ion Chromatography 

(IC25, 2003, DIONEX, USA), prior filtering the samples through a 0.2 μm pore-size acetate 

filters. The Sludge Volume Index (SVI) was measured in the reactor after 30 min of 

settling. Microscopic observations of sludge samples were performed with a Biomed-

Leitz® binocular photonic microscope. XRD analyses of the mineral fraction of R1 and R2 

granules were performed with a BRUCKER D5000 diffractometer, with a cobalt tube 

scattering from 4-70° in 2θ. Samples were taken from both reactors at the end of the 

aerobic phase, and they were dried and calcined at 500°C for 2 hours before the analysis in 

order to remove the organic fraction likely to interfere the spectrum.  

The proportion of granules by mass and by volume was estimated using Equations III.1 

and III.2 respectively:  

sludgehybrid

granule

MLSS

MLSS
massbygranulesofPercentage

100.


Equation III.1 
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sludgehybrid

granule

V

V
volumebygranulesofPercentage

100.


 

Equation III.2 

Where MLSSgranule and MLSShybrid sludge are the mixed liquor suspend solids in 

granules and hybrid sludge respectively. In order to assess the MLSS of granules, sieving at 

315 µm was performed as described in Filali et al, (2012). Vgranule and Vhybrid sludge represent 

the apparent volume of granules and hybrid sludge, respectively, in the reactor after 30 

minutes of settling. 

 

III.2.3. Microbial characterization  

III.2.3.1 FISH probing  

Floc and granule samples were fixed as described in Filali et al. (2012). 

Filamentous bacteria that had developed at the surface of granules were detached with a 

sterile scalpel and subjected to the same procedure as the flocs. In situ hybridization was 

performed according to the standard hybridization protocol (Amann et al., 2001). The 

fluorescently labelled oligonucleotide probes used were as follows: Nso190 and Nso1225 

(labelled with FITC) for AOB (Mobarry et al., 1996), Nit3 (labelled with Cy3) for 

Nitrobacter spp. (Wagner et al., 1996) and Ntspa662 (labelled with Cy3) for Nitrospira 

spp. (Daims et al., 2000). DAPI (4’,6-diamidino-2-phenylindole, dihydrochloride) was used 

to stain all the DNA-containing organisms. To avoid non-specific staining, unlabelled 

competitor probes CNit3 and CNtspa662 were added with equimolar amounts of Nit3 and 

Ntspa662, respectively. 

Fluorescent in situ hybridization images were collected with a confocal laser 

scanning microscope (LEICA SP2, DMRXA2, Germany) using an argon laser (488 nm) for 

FITC excitation, a  helium-neon laser for  Cy3 (543 nm) and a diode laser for DAPI (405 

nm). Their fluorescence was detected at 498–550 nm, 571–630 nm or 415–450 nm 

respectively. To obtain images of half-granule sections, 10 to 20 (depending on the size of 

the granule) overlapping, consecutive images of 1024x1024 pixels were acquired using a 

16X oil objective. The final composite image of the granule section was then reconstructed 
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from all the individual images collected using INKSCAPE open source scalable vector 

graphics. Images of bacterial clusters were acquired using a 100X oil objective. 

III. 2.3.2. PHB staining 

Poly-hydroxy butyrate (PHB) staining was carried out using a protocol adapted 

from Pandolfi et al. (2007). Samples were previously cut at 100µm thickness and spread 

over a glass plate. Once air-dried, samples were dumped in a solution of black of Sudan 

during 5 minutes, and then, rinsed with ethanol at 70% vol. Once the sample dried, 

safranine was dropped covering the whole sample for a contact reaction time of 5 seconds. 

Afterwards, samples were dried again prior rinsing with distillate water, and observed 

with the optical microscopy (Biomed-Leitz®). Safranine was used to show up the 

cytoplasmic membranes in red/pink (bacteria cells), whereas Sudan black stained in 

blue/black the PHB volutins.  

III.3. RESULTS 

III.3.1. Performances stability   

Fig III.1 and Fig III.2 show respectively the evolution of solids concentration and 

removal efficiencies of reactors R1 and R2 during the whole operation. Both reactors were 

initially started with similar seeds, and showed the same suspended solids concentration, 

i.e. 19.5 gTSS L-1 and 13.1 gVSS L-1, as well as very good settling properties (SVI was 

initially close to 22 mL·g-1). 
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Figure III. 1: Evolution of suspended solids during the reactors run period ( ) MLSS; 

( ) MLVSS; ( ) MLVSS/MLSS and (X) SVI, in R1 and R2. Cutting off the time axis 

corresponds to the endogeneous phase (day 105) 

R1) R2) 
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After about 50 days of run and then during the entire period of study (300 days), 

performances were very stable in the anoxic/aerobic reactor (R1). The removal yields of 

soluble COD, ammonia and total nitrogen were of 96%, 100% and 89%, respectively. The 

removal yields of phosphorous gradually increased and stabilized at 45%. Figure III.1 

shows that MLSS and MLVSS first stabilized respectively around 21±1.5 and 13.8±1.2 and 

then, gradually accumulated in the reactor up to 35 gTSS L-1 and 25 gVSS L-1, with a ratio 

VSS/TSS of 65-70%. The suspended solids accumulation was also linked to a decrease of 

SVI (16 ± 2 mL·g-1). Performances were stable and it is interesting to point out that after a 

starvation period (without feeding) of 15 days, the reactor was easily started again and it 

took less than one week for performances to be fully recovered. 

Concerning the second reactor (R2), performances initially declined and neither 

the sludge concentration nor the reactor performances were fully stabilized during the 

entire study. The MLSS concentration initially increased up to 32 g L-1 but then 

progressively decreased up to less than 10 g·L-1. The sludge volume index (SVI) fluctuated 

around 60 ± 20 mL g-1 during the first 100 days and then increased up to 90 mL·g-1. The 

COD removal efficiency varied between 90 to 95%, whereas ammonia and total nitrogen 

removal yields fluctuated from 60% to 100% (mean values of 86% and 84% respectively). 

Phosphorus removal oscillated from 10 to 80% with a mean efficiency of 42%. In contrast 

with the first reactor, it was observed that starvation period (15-days) provoked a very 

significant loss of granules in this second reactor (not shown). The MLVSS/MLSS ratio in 

this second reactor was decreasing during the whole period, meaning that i) Mineral 

content increased in this reactor and/or ii) VSS/TSS ratio diminished according to a 

decrease of MLVSS in the reactor (from 20 g·L-1 to 15 g·L-1).  

 

  

R1) R2) 

a) 
b) 
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Figure III.2: Evolution of removal  yields  in R1 (left) and R2 (right) of ( ) CODS, ( ) N-NH4, ( ) 

TN, ( ) P-PO4 and ( ) Ca2+. Cutting off the time axis corresponds to the idle phase (day 105).  
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c) d) 

e) f) 

g) h) 
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Figure III. 3 plots VSS and the MF/TSS ratio in the mixed liquor of R2. Three 

different trends can be observed depending on the biomass concentration: for 10 to 20 

g/L of VSS, the mineral fraction is almost constant around 40%; at 10 mg/L of VSS, there is 

a sharp rise of mineral fraction in granules, leading to high mineral accumulation, and 

finally, a drop of 10 to 5 mg/L of VSS, implies a proportional rise of 20% of mineral 

content. This effect is noticeable during from day 50-100 (Figure III.1), where a VSS/TSS 

diminished whilst VSS increased. After that period, we can assume that the drop of 

VSS/TSS ratio in R2 relays on the decrease of VSS.   
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Figure III. 3: Relation between mineral fraction (%) and VSS (g/L) in R2.  

III.3.2. Evolution of sludge properties 

As both reactors were initially seeded with a mixture of granules and flocs, the 

evolution of granules percentage in both reactors is an interesting indicator of sludge 

properties (Figure III.4). A slight enrichment in granules was observed in R1, granule 

percentage increasing from 60 to 80% of total volume constituting more than 90% of the 

mass. Granule size also slightly increased (from 1.0 to 3.3 mm). Concomitantly, a part of 

flocs were maintained during all the study.  

In contrast, in R2, sludge properties evolved in a different way. From day 33, an 

increase of granule fraction by mass was observed, together with a decrease of their 

fraction by volume, which clearly indicates a strong modification of the aggregate 

properties and floc washout. First, granules became rapidly bigger (from 2 to 4 mm of 

diameter) due to a filamentous (fluffy) growth on the surface of the granules. Granular 

sludge occupying a higher volume in the reactor after settling lead to a floc wash-out and 

granular sludge proportion initially increased. However progressively, filamentous 
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suspended growth was also observed generating flocs with poor settling properties. 

Whilst filamentous bacteria poorly contributed to the total mass of sludge compared to 

granules, they affected considerably sludge settling (SVI rising up to 90 mL·g -1). 

As both reactors were seeded initially with a mixture of flocs and granules (being 

more important the contribution of granules (82% in MLSS or 62% in volume), figure III.4 

shows the evolution of granule proportion during the study.  
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Figure III.4: Evolution of the proportion of flocs ( ) and granules ( ) in MLSS (a, b) 

and in volume (c, d) of the hybrid sludge in both reactors  

Whereas in R1, the proportion of granules in mass remained constant at about 

90%, its contribution in volume raised, probably due to the growth of granules in size (1.0 

-3.3 mm), leading to a slight loss of flocs.  

In R2, flocs were almost completely washed out on day 33 (indicated by an arrow 

in figure III.4). Since that day, the proportion of granules in mass and in volume showed 

different trends: the proportion of flocs decreased in mass, but increased in volume. 

Moreover, since that day, a floc washout could have taken place, as during that period, the 

MLSS in the effluent increased up to 300 mg/L. This could be explained, on the one hand, 

by the fast growth of size that was observed in the granules, and on the other hand, 

because of the sludge properties changes that were observed. In fact, filamentous growth 

started to colonize such granules, being responsible in part of their rapid growth of size. 

However, filamentous bacteria did not contribute in mass as they did conventional flocs, 

but their effect was noticed in the drop of granule proportion in volume.  

R1) R2) 
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Figure III.5 shows the correlation between the MLSS concentration and the percentage of 

granules in both reactors. It indicates that the MLSS globally increased with the proportion 

of the volume occupied by the granules and the diminution of suspended biomass growth. 
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Figure III. 5: Relationship between the MLSS concentration and 

the granule percentage by volume 

Microscopic observations in figure III.6 show that granules from R1 presented a 

smooth round-shaped surface similar to initial seeded granules in R2 (Figure III. 6.a). On 

the contrary, as already mentioned, filamentous bacteria outgrew on R2 granules surface 

(Figure III. 6.b), and this filamentous layer seems to provoke oxygen transfer limitation as 

suggested by the release of gas bubbles and appearance of a black zone in the internal part 

(Figure 6.e). Indeed, as suggested by Mosquera-Corral et al. (2005), long-term anaerobic 

conditions into the granule, could lead to methanogenic bacteria growth. MLSS and MLVSS 

decreased simultaneously in this reactor (see figure III.1.b). 

With time, some of the matured granules from both reactors, presented a cracked 

broken surface revealing a stronger core (Figures III.6.c and 6.d). Most of the strength of 

the internal part of granules, could probably be explained by the mineral precipitation as 

has been demonstrated in chapter II. Whereas in R1 the loss of efficiency due to 

disintegration of matured granules seems to be compensated by the birth of new small 

ones, granules from R2 progressively lost density, but no more small granules seemed to 

be generated in this reactor.  
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Figure III.6: Microscopic photographs of microbial aggregates at different operating 

times of a)R1-162 day ; b) R2-162 day; c) R1-238 day; d) R2-238 day; e) R2-250 day. 

Scale bar = 2mm. 

 

III.3.3. Nitrogen removal 

III.3.3.1. Kinetics 

Kinetic analyses were performed during the batch cycle to assess COD, nitrogen 

and phosphorus removal (Figure III.7). The vertical line separates the anoxic and 

anaerobic phases from the aerobic ones. 
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Figure III.7. Evolution of NO3
- ( ), NO2

-( ), NH4
+ ( ), COD ( ), TN ( ), pH (  ) 

and DO (  ) during a kinetics cycle for R1 (a,b) et  R2 (c,d) on day 167th.  

 

During the anoxic phase in reactor R1, COD and nitrate were rapidly depleted. 

Denitrification occurred at a rate of 350 mgN·L-1·h-1, and nitrite concentration accumulated 

transiently up to 5 mgN L-1. Ammonium was depleted after 1.5 h during the aerobic phase, 

being the 46% removed by heterotrophic assimilation during the anoxic period and the 

54%, aerobically at a rate (AUR) of 8.9 mgN L-1.h-1. Nitrite and nitrate were accumulated 

respectively up to 6 mgN L-1 and 14 mgN L-1. DO was first stabilized at 5 mg·L-1 during 

nitrification and then increase up to 6.3 mg L-1 after ammonia depletion. The stable profile 

of TN during aerobic period indicates that simultaneous nitrification denitrification did 

not occur significantly in this reactor. This could be explained by the fact that DO was not 

enough low and also by the fact that not sufficient organic carbon was stored during the 

anoxic (feast) phase for allowing denitrification in the granules during aerated phase.  

In reactor R2, during the non-aerated phase, COD decreased of 134 mg L-1, 

reaching a plateau at about 400 mg L-1, which corresponds to the 25% of the COD fed to 

the system.  During the aerated phase, the oxygen profile reaches a first plateau at 2.5 

a) c) 

b) d) 

R1 R2 
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mg·L-1, followed by a second plateau at 4 mg L-1, and then increases to 6.3 mg L-1 after 85% 

of the COD had been removed. pH increases from 7.2 to 8.0 during the first oxygen plateau 

indicating a probable consumption of VFA and CO2 stripping phenomena, whereas the 

second oxygen plateau was due to other substrates. During the second plateau, ammonium 

is progressively consumed but nitrate and nitrite concentration remained negligible at all 

times, indicating that SND may occur in granular sludge of reactor R2. Concomitantly, the 

presence of AOB was demonstrated by FISH analysis in granules from R2 whereas NOB 

were not detected (see § III.3.3.2). In addition, the nitrification rate was also measured in 

batch respirometric tests with granular sludge collected from R2 at the end of the aerobic 

phase (at DO of 5 mg L-1, with ammonia addition of 10 mgN L-1, without addition of organic 

carbon). AUR was 0.99 mg N.g-1VSS.h-1, no nitrate was observed and nitrite accumulated at 

a rate of 0.57 mgN.g-1VSS.h-1. These observations encourage us to think that ammonium 

was simultaneously removed by heterotrophic assimilation and SND during the aerobic 

phase in the reactor R2. Due to heterotrophic bacteria respiration and growth on storage 

compounds, the nitrite produced by AOB was fully consumed and some of the ammonia 

was also assimilated. This is in accordance with the presence of AOB and the absence of 

NOB in these granules (Filali et al., 2012). Despite the fact that the AUR in R2 is close to the 

one observed in R1 (8.3 mg N L-1 h-1), the ammonium is not depleted at the end of the cycle 

because ammonium starts to be nitrified after the COD was depleted. Before that, the 

oxygen is probably too low in the granules due to the high heterotrophic activity. The final 

concentration of ammonium in the effluent is here (Figure III. 7.c) of 11 mgN L-1 but varied 

greatly from one cycle to another, leading to unstable ammonium removal efficiency. Thus, 

this critical instability of nitrification was probably due to weak proportion of ammonia 

assimilated during the non-aerated phase and to the strong competition between 

heterotrophic and autotrophic bacteria for oxygen during the aerobic phase. 

III.3.3.2. Spatial distribution of nitrifiers 

FISH analysis was performed to assess the microscale structure of granules and the 

localization of nitrifying bacteria. Figure III.8 shows the images of granules from R1 (a, c 

and d) and R2 (b and g), together with suspended biomass from R1 (e) and filamentous 

bacteria from R2 (f). DAPI staining (blue) indicated the presence of heterotrophic bacteria 

in the granules. Fig. b confirms that granules from R2 were much more irregular than 

those of R1 (a). 
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In the first reactor, the localization of nitrifiers in the granules did not change significantly 

during the run. The image of a half-granule section (Fig 8.a) shows that AOB (magenta) 

were distributed throughout the granule and, in particular, near large channels and 

internal voids. The NOB (yellow) were found to be located in deeper layers of the granule 

(about 250 µm from the surface) and profusely around the internal core of the granule. As 

observed in previous studies (Ivanov et al., 2005; Zheng et al., 2005), channels and 

internal voids may play a key role in the transport of oxygen and substrate, which would 

explain this localization. AOB were found to form dense bacterial clusters with sizes 

ranging from 10 to 50 µm (Fig 8.c). NOB clusters were dense and small, their size rarely 

exceeding 10 µm (Fig 8.d). Hybridization of samples of flocs from R1 was also performed 

(Fig 8.e). AOB were frequently observed in floc samples, forming large, dense clusters, 

whereas very few NOB were observed.  

The spatial distribution of nitrifiers in a half-granule section of R2 (observed on day 227) 

is reported in Fig 8(b). The distribution of AOB in R2 granules was less extensive than the 

distribution observed in R1. AOB were located only in the outermost 250µm of the R2 

granules. Their distribution was not homogeneous through that layer. AOB clusters 

colonized some large parts of the aggregate and were totally absent from others. In 

addition, many of them were found to develop at the surface of the granule. Fig 8.g shows 

typical dense clusters of AOB that have developed near the surface of the granule. In 

contrast to R1 clusters, AOB clusters in R2 were relatively small and rarely exceeded a size 

of 20 µm. The hybridization of NOB with the oligonucleotides Nit3 and Ntspa662 gave a 

low signal similar to background noise and no typical bacterial clusters could be identified 

(with a magnification x100). It was thus observed that NOB were not significantly present 

in granules from R2. The hybridization of samples of flocs and filamentous bacteria that 

had developed at the surface of the granules (fig 8.f) from R2 indicated that suspended 

biomass did not contain nitrifying bacteria, be they AOB or NOB (result not shown).   

The FISH results corroborate the kinetic assessment that no nitrite nor nitrate was 

accumulated (§3.3.1), indicating that nitrifiers are difficult to maintain in an 

anaerobic/aerobic system because of strong competition with heterotrophs for oxygen 

and space. Furthermore, the absence of NOB in the reactor confirms that SND favours the 

direct denitrification of nitrite in the core of granules, which progressively limits the 

development of NOB. 
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Figure III.8- Confocal laser scanning microscopy images of FISH micrographs of nitrifiers. Half 

granule section of R1 (a) and part of the section (c and d). Half granule section of R2 (b) and 

part of the section (g). Confocal laser scanning micrographs of FISH performed on a flocs of R1 

(e) and filamentous bacteria of R2 (f).  AOB appear in magenta (hybridized with FITC-labelled 

Nso190 +Nso1225), NOB appear in yellow (hybridized with Cy3-labelled Nit3+Ntspa662), other 

bacteria appear in blue (DNA staining with DAPI). 

 

III.3.4. Phosphorous Removal 

III.3.4.1. Kinetic Assessment 

Kinetics carried out over a reactor cycle (figure III.9) showed the different 

processes regarding dephosphatation. In R1 (fig. 9.a), a rapid decrease of P-PO4 is 

observed during the anoxic phase concomitant with pH increase due to denitrification. It 

was previously demonstrated (chapter II) that calcium phosphate precipitation was 

responsible of this phenomenon. There is no apparent anaerobic phosphate release in R1 
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but polyphosphate-accumulating organisms (PAO) activity was supposed anyway. Thus, in 

order to verify this assumption, specific anaerobic batch tests were performed with sludge 

from R1 (with acetate as a sole carbon source, without additional calcium, magnesium or 

ammonium that at high pH (8.5 on average), could entrain precipitation with phosphorus). 

Three series of 2L- batch reactors were seeded with granules, flocs, and a mixture of flocs 

and granules, respectively.  P release rate for granules, flocs and hybrid sludge was of 2.88, 

6.27 and 3.24 mgP·g-1VSS·h-1 respectively, which are comparable to those reported by 

Parker et al. 2001 in EBPR processes. Mino et al., 1998 also reported a value 3.2 mgP·g-

1VSSPAO·h-1 but in enriched cultures, meaning that even if our culture was not enriched 

with PAO, their activity was also present in R1. K+, Mg2+ and Ca2+ ions were also measured 

in the bulk, revealing that for each mmol of P-PO4 released per h, 0.27mmol of Mg2+ and 

0.51 mmol of K+ were released for the granule-seeded reactor, whereas similar values 

(0.24 mmol Mg2+ and 0.4mmol of K+) were released by flocs. A slight release of calcium 

was also remarked in those tests -it was 3 times more important in granules (0.61 

mmol/mmolP released) than in flocs-, arising questions about its role on EBPR. In any 

case, anaerobic P release and uptake was certainly masked by P precipitation in the GSBR 

reactor R1. Presence of PAO activity is also visible by potassium concentration which 

shows a typical profile (release and uptake) explained by its inclusion into polyphosphate 

structure.  

As shown in figure III.9.c, significant anaerobic release of PO4 takes place in the 

second reactor (R2). This release continues during the first oxygen step in aerobic phase 

(DO=2.5ppm), which means that a part of PAO continue to convert substrate (VFA) to 

internal polymers. This is certainly due to the presence of anaerobic zones into the granule 

during this phase. P uptake is observed to start as DO increases to 4 mg/L, probably when 

VFA has been depleted in the reactor. In the following kinetic, final phosphate 

concentration is similar to those observed in reactor R1. However depending on the cycle, 

phosphate removal was unstable in R2 due to important variability in the heterotrophic 

activity at the beginning of aerobic phase. 
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Figure III.9. Evolution of P-PO4 ( ), Ca2+( ), Mg2+( ), K+  ( ) , COD ( ), pH (  ) 

and DO (  ) during a cycle kinetics in (a,b) R1 and (c,d) R2, on day 167.  

 

III.3.4.2. PHB staining 

Bacterial intracellular carbon storage was analyzed via PHB staining technique in 

both reactors. Figures III.10.a and 10.b show two granules sections from R1 and R2 

respectively, obtained from samples collected at the end of the aerated phase of each 

reactor, on day 180. (PHB granules are stained in blue/black whereas cytoplasmic 

membrane (cells), are stained in pink/red. It should be noted that PHB can be stored by 

either phosphate accumulating organisms (PAO), whose activity has been demonstrated in 

the previous section, but also by glycogen accumulating organisms (GAO). PHB is 

distributed in the peripheral zone of the granules in a thin layer, and in the internal part of 

the granules, close to internal voids and channels. Comparison of samples from each 

reactor indicates that PHB in the granules from R2 is more important in the periphery 

a) 

b) 

c) 

d) 
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including the filamentous bacteria outgrown (Fig 10.d), whereas no PHB was reported in 

some filamentous bacteria from R1 (10.c). This confirms that important heterotrophic 

activity and carbon storage was present in the surface whereas growth/storage in the 

center becomes difficult, probably due to the diffusion limitation in granules from R2. 

  

    

 

Figure III.10: Microscopic images of the stained 10µm-cut granules: a) R1 ; b) R2; c) R2 

filamentous bacteria –external d)R1 filamentous bacteria –internal- filamentous bacteria. The 

scale bar=100µm for a) and b) and 5 µm for c) and d). PHB granules are stained in blue/black 

whereas cytoplasmic membrane (cells) are stained in pink/red 

 

III.3.4.3. Phosphate precipitation contribution 

Contribution of precipitation in the overall P removal yield can be estimated from 

calcium behaviour. Several authors claimed that calcium is not implicated significantly in 

the biological formation of polyphosphate (Jardin and Pöpel; 1996; Pattarkine and 

Randall, 1999) but precipitates mainly in the form of calcium-phosphate as demonstrated 

in the precedent chapter. From thermodynamical analysis, amorphous calcium phosphate 

(ACP) and hydroxy-apatite (HAP) were the most probable minerals. X-ray diffraction 

c) d) 

b) a) 
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patterns have been compared for granules from R1 and R2, which showed that the most 

significant mineral was HAP (Ca5 (PO4)3(OH)), although in the case of R1 spectrum also 

indicates a few amount of whytlockite (Ca18Mg2H2(PO4)14). A comparison of XDR spectra 

carried out over the core of granules from R1 and R2, is shown in figure III.11. 

Figure III.11: Comparison of XDR patterns of the core of R1 and R2 granules. R1 

(black); R2 (gray). 

This figure shows that the precipitation mechanism inside both granules is 

identical, despite of the different reactor operating conditions, and that the major mineral 

found in both cases, is hydroxyapatite.  

Precipitation is mainly controlled by pH in the bioreactors. Calcium concentration 

decreases in R1 during the anoxic phase when pH achieves the highest values (close to 9), 

and it is progressively released during the aerobic period as pH decreases with 

nitrification (Fig III.9.a). Calcium profile in R2 (Fig III.9.c) remains stable during the 

anaerobic period with stable pH around 7.5, but decreases during aerobic phase 

consequently to pH increase up to 8. The whole Ca2+ removal was 40% in the reactor R1 
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(see figure III.2) whereas it progressively decreased to 20% in the reactor R2 (more 

unstable). This tends to show that calcium phosphate precipitation was more important in 

the first reactor than in the second one, which is in coherence with the fact that mean pH 

was higher in the first reactor due to more intense denitrification.  

III.4. DISCUSSION 

Stability of physical properties is a key issue for ensuring the long-term operation 

of granular sludge reactor. It is characterized by adequate settleability properties, which 

guaranties high biomass retention, as well as by no granule washout or breakage for a long 

period of time. In this study, very low sludge volume index (15 mL g-1) and stable high 

MLVSS concentration (up to 25 g L-1) were obtained in the GSBR operated with alternating 

anoxic/aerobic conditions (R1). In contrast, filamentous growth on the surface of granules 

(and finally in the bulk), progressively deteriorated the properties and performances of 

granular sludge from reactor R2 operated with alternated anaerobic/aerobic phases (SVI 

= 90 mL g-1, MLVSS decreased to up to 7g/L) Filamentous growth has been previously 

observed in aerobic granular sludge SBR, resulting from either a change in the wastewater 

composition, OLR (organic loading rate) or DO concentration (Tay et al., 2001; McSwain et 

al., 2004; Schwarzenbeck et al., 2004; Mosquera-Corral et al., 2005; Zheng et al., 2006). It is 

generally admitted that filamentous growth is favored at low substrate or oxygen 

availability. For instance Mosquera-Corral et al (2005) reported that aerobic granules lost 

their stability due to the outgrowth of filamentous bacteria when the DO was reduced to 

less than 40% saturation. In the present study, despite similar aeration rate was imposed 

in both reactors, lower DO concentration was obtained in the beginning of the aerobic 

phase in R2 (anaerobic/aerobic) due to residual COD which was not removed during the 

non-aerated phase. This leads us to think that filamentous growth is here due to oxygen 

limited growth of heterotrophic bacteria with easily carbon source (glucose, ethanol or 

residual acetate or propionate) at the beginning of aerobic phase. The high ratio COD:DO 

maintained in the bulk at this period makes difficult the growth of a dense biofilm on the 

surface of the granules. Traditionally, physiological studies revealed that most of 

filamentous bacteria had strictly aerobic metabolisms, despite limited morphotypes have 

been claimed to have fermentative metabolisms (Nowak and Brown, 1990), giving them 

selection advantages in anaerobic/aerobic systems. Plug-flow regime reactor like SBR 

exerts a selection pressure over floc-forming bacteria due to the high macro-gradients of 
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substrate preserved and conversion of easily biodegradable substrate to internal polymers 

(Kuba et al., 1996). In this work with a carbon source composed of glucose, propionate, 

acetate and ethanol, only a fraction of COD was removed anaerobically and converted to 

PHB. One specific issue for the use of GSBR with complex mixture of organic carbon is 

hence to maximize the fraction of COD used during anaerobic period, i.e. increasing pre-

fermentation processes being probably one possible solution. Another solution, more 

energy consuming, would be to increase the aeration rates as shown by Mosquera-Corral 

et al. (2005). Lower HRT in for R2 could have been selected at the beginning of 

filamentous growth for promoting their wash out (Morales et al., 2012). 

The presence of nitrate during the feast period seemed here critical for the 

stability of the granules in the first reactor (R1). A first explanation is that COD was fully 

removed thanks to denitrification which guarantee the absence of COD in the aerobic 

phase (unlike in R2, in which COD presence at the end of the aerobic phase limits even 

more the DO difussion in the granules). Moreover as shown by Wan et al., (2009) the 

anoxic growth of heterotrophic bacteria in the inner layers could encourage aggregates 

densification. Both are likely to enhance the strengthening of the granule structure and 

improve their stability.  

Consequences on nutrient removal should be also pointed out. First stable full 

nitrification was maintained in R1 and ammonium nitrifying bacteria (AOB) were found to 

be distributed evenly throughout the granule. In contrast filamentous heterotrophic 

bacteria growing in the periphery of granules in R2 make difficult and unstable 

nitrification due to competition between autotrophs and heterotrophs. FISH analyses 

confirmed that nitrifying bacteria were located behind the layer of filaments. On the other 

hand, SND (during aerobic phase) was poorly observed in R1 compared to R2. This can be 

explained by the fact that less stored COD was available for denitrification during the 

aerobic period in a system working with pre-anoxic phase (R1). Regarding phosphorus, 

biological P release was lower in R1 than in R2, which is logically due to less VFA storage 

by PAO in anoxic conditions (Patel and Nakhla, 2006), but global P removal efficiency was 

similar and more stable in R1. This was due to the fact that calcium phosphate 

precipitation was more important in R1, thanks to a higher pH due to denitrification. 

Despite the fact that some authors have questioned the active role of calcium in EBPR 

(Barat et al., 2008; Kortstee et al., 1994; Schönborn et al., 2001), the role of calcium 

precipitation in granular sludge performances and properties still need more 
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investigations. In this study, assuming that all the calcium removed was co-precipitated 

with phosphate in the form of HAP in the long term, and based on the general 

performances graphs (figure III.1), the precipitation mechanism contributed to P removal 

up to 28%  for R1, and 21% for R2.   

III.5. CONCLUSIONS 

In this study, better performances were observed in a GSBR operated with 

alternating anoxic/aerobic conditions compared to those working with alternating 

anaerobic/aerobic phases. 

Very good settling properties for granular sludge (SVI ≈ 20 ml/g) and high MLSS 

concentration were stabilized in the bioreactor with alternating anoxic/aerobic 

conditions. Full nitrification efficiency was obtained, but SND was poor during aerobic 

phase due to insufficient internal storage of COD for denitrification. 

Despite the fact that alternating anaerobic/aerobic conditions theoretically favors 

granulation by promoting carbon storage, filamentous bacteria developed at the surface of 

granules had a negative impact on settleability and nitrification. This was explained by the 

presence of residual COD during aerobic phase which was not stored during anaerobic 

period. A critical point with mixture of organic carbon sources is thus to maximize the 

amount of ready biodegradable substrate used during the un-aerated phase, either 

anaerobic or anoxic. 

Finally comparable P removal yields were observed in both systems. Enhanced 

biological P removal was more important in anaerobic/aerobic whereas contribution of 

precipitation (Ca-P) appeared more significant in anoxic/aerobic conditions.  
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CHAPTER IV:  

Location and chemical composition of microbially 

induced phosphorus precipitates in anaerobic and 

aerobic granular sludge 
 

This chapter introduces the phenomenon of biomineralization in the wastewater treatment 
field. The aim consists on applying the characterization techniques developed in chapter II, 
on anaerobic granules coming from industrial UASB reactors from a cheese WWTP, in order 
to assess the influence that the different supernatants and processes exert to the chemical 
composition of bioliths found in microbial granules.  

At a second stage, mineral evolution evaluated in aerobic granules grown in the laboratory 
reactors, gave rise to the need of studying in a greater detail, the different factors 
influencing the mineral precipitation precursors, consisting the basis of the following 
chapter.  

This chapter constitutes the basis of a national communication proceeding (SFGP 2011, Lille), 
as well as an extended version of the following article (recently accepted):  

Mañas A., Spérandio M., Decker F., Biscans B. (2012). Location and chemical composition of 
microbially induced phosphorus precipitates in anaerobic and aerobic granular sludge. 
Environmental Technology: DOI-TENT-OA-2012-0106. 
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IV.1. INTRODUCTION TO BIOMINERALIZATION PROCESSES  

Biomineralization is the process by which microorganisms form minerals. Such 

processes are very common in Nature since centuries: from the millenary dolomite formations 

in Earth (Sánchez-Román et al., 2011) to the most sophisticate techniques for applying 

bioremediation into strengthening cementitious materials (De Muynck et al., 2010), there is a 

wide range of quotidian processes in which microorganisms are involved in mineral formation: 

vertebrate bones, dentin and enamel, the undesirable kidney stones disease or the most exotic 

nacre, shells and pearl formations.  

Weiner (1988) distinguished two types of biomineralization processes depending on the 

environmental conditions influence:  

Controlled biomineralization: organisms are directly involved in the mineral formation, 

and their cellular activity directs the nucleation, growth, morphology and location of the 

mineral, which nature is unique to that species, regardless of the environmental conditions. e.g.: 

the intracellular chemically pure magnetite crystals in magnetotactic bacteria (Bazylinski and 

Frankel, 2004), or silica  deposition in the unicellular algae coccolithophores and diatoms 

(Barabesi et al., 2007). 

Induced biomineralization: the type of mineral formed is largely dependent on the 

environmental conditions that can be locally modified by a wide range of microorganism strains 

as a result of their metabolic activity. In contrast to controlled biomineralization, no specialized 

biological structures are thought to be here involved (Barabesi et al., 2007), and precipitation 

takes place when microorganisms alter almost one of the following abiotic factors: i) Ion 

concentration; ii) pH; iii) The availability of nucleation sites (Hammes and Verstraete, 2002).  

Some authors (Dupraz et al., 2009; Benzerara et al., 2011), also distinguish the term of 

organomineralization, which is defined as a passive mineral precipitation in the presence of cell 

surfaces or extracellular polymeric substances (EPS), being the organic matter, the actor 

responsible of the mineral nature and morphology. Fossilization processes would belong to this 

group.  

The distribution of the biominerals identified to the present, can be categorized as 

follows: the foremost taxonomic group of mineral-formers are the animals, being 37 the 

biogenic precipitates identified; then, bacteria (24) followed by plants (11), and finally fungus 

and protozoa with 10 (Gonzalez-Muñoz et al., 1997). According to their anions, the most 

abundant biominerals formed are phosphates, followed by oxides and carbonates. However, the 
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latter group of biominerals are the most referred and studied in the literature, for which the 

term microbially induced carbonate precipitation (MICP), was already reported a decade ago 

(Castanier et al., 1999).  

When biomineralization started to become interesting in the field of bioremediation and 

biocementation (following  the French Patent FR8903517 in 1989), several groups of research 

came out since then and, one decade later, different microorganism strains and metabolic 

pathways were identified and controlled to form different minerals, mainly calcium carbonate: 

the Calcite Bioconcept was then born (Le Métayer-Levrel et al., 1999). Thus, works focused on 

microbial mineralization activity involving specific strains (controlled biomineralization): 

Bacillus cereus (Le Métayer-Levrel et al., 1999), Micrococcus sp. Bacillus subtilis (Tiano et al., 

1999), Bacillus sphaericus (De Muynck et al., 2008a and 2008b; Dick et al., 2006), Pseudomonas 

putida (Biobrush®, May, 2005) and Myxococcus xanthus (Rodríguez-Navarro et al., 2003), began 

to appear. The latter species had been proven to induce the precipitation of carbonates, 

phosphates and sulphates in a wide range of solid and liquid media (Ben Omar et al., 1994). 

Furthermore González-Muñoz and collaborators, (1993) were the first to report struvite and 

calcite crystallization by dead cells and cellular fractions of M. Xanthus and M. Coralloides D., 

although its characterization through Transmission Electron Microscopy analysis (TEM), was 

difficult because the small crystalline forms of struvite were sometimes destroyed by impact of 

the electron beam. Ben Omar (1995) had observed the struvite precipitation onto the walls of M. 

Xanthus in a medium at pH=6.5 and rich in magnesium and phosphate concentrations. They had 

reported struvite formation only in mature and deformed cells, explaining that, in such cells, a 

phenomenon of “cell-wall relaxation” takes place prior the cell lysis, resulting in extra negative 

charges that scavenge positive Mg2+ and NH4
+ ions.  Regarding hydroxyapatite (HAP) 

crystallization, Bacterionema matruchotii species was reported to produce a lipoprotein, that 

once extracted and isolated in a culture medium, triggered HAP precipitation (De Muynck et al., 

2010). But wherever the nature of the mineral be, matrix studies have highlighted the 

importance of a unique group of proteins involved in controlling mineral formation in bacteria 

(Weiner et al., 2008): they were rich in aspartic acid, which is one of the 20 proteogenic 

aminoacids non-essential in mammals (Lehninger, 1988) and a metabolite in the urea cycle. 

The fact that some bacterial strains are related to a specific mineral type, is not only 

dependent of the aforementioned biological induced macromolecules, but also of the elements 

involved in their metabolic functions. e.g.: the group of oxyhydroxides so named ferrihydrate 

and goethite, are known to precipitate spontaneously even at neutral pH, due to the activity of 
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iron-oxidizing bacteria, that convert the soluble Fe+2 form into Fe+3 (Hohmann et al., 2010). 

Another example of how microorganisms can provoke precipitation is by the carbonatation 

process, which is the displacement of CO2 into CO32- equilibrium diagram, due to a pH increase 

because of photosynthesis, sulfate-reduction or urea degradation (Warren and Haack, 2001). 

Thus, bacteria strains involved in the Enhanced Biological Removal Process, such as PAO, can be 

considered similarly, for their contribution to phosphate precipitation as they have the capacity 

of modifying the local phosphate concentrations, even if the overall system is undersaturated 

with respect to these phases.   

The role of biomineralization in biological functions remains a matter of debate. Some 

authors support that it is the accidental result of a metabolic by-product that can cause cell 

disruption (Knorre and Krumbein, 2000), while others are committed to the fact that it is a 

specific process with ecological benefits, like providing more strengthening and resistance 

properties (Ehrlich, 1996; McConnaughey and Whelan, 1997). Accidentally or not, this 

phenomenon is reported to contribute favorable to the bioremediation field, where several 

applications for ion removal from wastewaters can be highlighted: groundwater heavy metals 

removal (Warren and Haack., 2001), radionucleotides (Fujita et al., 2004) and calcium removal 

from water (Hammes et al., 2003). In this case, we focalized our study in the simultaneous 

carbon and nutrient removal (nitrogen and P) in a bio reactor with aerobic granulated sludge. 

The biomineralization is a parallel process that takes place simultaneously in these aggregates, 

contributing to better operating properties and P removal yields. In the field of dairy agro-food 

wastewater treatment, UASB reactors seeded with granular sludge, have been reported as a 

robust and efficient system for reducing the high organic loads that faces this industry (Lettinga 

et al., 1980; Lemaire, 2007). Moreover, another advantage of driving anaerobic sludge digestion 

is the sustainable energy production that usually serves to cogeneration. However, anaerobic 

digestion is not fully effective for nutrient removal as on the one hand, anaerobic effluents are 

rich in ammonium due to the hydrolysis of proteins, and on the other hand, biological P uptake 

is not possible with a solely anaerobic compartment. Precipitation in the bulk, of struvite (MAP) 

is feasible but requires a special design as well as reagents dosing because effluents are usually 

deficient in Mg and pH requires a strict control (Rensburg et al., 2003). Aerobic granular sludge 

has been lately developed in order to overcome these deterrents, as it is proven to withstand 

high organic loads and to perform simultaneous nutrient removal (Liu et al., 2002). Aerobic 

granules consist of macro-aggregates constituted by a consortium of a wide range of bacteria 

strains, and that minerals precipitated inside can be the result of local modifications of involved 
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ion supersaturation and pH factors. This chapter focuses on the induced biomineralization 

mechanisms, proposing the notion of Microbially Induced Phosphorous Precipitation (MIPP) 

phenomenon as a side mechanism of P-removal in wastewater treatment. This work is 

especially dedicated on granular sludge processes applied to high-strength wastewater 

treatment. Phosphate precipitates were initially demonstrated in aerobic granular sludge 

process in Chapter II with different techniques (RAMAN, SEM-EDX, XRD and chemical 

extractions). Here, the same approach was developed on anaerobic granular sludge treating 

dairy (cheese) wastewaters.  

In an attempt to explain the major mechanisms involved in the observed precipitation 

process, and how the bulk conditions can affect such parameters, a set of characterization 

assays have been carried out in order to better understand the biomineralization process inside 

aggregates in granulated sludge for wastewater treatment. This work complements the 

information already provided by some authors (Bhatti et al., 1995; Langerak van et al. 2000 and 

1998), who observed a relation between the ionic concentrations of the mixed liquor from 

different UASB digesters, and the ash content of their granules. The location of the precipitation 

process (in the granules or on the reactor walls) is also dealt in this chapter due to its 

implications in the process: Kettunten and Rintal (1998), reported losses of biomass 

methanogenic activity with high ash content in the sludge, which constitutes a deterrent for 

long-stabilization of UASB reactors. Conversely, Iza et al. (1992) observed that some biofilm 

depositions could take place onto the surface of carbonates precipitated in the bulk and 

Langerak van et al. (2000) found out that the development of a high ash sludge content 

contributed to biomass cementation and stabilization.  

Most of the anaerobic and aerobic granules investigated in the literature (Ren et al., 

2008; Langerak et al., 1998; Svardal, 1991) contained calcium carbonate bioliths inside, 

whereas aerobic granules cultivated in our laboratory were found to enclose a calcium 

phosphate core inside (Mañas et al., 2011). The importance of this study relays on the 

understanding of the parameters that influence the composition and location of the precipitates 

in granular reactors. Moreover, it emphasizes the contribution of the precipitation mechanism 

inside granules (so-called MIPP), to the phosphorous dephosphatation process and to the 

biomass valorization.  

Therefore, this work is especially dedicated to the study of the mineral solid compounds 

found in granular sludge processes (aerobic and anaerobic) applied into high-strength 

wastewater treatment. A set of characterization analysis has been carried out on different 
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granule samples collected in five different processes, anaerobic (UASB) or aerobic (GSBR) 

treating respectively dairy or synthetic wastewaters. The nature and location of the bio-

precipitation process is investigated as well as its pros and cons for the process. In an attempt to 

explain how the bulk conditions can affect such phenomenon, wastewaters characteristics are 

extensively analyzed and PHREEQC modelling software is used for calculating saturation 

indexes of the minerals involved. 

IV.2. MATERIAL AND METHODS 

IV.2.1. Solid characterization and sample preparation:   

Anaerobic granule samples from 3 different UASB reactors treating wastewaters produced 

by cheese factories in southern France were studied. They are referred to as industrial sites 1, 2 

and 3. Anaerobic granules came from the anaerobic digester mixed liquor (Methanizer 2 in figure 

I.5) separated from the supernatant by settling (5 minutes). No purge was made between start-up 

and the time granule samples were taken; HRTs were 5, 5 and 2.6 days and ORLs were 8.5, 8 and 8 

kgCOD·m-3·d-1 for sites 1, 2 and 3 respectively. 

Concerning aerobic granules, they were sampled from two different GSBR processes (at 

the end of the aerobic reaction phase) fed with synthetic wastewater. Granular sludge had been 

inoculated more than one year before sampling, and the processes were operated for more than 

100 days with different operating conditions: in anoxic/aerobic batch cycles for Laboratory_R1 

and anaerobic/aerobic cycles for Laboratory_R2. The latter was seeded from R1 for quick start-

up, as described in Liu Q.S et al. (2005). Organic loading rates and HRT were identical in both 

aerobic reactors: 3 KgCOD·m-3·h-1 and 8.5 h respectively. GSBR cycles were composed of 15 min 

feeding, 20 min anoxic or anaerobic (mixed with nitrogen gas blowing) period, 145 min aerobic 

period, 30 min settling and 30 min withdrawal. More details concerning the reactor operating 

conditions can be found in chapter III. Granules were classified according to their size and color, 

as in the work shown by Iqbal Bhatti (1995). Granule samples are shown in figure IV.1, and 

table IV.1 summarizes their characteristics. Because of the great heterogeneity of granules from 

industrial sites (different colors and sizes), three granules were analyzed for each type of 

aggregate according to their color: gray, brown, black or white. Conversely, aerobic granules 

were homogeneous and more than 10 granules were collected from each aerobic reactor, 
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showing repeatable results. Therefore, only a few of them are shown in table IV.1. Mean 

diameters (DG) of individual granules varied from 1 to 4 mm. 

All granules sampled were cut into 100-µm slices with a cryo-microtome (Leica CM 

30505 Kryostat) and then analyzed with a photon X analyzer (Quantax Technology Silicon Drift) 

which was coupled with a Scanning Electron Microscope (SEM).  

The EDX probe was pointed on to at least 7 different locations in each granule section 

(see green marks in figure IV.3) in order to ensure the repeatability of the results. The ash 

content of granules was measured according to standard methods. Samples were taken in 

triplicate for each site and were washed with distilled water to ensure that the supernatant did 

not interfere in the measurement.  

 

 

Figure IV.1: Images of the different granules sampled from: a) 

GSBR_1; b) UASB Industrial Site 1; c) GSBR_2; d) UASB Industrial Site 3. 

Scale bar=2mm length. 

 

The EDX probe has been pointed on at least 7 different locations in each granule sample 

in order to ensure the repeatability of the results. The ash content of granules has been 

measured according to standard methods. Samples have been made in triplicate for each site 

and they have been washed with distillate water in order to ensure that the supernatant did not 

interfere in the measurement.  

 

 

 

 

 

a) b) c) d) 
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Table IV. 1: Classification of the granules sampled. 

Sample 
name 

Site Condition  
Diameter 
(DG, mm) 

Color 
Legend in 

Figure IV.3 

S1_ana#01 

Industrial Site 1 
UASB 

Anaerobic 

3.1 white 3.a 
S1_ana#02 2.7 white 3.b 
S1_ana#03 2.5 grey 3.c 
S1_ana#04 1.2 brown 3.d 
S1_ana#05 2.6 black 3.e 
S2_ana#06 

Industrial Site 2 
UASB 

Anaerobic 
1.6 brown 3.f 

S2_ana#07 3.1 grey 3.g 
S2_ana#08 3.4 black 3.h 
S3_ana#09 Industrial Site 3 

UASB 
 

Anaerobic 
 

4.0 grey 3.i 
S3_ana#10 2.1 grey 3.j 
S3_ana#11 2.5 black - 
S4_aer#12 

Lab Site 4 
GSBR_1 

Alternating 
Anoxic/Aerobic 

2.4 brown 3.k 
S4_aer#13 1.2 brown 3.l 
S4_aer#14 1.5 brown 3.m 
S5_aer#15 

Lab Site 5 
GSBR_2 

Alternating 
Anaerobic/Aerobic 

3.7 brown 3.n 
S5_aer#16 2.8 brown 3.o 
S5_aer#17 3.2 brown 3.p 

 

IV.2.2. Characterization of liquid phases and calculation of SI:   

The influent and effluent of each reactor were characterized according to the standard 

methods (AFNOR, 1994), and results are shown in table IV.3 (ANNEX IV.1). The analytical 

results provided the input data for the geochemical software PHREEQC® version 2.17, which 

was used for calculating the concentration of the chemical species in equilibrium for each liquid 

phase (acid/base, ion pairs). SI for each mineral considered was calculated according to the 

equation IV.1, which considers the term j (in contrast with default calculation with PHREEQC®), 

which is the number of ions contained in the mineral formula considered [Paraskeva et al., 

2000; Montastruc, 2003].  

                                              

j

spK

IAP
SI

/1

log















                                            (Equation IV.1) 

Where IAP is the Ionic Activity Product of the ion activities involved in the mineral 

precipitation, and Ksp refers to the thermodynamic mineral precipitation constant at a given 

temperature. Modification from the default database (Minteq v4) has been proposed in order to 

include the thermodynamic data of some important minerals: struvite (MAP), amorphous 
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calcium phosphate (ACP), hydroxydicalcium phosphate (HDP) and Magnesium Whitlockite 

(MWH) as shown in table IV.2.  

In annex IV.3, a complete database of a research over the different mineral precipitation 

constants at 25ºC, is shown. 

Table IV. 2: Thermodynamic constants of the main minerals considered for this study 

(modifications on the Minteq v4 database are indicated)  

Parameter Chemical formula 
Ksp Value in  

Modified Database 
Ca/P Ca/O Mg/P 

CAL CaCO3 
6.35[2] for Ic>0.02 
8.48[2]  for Ic<0.02 

- 0.33 - 

ARAG CaCO3 8.3[7] - 0.33 - 
DOL 

(ordered) 
CaMg(CO3)2 17.09[**] - 0.17 - 

MWH* Ca18Mg2H2(PO4)14 104.4[8] 1.29 0.02 0.14 
MAP* MgNH4PO4:6H20 13.26[1] - - 1.00 
NEW MgHPO4:3H2O 5.8[2, 6] - - 1.00 
DCPD CaHPO4 : 2H2O 6.62[2] 1.00 0.25 - 
DCPA CaHPO4 6.9[4] 1.00 0.25 - 
OCP Ca8(HPO4)2(PO4)4:5H2O 49.6[5] 1.33 0.33 - 

HDP* Ca2HPO4(OH)2 22.60[3] 2.00 0.33 - 
ACP* Ca3(PO4)2:xH2O 28.92[2] 1.50 0.38 - 
TCP Ca3(PO4)2 32.63[6] 1.50 0.38 - 
HAP Ca5(OH)(PO4)3 58.33[1,2] 1.67 0.38 - 

*: not included in the initial Minteq V4 database; **: default database References: [1] Ohlinger et al., 1998; 

[2] NIST database at 25°C; [3] Maurer et al., 1999; [4] Heughebaert et al., 1984; [5] Frèche, 1989; [6] 

Murray and May., 1996; [7] Wang et al., 2010; [8] Shellis et al., 2004  

 

IV.3. RESULTS 

IV.3.1. Wastewater and process characteristics:   

The influent and effluent of each reactor were analyzed and characterized according to 

section IV.2, and results are shown in table IV.3 (Annex IV.1). The processes could be considered 

to have reached the steady state, as they had been operated for more than one year before the 

sampling period. All the bioreactors showed high organic removal efficiency as more than the 

95% of the COD was removed in these systems.  

Whey and dairy wastewaters are rich in phosphate and proteins, reflected by the high 

organic nitrogen content (Demirel B. et al., 2005). In the anaerobic digesters, proteins are 

hydrolyzed, explaining the decrease of COD and VSS and the increase of ammonium 

concentration in the effluents of each site.  
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In the aerobic reactors, organic compounds were oxidized to carbon dioxide, ammonium 

was converted into nitrite and nitrates (nitrification) which were further converted into 

gaseous N2 (denitrification). Phosphates were partially removed by Biological Enhanced 

Phosphorus Removal (EBPR). Alkalinity was produced in the anaerobic reactors during methane 

production and in the aerobic reactors during the denitrification processes. This contributed to 

the pH rise which was also encouraged by stripping processes (carbon dioxide) in the aerobic 

reactors. Phosphate removal was observed in all the systems, probably due to precipitation 

processes in the anaerobic reactors, whereas both precipitation and biological phosphorus 

removal were shown to occur in the aerobic reactors. 

For all sites, the mineral content of the suspended solids in the effluent was higher than 

those of the influent and, simultaneously, calcium concentration in the liquid decreases in all the 

systems. The high quantity of suspended solids in UASB processes is linked with the high 

mineral content (42.6 to 80%). In these reactors, mineral content seemed to be correlated to 

pH: the highest pH for site 2 corresponded to the highest mineral content (80%); the lowest pH 

for site 1 corresponded to the lowest mineral content (42.6%). Microscopic observations of the 

anaerobic effluent from site 2, shows that precipitated particles are visible in the reactor bulk 

(figure IV.2). Microbial aggregates detached from the supernatant coming from the effluent of 

reactor 2 (stained in red with safranine) appeared with a non-organic prismatic structure 

(circled). 

 

 

 

 

 

 

 

Figure IV. 2: microscopic image stained from digester 2. Red: bacterial cells; in the circle, a 

possible mineral precipitated in the bulk. 

 In contrast, no minerals were found in the supernatant of the aerobic reactors. Finally, 

the ash content (SMF) of the different granules has been quantified in table IV.3, pointing out 

that in aerobic systems, the quantity of minerals embedded in granules is strongly influenced by 

the process, as illustrated in GSBR 1 and GSBR 2: both reactors have similar mineral fractions in 
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the mixed liquor (33.7 and 38.7 % respectively), but the latter presents higher mineral content 

in the granules (the double), being at the same time, the reactor in which EBPR process was 

more remarkable (see Chapter III). In anaerobic sites, the sludge ash content is also different, 

varying from 28-81%. In UASB, where SMF achieved the highest values (sites 1 and 2), 

efficiency removal yields problems have been reported and reactors needed to be re-seeded. 

IV.3.2. Analysis of mineral bioliths in granules:   

Figure IV.3 shows the different SEM images taken from the different sectioned granule 

samples. SEM and EDX probes testing at different locations of the samples, confirmed that 

almost all of the granules (except two, the black ones) presented mineral inorganic concretions. 

These precipitates were easily detectable due to their geometrical shape, brightness and low 

organic matter content. In the photographs, crystallized minerals appear lighter than the 

organic fraction. They were mainly observed inside the granules, but in some cases precipitates 

were formed at the surface, as in figs.3.a and 3.b., in which a mineral layer envelops the 

anaerobic microbial granule. Finally, samples in figs.3.e and 3.h, did not present any sign of 

mineral deposition either embedded in, nor surrounding the bio-aggregate. 

Bioliths found in the anaerobic granules were randomly distributed (figs. 3.c, d, f, g, i and 

j), although they formed a biofilm of at least 400µm beyond the aggregate surface.  The bioliths 

in aerobic granules (figs. 3.k-3.p), constituted a large solid fraction centered in the core at least 

300µm from the surface layer for figs. 3.k and l; and 800µm for figs. 3.m,n,o and p.  

In the case of the granules from figures 3.a and 3.b, the mineral shell that covered the 

aggregates was around 400-800 µm thick on average, which represented a considerable fraction 

probably affecting the diffusion of nutrients and the bacterial activity. More information about 

EDX elemental scanning is provided in Annex IV. 2. 

  

a b 

d 
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Figure IV. 3: SEM images from the granules samples. a) S1_ana#01; b) S1_ana#02; c) S1_ana#03; 

d) S1_ana#04; e) S1_ana#05; f) S2_ana#06; g) S2_ana#07; h) S2_ana#08; i) S3_ana#09; j) 

S3_ana#10; k) S4_aer#12; l) S4_aer#13; m) S4_aer#14; n) S5_aera#15; o) S5_aer#16; p) 

S2_aer#17. Scale bar = 800µm for (a, b, c, f, g, i, j, k, n, o, p); 600 µm for h, e, l, m; 400µm for d. 

 

Analyses were carried out with EDX probes pointed over the mineral clusters (marked 

with small crosses) revealing the major element composition, and indicating the nature of the 

most probable mineral formed (table IV.4). A number of local analyses (at least seven) were 

carried out for each granule at different locations in the mineral clusters. Average values and 

standard deviation are shown as well in table IV.4.  

  

  

  

 

k l 

m n 

o p 



Chapter IV: biomineralization assessment in anaerobic and aerobic granules 

 

 

106 

 

It was clear that after oxygen, calcium was the major constituent of the mineral fraction, 

varying from 22 to 49% for anaerobic granules and from 17 to 38% for aerobic granules. The 

other major constituent was phosphorus, except for the granules collected in UASB reactor 2. 

Phosphorus content varied from 0.06 to 24% and from 7 to 15% for anaerobic and aerobic 

granules respectively. The magnesium content of the clusters was smaller (< 1%) and nitrogen 

was sparsely found in variable concentrations (0 to 4%) in some granules. 

The data indicated that the molar Ca:P ratio varied from 1.25 to 1.68 in the different 

granules (except for those from site 2, in which no significant phosphorus was found). These 

values are evocative of several calcium phosphates with varying theoretical Ca:P ratios: OCP 

(1.33), ACP (1.5), TCP (1.5), HAP (1.67). For some samples Ca:O ratio were also of the same 

order of magnitude as theoretical values of calcium phosphate or calcium carbonate (0.33 to 

0.38 see table IV. 2) but the Ca:O ratio showed much greater deviation than that of Ca:P, making 

its interpretation more difficult. 

 

Table IV. 4: EDX analysis of mineral clusters found in anaerobic and aerobic granules (mean values 
from at least 7 analysis for each granule): Elemental composition (percentage in mass), molar 

ratios, most probable solid phase. 

Sample % Ca % P %Mg % N %O 
Ca/P 

(molar) 
Ca/O 

(molar) 
Mineral 

(probable) 

S1_ana#1 27.77±5.70 11.62±2.53 0.35±0.19 1.71±1.46 44.33±6.22 1.40±0.05 2.86±0.30 ACP/TCP 

S1_ana#2 31.91±7.21 13.37±2.42 0.51±0.15 2.86±3.55 39.29±4.14 1.47±0.01 0.52±0.11 ACP/TCP 

S1_ana#3 46.92±17.36 0.17±0.16 0.02±0.06 0.51±0.60 48.81±4.66 - 0.99±0.28 CAL/ARAG 

S1_ana#4 48.99±5.93 24.02±1.65 - - 33.36±16.81 1.25±0.12 0.68±0.25 OCP 

S1_ana#5 - - - - - - - - 

S2_ana#6 31.25±8.57 0.06±0.14 0.06±0.10 - 49.59±3.38 - 0.26±0.03 CAL/ARAG 

S2_ana#7 29.43±7.11 0.26±0.18 0.24±0.17 2.06±1.80 47.65±1.88 110±59 0.28±0.12 CAL/ARAG 

S2_ana#8 - - - - - - - - 

S3_ana#10 26.28±4.29 11.10±2.29 0.19±0.14 - 31.64±4.27 1.44±0.08 0.33±0.01 ACP/TCP 

S3_ana#11 22.40±8.90 9.36±2.99 0.39±0.05 - 42.89±0.00 1.42±0.12 0.21±0.08 ACP/TCP 

S4_aer#12 32.18±8.68 13.42±2.61 0.34±0.16 - 40.55±0.15 1.65±0.10 0.38±0.18 HAP 

S4_aer#13 32.55±4.98 12.37±1.94 0.24±0.28 - 41.07±0.89 1.68±0.04 0.39±0.21 HAP 

S4_aer#14 38.17±11.61 14.45±3.07 0.67±0.19 - 46.05±14.32 1.62±0.05 0.64±0.20 HAP 

S5_aer#15 25.80±3.07 11.38±1.01 0.43±0.13 - 46.65±3.46 1.64±0.04 0.31±0.07 HAP 

S5_aer#16 16.46±1.58 7.19±0.49 0.31±1.20 4.26±1.51 39.9±0.07 1.53±0.07 0.17±0.02 ACP/TCP 

S5_aer#17 32.73±5.07 11.96±1.64 0.10±0.09 0.42±0.55 34.43±5.86 1.60±0.04 0.31±0.07 HAP 

“-” : mineral not found or element not detectable 
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The solid phase most probably formed in the granules, according to their Ca:P and Ca:O 

molar ratios are  suggested in the last column of table IV.4. Calcium phosphates ACP, TCP, HAP 

were the most probable solids in the granules, except for those from UASB number 2, which 

seemed to contain calcium carbonate (ARAG or CAL). Almost all the aerobic granules had Ca:P 

ratios close to that of HAP, except for one sample from GSBR-2, in which the Ca:P ratio was 

closer to ACP (or TCP). As ACP and TCP are both possible precursors of HAP, further work needs 

to be carried out for discarding which is the one that forms inside the granules, as they have 

identical Ca:P ratios (See Chapter V). The same problem remains for discarding between ARAG 

or CAL, two calcium carbonate polymorphs.  

At the anaerobic sites, results showed heterogeneity in the chemical composition of the 

different granules sampled for each given site. Indeed, granules from anaerobic sites were 

different in color and size (see table IV.1), and the nature of minerals found inside the 

aggregates were also different in one same reactor. For instance, at site 1, we found different 

granules containing calcium carbonate and calcium phosphates. At site 2, all granules containing 

mineral bioliths appeared to be made up of calcite or aragonite. Anaerobic granules from site 3 

all contained calcium phosphates, probably ACP or TCP.  

 

IV.3.3. Ca- P distribution during granule growth: case of GSBR   

By focusing on the granular sludge from the aerobic systems (GSBRs), it was observed 

that small granules were continuously generated in the reactor and grew progressively with 

microbial activity (this process is much slower in the case of anaerobic methanogenic bacteria 

whose growth rate is more than ten times lower than those of aerobic bacteria). Therefore, 

different aerobic granules with different sizes were sampled from the two GSBR reactors 

(GSBR_1 = site 4, and GSBR_2 = site 5), assuming that biggest granules would be more mature 

than the small ones. Only the central sections are shown in figure IV.4, illustrating the evolution 

of the mineral formation inside the microbial aggregates from small granules to mature ones.  

It can be noted that solid mineral precipitated in the center of the small granules and increased 

progressively, at the same time as microbial biofilm developed at the surface of the granule. In 

the biggest granules, successive rings of mineral were finally visible, indicating past growing 

periods (reminiscent of the rings of a tree trunk). 

It should be noted that the stretch marks in figure IV.4 are due to the cut blade. 
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Figure IV.4: Binocular images of central slices of different granules from the GSBRs, 

classified from the smallest to the biggest ones. a) S4_aer#18; b) S5_aer#19; c) S4_aer#20; d) 

S5_aer#21; e S4_aer#22; f S5_aer#23. The bar scale is 2mm length. 

 

Different mature granules from both reactors presenting a mineral-ring distribution 

were analyzed with an EDX probe, according to figure IV.5.   
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Figure IV.5: EDX analysis of the mineral layers in granules from the GSBRs. a) granule 

from GSBR_1; b) granule from GSBR_2; c) Inner and outer layer-patterns with EDX 

analysis from fig.5.a.The different “∆” and “O” marks represent the probe pointing at the 

outer and inner parts respectively. 

 

A detailed analysis with EDX probes was performed in two different zones of the 

mineral core of the granules: in the central zone and in the external rings as indicated in figure 

IV.5. The results show that mineral precipitates have slightly different compositions in the inner 

part compared to the external layer. In the granule shown in figure 5.a, the mean value of Ca:P 

ratio part of the internal layer was close to that of HAP (1.69±0.19) whereas the mineral in the 

c 
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outer layer showed a lower mean Ca:P ratio of 1.52±0.20, close to that of the precursor forms 

ACP or TCP (theoretical Ca:P=1.5). In the second example shown in figure IV.5.b, there are three 

concentric layers. Lower Ca:P ratio was found in the outer layer of mineral (1.29±0.05) whereas 

the inner part had a Ca:P molar ratio of 1.50±0.16. 

These results indicate a possible conversion from calcium phosphate precursors with lower Ca-

P ratio (ACP, TCP or OCP) to the moret stable calcium phosphate hydroxyapatite (HAP) with the 

highest ratio found in the center (theoretical Ca:P ratio = 1.67). These results are consistent 

with the traditional idea that HAP formation is not the result of spontaneous nucleation but of a 

progressive conversion of less stable calcium phosphates, indicating that a minimal retention 

time in the granule is necessary to convert the precursor phases (probably ACP, TCP, or OCP) 

into HAP.  

A zoom over the mineral fraction of aerobic granules was performed with SEM, finding 

out a porous honeycomb structure as can be observed in figure IV.6.  

 

Figure IV.6: SEM images of aerobic granules. The scale bar=8µm 

 

The holes in the bioliths may have been due to the bacterial colonies that have been 

progressively disappearing (the diameters of the small holes in figure 6.b are evocative of the 

pore sizes that would be produced by such a phenomenon) or from gaseous metabolite 

exchanges (CO2, N2, etc.). These assumptions will be further discussed in section IV.4. 

 

 

 

a) b) 
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IV.3.4. Calculation of saturation index in the different reactors 

The saturation indexes of the minerals that could precipitate were calculated with 

PHREEQC software according to the liquid composition of each reactor stream. pH and 

temperature values used in the calculations were those of the reactor outputs. It was assumed 

that the conditions inside each reactor are similar to that of the outlet if proper mixing was 

imposed in the reactor, which considering the different scale, is more realistic in the case of lab 

scale reactors (GSBRs from sites 4 and 5) than in the full scale UASB reactors (sites 1, 2, 3). 

The results (shown in table IV.5) indicated the compounds with a positive SI which were 

likely to precipitate. Concerning calcium phosphate, results confirmed that hydroxyapatite 

(HAP), amorphous calcium phosphate (ACP), tricalcium phosphate (TCP) and ordered dolomite 

(DOL), were systematically supersaturated in all the samples, which is in accordance with the 

analysis of the solid phase. 

Calculations also showed that struvite (MAP) was under-saturated in all the reactors as 

were newberite (NEW), magnesium whitlockite (MWH) and octacalcium phosphate (OCP). 

Finally, brushite (DCPD) and monetite (DCPA), both precursors of HAP, were found to be 

supersaturated in some anaerobic reactors, but not in aerobic ones (GSBRs). Calcium 

carbonates,  be they calcite (CAL) or aragonite (ARAG), were supersaturated in most of the 

systems, except for UASB 1. The higher SI value achieved was in site 2, where calcium 

carbonates had been detected in the solid phase. It must also be noticed that either Calcite (CAL) 

or Aragonite (ARAG), were supersaturated in the GSBR (sites 4 and 5), whereas no calcium 

carbonates were found in the aerobic granules. This indicated either (i) the possible effect of 

precipitation inhibitors (e.g. phosphates), or (ii) the fact that ARAG or CAL precipitates in 

another zone (reactor walls, recirculation pipes), but not in the microbial granules. Another 

possibility is the precipitation of calcium carbonate in the bulk, with possible nucleation on 

suspended solids or free bacteria (flocs).  Crystals were not observed in the supernatant of 

aerobic granular sludge process, in contrast to anaerobic sites, in which solid crystals were 

detected in some samples (figure IV.2).  
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Table IV. 5: SI values for the mineral phases calculated with PHREEQC in the effluent 

 

Carbonate saturation is encouraged by accumulation of mineral carbon produced by microbial 

reactions. Higher SI values were observed for anaerobic site 2, at which the pH (7.4) was slightly 

higher than in other anaerobic processes (sites 1 and 3). In aerobic systems, because aeration 

encouraged carbon dioxide stripping and nitrification consumed alkalinity, inorganic carbon 

concentration was lower than in anaerobic reactors. However, the relatively high pH at which 

both GSBR worked explained the supersaturation of calcium carbonate at sites 4 and 5.   

The SI values in the effluent indicate the mineral that is still super-saturated after the 

process. However, due to a long retention time and possible rapid precipitation (especially in 

anaerobic systems), equilibrium can be reached in the reactors, leading to a reduction of SI 

(stabilized around zero). Thus, the variation of SI (namely SI) was calculated between the SI 

calculated for outlet concentrations and the SI calculated for the inlet concentrations of the 

volume control (each reactor). 

 

SI = SI effluent -SIinfluent 

Mineral 
phase 

UASB_site 1 UASB_site 2 UASB_site 3 GSBR_site 4 GSBR_site 5 

ARAG -0.09 0.44 0.18 0.23 0.20 

CAL -1.08 -0.55 -0.81 0.33 0.29 

DOL(ord) 0.02 0.49 0.15 0.18 0.14 

MWH -2.72 -2.50 -2.78 -2.45 -2.48 

MAP -0.27 -0.10 -0.45 - -0.61 

NEW -0.37 -0.46 -0.73 -0.94 -0.98 

DCPD 0.06 0.09 -0.04 -0.18 -0.20 

DCPA 0.18 0.22 0.10 -0.03 -0.05 

OCP -5.63 -5.27 -5.71 -5.27 -5.33 

HDP -0.24 0.00 -0.26 0.15 0.13 

ACP 0.25 0.55 0.26 0.73 0.70 

TCP 1.04 1.32 1.02 1.45 1.41 

HAP 0.92 1.23 0.92 1.44 1.41 

Ic (mol/kg) 0.05 0.10 0.08 0.02 0.01 

pH 6.67 7.4 6.88 8.41 7.85 

T(°C) 33 30 29 21 21 
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Of all the minerals included in the simulation, only those with positive SI in least one stream 

were considered for the SI calculation in figure IV.7. Thus, a SI<0 could indicate a possible SI 

decrease in the effluent due to precipitation. Although alkalinity was produced during the 

anaerobic processes, a decrease of SI was observed in UASB 2, which indicated that calcium 

carbonate should precipitate, in accordance with previous local observations. SI of calcium 

phosphates (DCPD, DCPA, HDP, ACP, TCP, and HAP) decreases in all the aerobic systems, which 

can be explained by the precipitation of some of these compounds, also confirmed by previous 

granules analysis. Similarly, in the case of the anaerobic sites, HDP precipitation seems to be 

discarded. 

 

Figure IV.7: SI for the different minerals that can precipitate in the different reactors considered. 

IV.4. DISCUSSION 

IV.4.1. Nature of precipitates: consistency between the local analysis 

observation and the Saturation Indexes.  

SEM-EDX analysis demonstrated that calcium phosphates were the major precipitates 

found in the granules, both aerobic or anaerobic. More specifically solid composition was close 

to those of hydroxyapatite (HAP), amorphous calcium phosphate (ACP) or tricalcium 
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phosphates (TCP). This was consistent with the analysis of Saturation Index in the liquid phase, 

indicating that these minerals were systematically saturated. 

Concerning other calcium phosphate precursors only one sample (brown-type ones, 

S1_ana#4) shows Ca:P and Ca:O ratios which could implicate an OCP precursor. This seems 

consistent with the fact that pH in site 1 is the lowest one, and Gao and co-workers (Gao et al., 

2010) reported the formation of HAP through OCP precursor at acidic pH.  However, of all the 

calcium phosphate precursors proposed in the literature for acidic pH (DCPD, DCPA and OCP), 

only OCP was not observed to be saturated in the bulk according to PHREEQC calculations.  

Calcium carbonates were only observed in some granules, mainly in site 2 coinciding 

with the higher pH and alkalinity values among the anaerobic sites. In the aerobic reactors, 

despite pH values are higher than in the anaerobic ones, alkalinity is reduced by the nitrification 

reactions, explaining the lower carbonate precipitation potential. Carbonates are well-known 

competitors of phosphates for calcium bounding, competing for the active nucleation and 

crystal growth sites (Langerak, 1998; Plant and House, 2002). Moreover, it is known that this 

competition is severely influenced by pH (House, 1987). Working with digester supernatant, 

Battistoni and co-workers (1997) reported that a pH between 7-8.5 would favor phosphate 

precipitation, whereas a higher pH (9-11), would favor carbonates. At dissolved concentrations 

higher than 20µmol/L (which is the case of all industrial sites), P is supposed to inhibit calcite or 

aragonite precipitation (Plant and House, 2002). In this study, P and Ca concentration measured 

in the bulk are relatively similar in all industrial reactors but pH and alkalinity was slightly 

higher in site 2. The simultaneous presence of carbonate or phosphate in the same reactor could 

be also possibly due to local heterogeneities. Therefore carbonate would preferentially 

precipitate in granules, where the microbial activity would induce proper pH for carbonate 

deposition (or in zones were alkalinity accumulates).  

In contrast with calcium precipitates, neither magnesium phosphate nor magnesium 

carbonate was significantly observed in the microbial granules. The effect of calcium as the main 

inhibitory factor for magnesium phosphate precipitation, has been widely reported. Moreover, 

Shen et al., (2001) made different experiments with dairy wastewater showing that high Ca:Mg 

ratios were not inhibitory for struvite concentration if enough magnesium and pH 

concentration were present in the wastewater. Therefore, he demonstrated struvite 

precipitation in such effluents by adding a calcium chelating agent (EDTA) or calcium oxalate, 

for previous magnesium and phosphate release prior struvite precipitation. He demonstrated 

that it was possible even with Ca:Mg initial ratios of 1.46 (note that Ca:Mg ratios of UASB 2 
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=1.43); and that rather than adding Mg to lower the ratio, it was more efficient to decrease 

calcium concentration by sequential precipitation with other minerals free of phosphate.   

Especially the case of struvite should be pointed out: struvite was never found in the 

granules despite the high concentration of ammonium and phosphorus in the anaerobic 

effluents. It was thermodynamically under-saturated in all of the liquid phases of the processes 

studied, either aerobic or anaerobic. This can be explained by the fact that pH in the UASB is not 

high enough to let struvite precipitation, whereas higher pH conditions (e.g. strong stripping) 

lead to struvite crystal formation in the bulk (results not shown). Indeed struvite precipitation 

rate is rapid, which could lead to its precipitation in the bulk, or in specific zones when proper 

pH is achieved (notably > 7.4) (Ohlinger et al., 1998). 

IV.4.2. Location of mineral bioliths: a possible role of microbial 

reactions?  

The discussions above suggest that another important aspect is the location of the inorganic 

deposits in the different granular sludge processes. By modelling calcite precipitation, Langerak 

and co-workers (2000) established different physical or chemical conditions for operating a 

UASB favoring precipitation in the bulk rather than in granules: 1) a low Ca:Na ratio, 2) small 

granule diameter 3) a high mineral crystallization rate constant and 4) An influent [Ca2+] < 390 

mg/L. In our case, information provided about the industrial effluents of the different sites and 

the number of samples are not sufficient to confirm most of these statements (Ca:Na, granule 

size, …). However from a general point of view, the location of mineral crystals certainly 

depends either on physico-chemical and biological phenomena. The major one, as stated by 

Langerak, is probably the crystallisation rate constant. In our case, information provided about 

the industrial effluents of the different sites and the number of samples were not sufficient to 

confirm most of these statements (Ca:Na, granule size, …). However, from a general point of 

view, the location of mineral crystals certainly depends on both physicochemical and biological 

phenomena. The major one, as stated by Langerak, is probably the crystallization rate constant. 

Indeed, it should be noted that the mineral crystallization rate of hydroxyapatite is 

clearly the lowest in calcium phosphate according to the literature, and this form was shown to 

accumulate in the core of granules. In contrast, the other forms (ACP, TCP, OCP), which could be 

formed rapidly, were mainly observed in the periphery of aggregates, and could also be formed 

rapidly in the supernatant (see chapter V). A first example is provided by the “white” granules 
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from UASB site 1 (S1_ana#01 and S1_ana#02), in which a mineral concretion was precipitated 

at the surface (ACP or TCP). This was also illustrated by the detailed analysis of granules from 

GSBR (sites 4 and 5), revealing that Ca:P ratios similar to those of HAP were mainly found in the 

central part of granules whereas more unstable but more rapidly formed phases (ACP, TCP, 

OCP) were found at the periphery.  

Precipitation can be also related to the local conditions imposed by microbial reactions. 

Bacterial activity contributes to biomineralization by modifying local supersaturation, because 

ion and proton exchanges in the environment generate some gradients within the bio-

aggregates. The spatial distribution of mineral clusters in the granules seems to show that local 

conditions in the core of microbial granules are favorable for calcium phosphate accumulation 

(especially HAP). Another observation (figure IV.2) is that, for granules from aerobic reactors 

(GSBR), precipitates (bioliths) are found in the central part of the aggregates, whereas they are 

randomly distributed in the granules from anaerobic processes (UASB). A possible explanation 

is that local microbial modification of pH, carbonate and phosphate concentration, could 

encourage this precipitation.  

According to microbial analysis over cross-section of anaerobic granules (Batstone et al., 

2006; Quarmby and Foster, 1995), these bacteria are stratified as follows: acidogens are located 

in the outer part of the granules, while acetoclastic methanogens form clusters in the central 

part. Hydrolysis, acidogenesis and acetogenesis tend to release protons, while methanogenesis 

consumes protons (0.25 mmolH+ release/1 mmol acetate or H2 uptake). These observations 

lead us think that a pH increase in the environment of methanogens clusters could generate 

favorable conditions for precipitation.  

Similarly in aerobic granular sludge processes, whereas nitrification takes place in 

aerobic zones of granules, denitrification consumes protons in their anoxic zones.(Wan et al., 

2009; Mañas et al., 2009). Calcium phosphate precursors initially formed in the periphery are 

progressively converted into a stable form (hydroxyapatite) in the core. Future work would be 

necessary to discover how microbial reactions could modify the local pH and so play a role in 

this precipitation phenomenon. In addition, another possible interaction would be due to 

polyphosphate accumulating bacteria (PAO), whose ability to release phosphate during 

anaerobic periods transiently increases the calcium phosphate saturation in their environment. 
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IV.4.3. Consequences of precipitation.  

From a general point of view, the role of biomineralization in microbial functions 

remains uncertain. Some authors support that it is the accidentally result of a metabolic by-

product that can cause cell disruption (Knorre and Krumbein, 2000), while others are 

committed to the fact that it is a specific process with ecological benefits, like providing more 

strengthening and resistance properties (Ehrlich, 1996; McConnaughey and Whelan, 1997). 

Accidentally or not, this phenomenon is reported to contribute favorably to the bioremediation 

field, where several applications for ion removal from wastewaters have been pointed out at the 

introduction of this chapter.  

In aerobic GSBR, the biomineralization of calcium phosphates is a side dephosphatation 

process that takes place simultaneously in these aggregates, contributing to increase the settling 

velocity and to the P removal yield (Mañas et al., 2011). Driving the precipitation inside 

granules instead of in the bulk could entrain other advantages like the control of the 

spontaneous precipitation in pipelines and walls, responsible of clogging and high operational 

costs (Borgerding, 1972). In anaerobic processes, Langerak found out that the development of a 

high ash sludge content contributed to biomass cementation and stabilization, which is an 

important parameter for operating UASB reactors. However, this process should be accurately 

controlled as negative consequences can be also reported. Kettunten and Rintal (1998) reported 

losses of biomass methanogenic activity with high ash content in the sludge, constituting a 

deterrent for long-stabilization of UASB reactors. In the industrial cases studied, when 

precipitation took place at the surface of the aggregates, the methane production performance 

decreases and the UASB reactor had to be restarted with new fresh granules if a regular sludge 

extraction is not performed. In our case, both UASB containing the higher SMF sludge, were 

reported to lose removal efficiency and thus, needed to be restarted with fresh granules, 

stressing importance over the bioavailability losses that take place at higher mineral fraction. In 

aerobic site 5, mineral content in sludge was also relevant (68%), and some instability problems 

(VSS decrease) were remarked. Thus, a compromise should be adopted and a regular granule 

extraction must be done in order to operate stable and efficient GSBR systems, which implicates 

an exhaustive SRT control, which have an impact not only over the mineral phases, but also on 

the microbial communities that perform nitrogen removal. In any case, the use of thermo-

chemical databases for estimating saturation indexes can give an indication of the precipitation 

potential. However the location of precipitation is still complex to predict, involving either 

physico-chemical driving mechanisms (kinetic) and microbial induced phenomena. From a 
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modelling point of view, future work will be necessary to be able to predict the exact calcium 

phosphate precursors that finally form HAP and how can microbially induced phosphorus 

precipitation (MIPP) be controlled with operating conditions in the reactor.  

IV.5. CONCLUSIONS 

Local analysis of mineral precipitation in microbial granules from anaerobic and aerobic 

reactors, has lead to the following conclusions: 

Calcium phosphates were the major precipitates found in the granules sampled. SEM-

EDX analysis demonstrated that solid composition is close to hydroxyapatite (HAP), amorphous 

calcium phosphate (ACP) or tricalcium phosphates (TCP). This was consistent with the analysis 

of the Supersaturation Index in the liquid phase, indicating that these minerals were 

systematically saturated in the bulk.  

Calcium carbonate was only found in the granules from the anaerobic UASB 2 with the 

highest operating pH (treating industrial wastewater). Struvite was not found in the granules 

and it was thermodynamically saturated in all the processes studied, be they aerobic or 

anaerobic.  

Spatial distribution of mineral clusters in the aerobic granules seems to point out that 

local conditions in the core of microbial granules are favorable for calcium phosphate 

accumulation (especially HAP), whereas other minerals (like calcium carbonates) could rather 

appear in the bulk. Results also indicate that calcium phosphate precursors initially formed in 

the periphery are progressively converted on the core into a more thermodynamically stable 

form (hydroxyapatite). These phenomena could be explained not only by differences in the 

crystallization kinetics, but also by the local pH modification within the granules due to 

microbial activity (anaerobic or anoxic).  

To conclude, the supernatant composition can contribute to predicting the nature of the 

bioliths developed in granular sludge, but it is not the sole determinant factor, as it does not 

explain the differences found in different granules grown in the same reactor. This places 

emphasize on the role of microbial reactions over all the mechanisms contributing to the 

biomineralization phenomenon.  
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Site 1 
UASB 

Anaerobic 

Site 2  
UASB 

Anaerobic 

Site 3 
UASB 

Anaerobic 

Site 4 
GSBR-1 

Anoxic/Aerobic 

Site 5 
GSBR-2 

Anaerobic/Aerobic 

   Influent Effluent Influent Effluent Influent Effluent Influent Effluent Influent Effluent 

Liquid Cl
-
 mg/L 652 658 754 641  464 451  181 164 175 170 

phase N-NO2
-
 mg/L 1.10 - 1.20 - 0.21  0.29  - 0.095 0 0.08 

 N-NO3
-
 mg/L 4.60 3.30 6.20 2.35  6.41  1.08 111 16.14 1.13 0.25 

 P-PO4
3-

 mg/L 191 118 121 114  107  73.0 31.2 17.04 31.25 15.9 
 Na

+
 mg/L 145 515 304 410  302 710 391 348 209 208 

 N-NH4
+
 mg/L 122 323 71.7 315  0.86 320  64.6 0 59.08 9.93 

 K
+
 mg/L 167 442 441 415  418  512 45.1 33.9 45.2 35.1 

 Mg
2+

 mg/L 15.55 32.53 22.7 21.95  19.39  11.04 4.39 3.63 4.19 2.98 
 Ca

2+
 mg/L 80.9 76.5 132 90.9  150 88.7  46.0 29.1 43.6 24.3 

 TKN mg/L 831 968 558 422  nd  nd 64.6 nd 59.1 nd 
 COD mg/L 29120 240 16380 120 23760 2705 1000 45 1000 75 
 TIC mg/L - 363 - 919 - nd 23.3 - 24.00 50.7 
 pH - 3.62 6.67 3.54 7.4 3.61 6.88 7.54 8.22 7.6 7.9 

 T °(C) 15 33 15 30 15 29 12 21 12 21 
 Ca/P mol/mol 0.33 0.50 0.85 0.62 1.08 0.94 1.14 1.32 1.08 1.18 
 Ca/Na mol/mol 0.56 0.15 0.43 0.22 0.50 0.12 0.12 0.08 0.21 0.12 
 Ca/Mg mol/mol 3.16 1.43 3.53 2.51 4.71 4.87 6.35 4.85 6.31 4.94 

Suspended SS g/L 20.8 5.59 18.28 3.15  12.86 5.42  - 0.3 - 0.4 
solids VSS g/L 17.64 3.21 15.98 0.63  10.07 2.12  - 0.1 - 0.2 

 MF % (mass) 15.19 42.58 12.58 80.00 21.70 60.89 - 33.65 - 38.70 

Granular 
sludge 

SMF 
Ash 

content  
% of dry mass 81.0±0.4 71.7±1.2 28.2±0.5 33.5±0.4 68.4±2.2 

Table IV. 3: characterization of the influent and effluent streams of each bioreactor. 
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   a.1    a.2    a.3 

   b.1    b.2    b.3 

Figure  IV.A.2: SEM-EDX Images from the granules from Fig. IV.2. Legend: Red, for organic fraction (carbon), Light blue for Ca, dark blue for P. 
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   d.1    d.2    d.3 

   c.1    c.3    c.2 

Figure  IV.A.2: SEM-EDX Images from the granules from Fig. IV.2. Legend: Red, for organic fraction (carbon), Light blue for Ca, dark blue for P. 
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   f.1    f.2    f.3 

   g.1    g.2    g.3 

Figure  IV.A.2: SEM-EDX Images from the granules from Fig. IV.2. Legend: Red, for organic fraction (carbon), Light blue for Ca, dark blue for P. 
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     i.1      i.2      i.3 

     j.1      j.2      j.3 

Figure  IV.A.2: SEM-EDX Images from the granules from Fig. IV.2. Legend: Red, for organic fraction (carbon), Light blue for Ca, dark blue for P. 
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   k.1    k.2    k.3 

   l.1 l.2 l.3 

Figure  IV.A.2: SEM-EDX Images from the granules from Fig. IV.2. Legend: Red, for organic fraction (carbon), Light blue for Ca, dark blue for P. 

 



ANNEX IV.2: SEM-EDX images of granules from UASB or GSBR 

 

 

129 

 

   

   

m.1 m.2 m.3 

n.1 n.2 n.3 

Figure  IV.A.2: SEM-EDX Images from the granules from Fig. IV.2. Legend: Red, for organic fraction (carbon), Light blue for Ca, dark blue for P. 
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o.1 o.2 o.3 

p.1 p.2 p.3 

Figure  IV.A.2: SEM-EDX Images from the granules from Fig. IV.2. Legend: Red, for organic fraction (carbon), Light blue for Ca, dark blue for P. 

 



ANNEX IV.3: Database from literature of mineral precipitation constants at 25ºC 

 

 

131 

 

Code 
Reference Mineral Abreviation Formula  

pKsp (25°C) 
A B C D E F G H I 

0 Struvite MAP MgNH4PO4x6H20 9.41 13.26 13 12.6 12.60-13 10.08 9.94 12.6 13.16 

1 
Calcium phosphate tribasic 

(hydroxyapatite) HAP Ca5 (PO4)3(OH) 114 57.5 58.33 58.33 3.421 58.52       

2 
Calcium Phosphate dibasic 

dihydrated  (brushite) DCPD CaHPO4 x 2H2O 6.69 6.6 6.5 6.62           

3 Magnesite MAG MgCO3 7.46 8.2 7.46             

4 Calcite CAL CaCO3 8.42 8.48 8.5 6.45 11.44 6.35 8.48     

5 
Hydroxy-dicalcium 

phosphate HDP Ca2HPO4(OH)2 22.6 27.3               

6 Newberite NEW MgHPO4x3H2O 5.8 5.8               

7 
Phosphate dicalcic 

anhydrous DCPA CaHPO4 6.9                 

8 Octocalcium phosphate OCP Ca4H(PO4)3x2.5H2O 49.6                 

9   Tricalcium phosphate TCP Ca3(PO4)2 26 32.63               

10 
Amorphous calcium 

phosphate ACP Ca3(PO4)2 x XH2O 25.46 26.52 25.2 28.92           

11 Potassium struvite MKP MgKPO4x6H20                   

12 Dolomite DOL CaMg(CO3)2 9.8                 

13 Aragonite ARAG CaCO3 8.36                 

14 Vaterite VAT CaCO3 7.91                 

15 Whitlockite MWH Ca18Mg2H2(PO4)14 104.4 104.4 98.15-111.47             

Table IV.6: Database of the mineral precipitation constants at T=25ºC. Values used for simulations in this thesis are marked in bold. 
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pKps reference 

Code Ref. Reference   Code Ref. Reference 

0.A Bordering, 1972 4.B Nordstrom et al., 1989 

0.B Ohlinger et al., 1998 4.C Murray and May, 1996 

0.C Mamais et al., 1994 4.D Musvoto et al., 1999b 

0.D Loewenthal et al., 1994 4.E Musvoto et al., 1999a 

0.E Snoeyink and Jenkins, (1980); Burns and Finlayson., 1982 4.F NIST database (strong Ic) 

0.F Taylor et al., 1963 4.G NIST database (weak Ic) 

0.G Abbona et al., 1982 5.A Maurer et al., 1999 

0.H Stumm and Morgan, 1981 5.B Rootare et al., 1962 

0.I Murray and May, 1996 6.A Murray and May, 1996 

1.A Stumm and Morgan, 1981 6.B NIST DATABASE (weak Ic) 

1.B Murray and May, 1996 7.A Freche, 1989 

1.C Freche, 1989 8.A Freche, 1989 
1.D NIST database 9.A Ringbom, 1967 
1.F Mc Dowell et al., 1977 = (PHREEQC default) 9.B Murray and May, 1996 
1.E Lin and Singer, (2006) 10.A Hoffman, 1977 

2.A Freche, 1989 10.B Seckler et al., 1996 

2.B Stumm and Morgan, 1981 10.C Meyer et al., 1982 

2.C Murray and May, 1996 10.D NIST database 

2.D NIST database 12.A Garrels et al., 1960 

3.A Stumm and Morgan, 1981 13.A Wang et al., 2010 

3.B Murray and May, 1996 14.A Wang et al., 2010 

3.C NIST DATABASE ( weak Ic) 15.A Shellis et al., 2004; 1996 

4.A Stumm and Morgan, 1981 15.B Driessens and Verbeeck, 1981 

   
15.C Shellis et al., 1996 

 

 

Table IV.7: Codification of the references above 
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CHAPTER V:  

PARAMETERS INFLUENCING CALCIUM PHOSPHATE 

PRECIPITATION IN GRANULAR SLUDGE 

SEQUENCING BATCH REACTOR 
 

 

In this chapter, the major parameters influencing calcium phosphate precipitation have 
been assessed in a GSBR operating with anaerobic/aerobic cycles during a working 
stable period.  

The aim of this chapter is to provide information about the mechanisms of crystal 
formation inside aerobic granules, moreover, the precursors that could induce such 
precipitation in sights of further modeling.  

This chapter corresponds to the article: Mañas A., Pocquet M., Spérandio M., Biscans B. 
(2011). “Parameters influencing calcium phosphate precipitation in granular sludge 
sequencing batch reactor”, submitted on September 2011 at Chemical Engineering 
Science Journal (Accepted on January 2012). It also constituted the basis of an 
international oral communication at ISIC18 (about crystallization) Congress, Zurich, 
September 2011. 
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V.1. INTRODUCTION  

A recent report of the United Nations Environment Program highlights phosphorus 

management as one of the main emerging problems to be faced in 2011 (United Nations of 

Environmental Program yearbook 2011): the demand for phosphorus is increasing, the 

available resources are scarce, the use needs to become more efficient and the recycling 

more widespread. On the other hand, it is found in excess in wastewater effluents, 

damaging aquatic ecosystems and the quality of water. In a wastewater treatment plant, 

biological processes are mandatory for meeting carbon (COD) and nitrogen (N) quality 

standards of the effluent (Giesen, 1999). Biological dephosphatation by polyphosphate 

accumulating organisms (PAOs) have to be intensively employed but still needs to be 

combined with physicochemical treatment to isolate phosphate in a solid form. Therefore, 

research is now focusing increasingly on combined processes that remove phosphorous 

from wastewaters and successively recover it in the form of a valuable product (De Bashan 

et al., 2004), for example struvite (MgNH4PO4·6H2O) or hydroxyapatite (Ca5(PO4)3(OH)). 

The aerobic granular sludge process is a promising technology for wastewater 

treatment, performing simultaneous nitrogen and phosphorus removal (Liu and Tay, 

2004; Lemaire, 2007; Morgenroth et al., 1997). The granular sludge process is based on 

dense microbial aggregates containing different bacterial communities. Recent studies 

indicate that calcium phosphate can also precipitate and accumulate in the core of 

granules, playing a role in the global performance of the process (Wan and Spérandio, 

2009; Manas et al., 2011). In this work, research focuses on this induced biological 

phosphorus precipitation inside biological aggregates. Until now, only a few studies have 

been dedicated to this mechanism, focusing on general mineral precipitation on the walls 

of pure bacterial strains by changing either pH or ion concentration (Dupraz et al., 2009; 

Bazylinski, 1996; Weiner, 2008). This work aims to gain insight into the parameters that 

influence microbial induced phosphorus precipitation in granular sludge for wastewater 

treatment. Major questions concern the nature of the precursors in the Ca-P precipitation 

and the influence of the microbial reactions on the precipitation in relation with pH.  

Previous work has identified the chemical composition of the mineral clusters 

found inside aerobic granules (Mañas et al., 2011). Hydroxyapatite (HAP) was the major 

crystallized compound and the presence of amorphous precipitates was also suggested by 

X-ray Diffraction Analysis. Boskey and Posner, 1974) and Nancollas and Koutsoukos 

(1980) stated that HAP could form without any precursors at low ionic strength (Ic) but its 
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formation is normally preceded by different mineral phases depending on the pH, the ionic 

strength and the presence of other ions (Nancollas and Wu, 2000). Octacalcium phosphate 

(OCP) was identified as the precursor of HAP at physiological pH (Tomazic et al., 1975; 

Brown et al., 1981; Elliot, 1994). However, brushite (DCPD) was later reported by several 

authors (Abbona et al.,1986; Gao et al., 2010) as the hydroxyapatite precursor in acidic 

conditions, and OCP was also found to form in low-pH medium. While Posner and co-

workers (1975) found tricalcium phosphate (TCP) to be the main HAP precursor in 

aqueous solutions at ambient temperature, Amjad et al. (1981) did not find the same 

results with a constant composition study. Grases et al. (1996) found TCP to be a 

precursor of human calculi at pH between 6 and 7, although Johnson and Nancollas (1992) 

stated that β-TCP is not formed at ambient temperature. Posner and Betts (1975) stated 

that hydroxyapatite formation is preceeded by a poor crystal solid which consists of 

calcium phosphate clusters with the formula Ca9(PO4)6. Finally, amorphous calcium 

phosphate (ACP), was first observed by Eanes (1965) and, since then, several authors have 

observed it in different pH ranges: between pH = 5-7.5, according to Madsen et al., (1995) 

and Tsuge et al., (2002); in the neutral pH range (Madsen and Christensson, 1991); at 

pH>7.4, where ACP was the only phase reported by Montastruc (2003) and Seckler et al., 

(1996); and even at high pH (9.5-12) in a report by Lazic (1995). Normally, models 

consider the precipitation of the most thermodynamically stable phase as a function of the 

precursor formation but there is some disagreement about its choice. Maurer and Boller 

(1999) and Maurer et al., (1999) stated that calcium phosphate precipitation took place 

simultaneously with bio-dephosphatation processes throughout hydroxyl dicalcium 

phosphate (HDP) formation but gave no demonstration to support their claim. In contrast, 

Barat et al. (2011) assumed that amorphous calcium phosphate (ACP) was the first 

calcium phosphate precursor for modeling HAP precipitation in EBPR processes.  

Musvoto et al., (2000b) succeeded in modeling phosphate precipitation in digester 

supernatant. Barat et al., (2011) showed that satisfying prediction of phosphorus removal 

by simultaneous biological and chemical process was obtained with ASM2d model coupled 

with ACP precipitation.In view of the broad differences of opinion in the literature 

concerning the nature of HAP precursors in similar conditions, in this chapter, 

experiments were carried out with granular sludge in which HAP has been observed to 

accumulate in the core of granules (Chapter II). From literature it comes that HAP is not 

directly formed but precipitation is assumed to be controlled by precursor precipitation. 
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The objectif of this chapter is to investigate the operating conditions which can influence 

this first step of precipitation.  

V.2. MATERIAL AND METHODS 

V.2.1. Biological reactor operating conditions   

Reactor kinetic tests were first carried out in two lab-scale continuously running 

Granular Sequenced Batch Airlift Reactor (GSBR), called R1 and R2 in what follows for 

simplicity. Details can be consulted in chapter II. Most of the following results were 

collected on GSBR noted R2 which was operated in 4-hour cycles with anaerobic/aerobic 

conditions as follows: 15 min of feeding; 20 min of anaerobic reaction (nitrogen gas 

injection); 145 min of aerobic reaction; 30 min settling and 30 min withdrawal (with a 

volumetric exchange ratio of 47%). The synthetic feed had the following composition: 

1000 mg/L COD consisting of a 25% each of glucose, acetate, propionic acid and ethanol 

contribution, nutrients and salts ([PO43-] = 30 mgP/L, [Ca2+] = 46 mg/L, [HCO3-] = 100 

mg/L, [NH4+] = 50 mgN/L). A COD/N-NH4+ ratio of 20 was maintained. The reactor had a 

working volume of 17 L. The temperature was maintained at 20±2ºC, and pH varied 

during the process cycle (from 7.2 to 8.5 on average). These last parameters, together with 

DO, were measured and recorded on line for more than 250 days of reactor operation. 

During this period, pH evolved naturally in the bulk under the influence of biological 

reactions (denitrification, nitrification) and physicochemical processes (CO2 stripping, 

precipitation, etc). During this operation, three kinetic tests were followed at different pH 

values: (1) a normal cycle where pH was not controlled during the kinetic batch cycle, (2) 

a cycle at the high pH value of 8.4 ± 0.2 (by NaOH dosing), (3) a cycle at the low pH value of 

7.4 ± 0.2 (by NaOH and HCl dosing).  

V.2.2. Batch precipitation in abiotic experiments   

Batch tests were carried out in parallel to assess the precipitation of calcium 

phosphate from the all the P removal mechanisms separately (without biological 

reactions). For this purpose, a 2L-volume reactor (figure V.1) was seeded with aerobic 

granules from the GSBR-R2 reactor, and the kinetics was determined after an endogenous 

stage (sludge was aerated without feeding). The endogenous period depended on the test 

and the objective was to deplete the nutrients as far as possible at the kinetics starting 
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point, ensuring a stable and low respirometric activity and stable evolution of ions in the 

bulk. At the end of the endogeneous period, pH was 8.15; and the ions concentrations were 

constant and as follows: [Ca2+]=12.29 mg/L, [PO43-]=2.94 mgP/L; [Cl-]=171.58 mg/L, [NO2-

]=4.66 mgN/L; [NO3-]=8.99 mgN/L, [Na+]=237.97 mg/L, [K+]=22.54 mg/L, [Mg2+]=0.23 

mg/L and [NH4+]=0 mgN/L. Calcium and phosphorus were added to the batch reactors at 

different amounts, maintaining a regime of constant mixing (260 rpm) and an air flow rate 

of 60 L/h. A pH and a DO probe were placed in the reactor and data were acquired online 

every 5 s (DO was stable at 6±0.01 mg/L). All batch tests were performed at a temperature 

of 25ºC. No ammonium, magnesium or carbonates were added in the tests, in order to 

avoid the co-precipitation of other species and to limit the study to the calcium phosphate 

system. A different set of tests were carried out in order to evaluate the parameters 

reported to influence the precipitation mechanisms in the literature (pH, ionic strength, 

Ca/P concentrations, VSS and time). All the experiments carried out in the 

physicochemical reactor can be classified in two sets including different periods (P0, P2, 

P3, etc.). Each set was performed at a different initial VSS concentration (S1=3.73 and S2= 

0.51 g/L) and, in each period, a change of a parameter (pH, Ic, [Ca], [P], Ca/P ratio, etc.) 

was studied. Table V.1 summarizes the experiments. Ca and P concentrations were 

analyzed at different times for each experiment in order to evaluate the ∆Ca/∆P 

disappearing from the bulk, and experimental ratios were then compared to the 

theoretical ones for the minerals most likely to precipitate according to the SI calculation 

(see section V.2.3).  

 

 

Figure V. 1: Batch test scheme used for abiotic precipitation tests. 
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Table V.1: Precipitation experiments in the 2-L reactor (batch) with different parameters. 

Experiment 
VSSinit 

(g/L) 

TSS 

(g/L) 
pHinit pHmean 

Icinit 

x10
-2 

Cainit 

mg/L 

Pinit 

mg/L 

Ca/Pinit 

molCa/molP 

Total 

Duration 

min 

S1P1 3.73 7.4 7.95 7.95 1.29 34.20 14.98 1.77 12 

S1P2 3.73 9.6 6.83 6.86 2.32 86.01 114.20 0.58 280 

S1P3 3.73 12.6 6.43 6.72 3.33 210.62 45.90 3.56 77 

S1P4 3.73 15.8 6.71 6.62 3.39 89.34 104.83 0.66 7 

S1P5 3.73 18.4 7.26 7.33 3.40 54.44 84.01 0.50 1173 

S1P6 3.73 36.3 7.24 7.09 3.69 21.86 64.61 0.26 39 

S2P1 0.51 2.66 7.78 7.77 1.20 33.40 14.27 1.81 1530 

S2P2 0.51 2.86 7.77 7.30 1.77 71.10 32 1.72 467 

S2P3 0.51 2.86 8.6 8.01 1.61 36.76 12.66 2.25 67 

S2P4 0.51 2.86 9.17 8.77 1.60 22.73 8.49 2.53 15 

S2P5 0.51 6.47 8.5 7.25 6.91 474.30 484.28 0.76 12 

S2P6 0.51 6.47 6.5 6.48 5.71 92.32 315.54 0.23 31 

 

V.2.3 Characterization of liquid and solid samples  

Samples were filtered with 0.2 µ-pore-size acetate filters before being analyzed by 

ionic chromatography (IC25, 2003, DIONEX, USA), in which NO2-, NO3-, PO43-, NH4+, Ca2+, K+, 

Mg2+ concentrations were determined. COD, MLSS and VSS were analyzed according to 

standard methods (AFNOR 1994).  

Solid samples were collected at the end of each batch of tests. Granules were 

separated from suspended particles by rapid settling (5 min). Granule samples and 

suspended solids were characterized separately. After calcination at 500°C for 2 hours, 

samples were analyzed by X-Ray Diffraction (XRD) (BRUKER D5000), with a cobalt tube 

scattering from 4-70° in 2θ.  

EDX analysis was performed with a photon X analyzer (Quantax Technology 

Silicon Drift) having a detection limit of 127 eV. It was coupled to a SEM (JEOL 5410 LV) 

which allowed working in a partial pressure chamber. 

V.2.4 Calculation and modeling 

The ionic strength (Ic) and saturation index (SI) of the minerals considered were 

calculated using the geochemical software PHREEQC (Parkhurst et al., 2000), with a 
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modified database taking into account the pKsp of the different minerals from the NIST 

database at the temperature at which the tests were conducted (25°C).  

A dynamic model was developed to predict calcium phosphate precipitation based 

on differential equations as described in Annex V.1 written in the form of a Petersen 

matrix. The model was solved with AQUASIM software. Based on the work of Musvoto et 

al. (2000a and 2000b), the model included acid-base reactions and ion pair formation, 

described by a combination of the forward and reverse reactions of dissociation. Selection 

of ion pair species was based on exhaustive species decomposition with the PHREEQC 

software (Minteq v4 database, modified). For a more accurate prediction of phosphorus 

concentration in solution, two ion pairs containing phosphorus were added to the dynamic 

model proposed by Musvoto: MgH2PO4 and NaHPO4. Both softwares were used 

successively. PHREEQC software allows first to decompose the concentrations obtained 

from the experimental analysis with ion chromatography (total calcium, magnesium, 

phosphorus, etc…) into aqueous species and ion pairing complexes. The output values of 

PHREEQC serve as inputs for initializing the differential equations described in AQUASIM, 

ensuring a better accuracy of the results (otherwise the dynamic simulations initially 

show an equilibrium period of a few minutes). Precipitation equation for the precursor 

was described using the nomenclature of Koustoukos and co-workers (1980), according to 

the equation V.1.  

      
n

vMApKsp
vvavm

MA AMK
v

A
v

M
dt

d









 /1_

/1

10  Equation V.1 

Where Mv+Av- represent the soluble salt, ACP (or TCP) in this case; K_MA is the 

kinetic constant; (Mm+) and (Aa-) are the ion activities; v+ and v- the number of cationic 

and anionic species (v=v+ + v-) in the salt; n the number of different ion species in the salt; 

and pKsp_MA is the negative log value of the dissociation constant. As precipitation is a 

surface limited reaction, the kinetic constant is dependent on the amount of solids present 

in the system. It was fitted to the experimental data for each assay. The pKsp_MA is the 

thermodynamic constant and it is specific to the mineral phase and the given temperature. 

It is normally provided in the literature. 

SI for each mineral considered was calculated according to the equation V.2, which 

considers the term j (in contrast with default calculation with PHREEQC®), which is the 
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number of ions contained in the mineral formula considered (Paraskeva et al., 2000; 

Montastruc, 2003).  

                                              

j

spK

IAP
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/1
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                                                  (Equation V.2) 

Where IAP is the Ionic Activity Product of the ion activities involved in the mineral 

precipitation, and Ksp refers to the thermodynamic mineral precipitation constant at a 

given temperature. Values were thus compared to 0, being probable to precipitate those 

minerals which SI were positive in the bulk. Ionic coefficients are calculated according 

Davies expression (Loewenthal et al., 1989):
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  5.16 ·3.7810825.1


 TA                                               (Equation V.5)

 
Being fi, the activity coefficient for ionic species, (fm, fd or ft), monovalent, divalent or 

trivalent, respectively, I (or Ic), the ionic strength in the solution; A, the temperature-

dependant constant; Ci, the concentration of the ith ionic species (in mol/L); Zi, the charge 

of the ith ionic species; T, the temperature (in Kelvin). A simplified version of the physico-

chemical model is provided in Annex V.1, where CO2 stripping  and NH3 expulsion were 

also considered according to the following equations: 

     322
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32 COHdissolvedCOCOH 
                                                                (Equation V.6) 

 

                                                                                                                      (Equation V.7)                      

 

                                                                                                                                                  (Equation V.8)                             

             

Being 
)(2 g

CO  the partial pressure of CO2 and KH,CO2 the Henry’s law constant for 

CO2. For the stripping of NH3, the partial pressure of this gas is neglected. Only expulsion of 

NH3 is considered in the model. 
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V.3. RESULTS 

V.3.1 Ca and P behavior in the biological reactors: influence of pH  

Under normal operating conditions (figure V.2.), two successive stages were 

observed during the GSBR cycle. First K+, Mg2+ and PO43- were released during the 

anaerobic phase, whereas calcium was nearly constant (slight increase). During this phase, 

polyphosphate accumulating organisms (PAOs) consumed volatile fatty acids (a fraction of 

the COD) at the expense of energy release by the breakage of intracellular polyphosphate, 

composed of K+, Mg2+ and PO4
3- (Jardin and Pöpel, 1996; Barat et al., 2005). Then, in the 

subsequent aerobic phase, phosphorus was taken up by the PAOs, thus reconstituting the 

polyphosphate source and resulting in a net phosphorus removal from the bulk at the end 

of the aerobic cycle. Figure V.2.b also shows the pH profile during the course of the cycle: 

pH first slightly decreases during anaerobic phase due to proton release (as observed by 

Serralta et al., 2004) and then increased to 8.2 at the beginning of the aerobic period due 

to volatile fatty acids consumption and CO2 stripping. At the end of COD consumption, 

aerobic respiration declined and pH decreased. This could be explained by proton release 

during biological nitrification and also a possible acidification can be due to calcium 

phosphate precipitation.  Calcium remained constant during the pH plate profile and then 

decreased, the decrease coinciding with the maximum phosphate concentration in the 

bulk.  
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Figure V.2: Kinetic cycle in GSBR (R2) operated at normal conditions (without pH control). a) 

Evolution of PO4
3-
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 (    ); b)  COD ( ), pH (  ) and DO (  ) during a cycle 

run.  
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Figure V.3: Granule cut analyzed with 

SEM-EDX Analysis showing calcium 

phosphate inside 

Simultaneous storage of a part of the phosphates from the bulk occurred in the 

form of calcium phosphate precipitates inside biological granules, demonstrated by SEM-

EDX analysis (figure V.3). A Ca:P molar ratio of 1.64±0.09 was found in the mineral core 

which was close to that of HAP (1.67) (see details in chapter II). This second mechanism 

contributing to phosphorus removal and immobilization is noted as Microbial Induced 

Phosphorus Precipitation (MIPP).  
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Figure V.4: Kinetic tests in biological reactor at different pH a) calcium and pH; b) phosphorus and 

pH. Legend: Ca(    ),  P (     ), pH( - ); normal kinetics (black, dotted line); high pH (black); low pH 

(gray). 

Three experiments were carried out in the biological GSBR, with pH controlled at 

8.4±0.2 and 7.4±0.2 and another, at the normal pH evolution. Calcium and phosphate 

profiles in the supernatant are shown in figures 4.a and 4.b. Initial examination suggested 

that pH strongly influenced the phosphate profile (Fig. 4b). Experiments at high or low pH 

both led to a decrease of the phosphate release and uptake. A better P removal yield was 
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finally achieved when pH was not controlled. A first reason is probably that micro-

organisms (PAOs) are disturbed by a sudden change of pH in the reactor (here the final pH 

was 0.5 units higher or lower than in the normal cycle). A second explanation may be that 

precipitation is favored at high pH, masking the EBPR process. Given that two processes 

(MIPP and EBPR) are responsible for the total phosphate behavior, the contribution of 

precipitation could be evaluated with respect to calcium removal. The higher the pH in the 

bulk, the lower the calcium concentration obtained, strengthening the contribution of 

precipitation to the whole process.  

In order to evaluate whether pH drives the calcium phosphate precipitation, figure 

V.5 shows the variation of calcium concentration versus pH, obtained from different 

kinetics carried out at different moments during the running period. We extended the 

analysis to two GSBRs: R1 (operated in anoxic/aerobic conditions) in which pH reached 

higher values induced by a higher denitrification activity, and R2 (operated in 

anaerobic/aerobic conditions). Figure 5.a compares the effect of pH induced biologically in 

two reactors, GSBR R1 and R2. The details of the first reactor will not be addressed here 

but the main difference with respect to R2 relies in the introduction of an anoxic phase 

(with the presence of nitrate as electron acceptor) instead of the anaerobic one of R2, as 

seen in chapter III. Thus, in R1, biological denitrification induced higher pH increase (from 

7.5 to 9.2) than in R2, resulting in a higher contribution of the precipitation phenomenon. 

Figure 5b shows that, when pH increases to 9 in R1 (at the end of anoxic phase), calcium 

concentration decreases in the bulk as a consequence of precipitation, reaching the lowest 

value observed (around 22 mgCa/L). Meanwhile, there is calcium release when the pH 

decreases. The same figure for R2 shows a different trend: calcium concentration increase 

is followed by a flat stable period during which pH increases (until the end of phosphate 

release by PAO), then calcium decreases during the aerobic phase, probably due to 

precipitation. At the end of the cycle, calcium concentration reaches a similar value (25-26 

mg/L) in both reactors, as final pH values are also similar (7.9-8). Finally these data point 

out the important influence of the biological reaction on pH and its consequences on 

precipitation. 
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Figure V.5: calcium concentration versus pH in two biological GSBR: a) set of points 

corresponding to different kinetics during the reactor running period, b) comparison of the 

tendency of calcium profiles with pH during a kinetic course in both reactors     

V.3.2. Calcium precipitation in the batch tests.  

In order to assess the calcium precipitation kinetics separately from EBPR 

reactions, batch tests were performed individually with sludge samples maintained 

aerated and mixed in endogenous conditions. Various pH, ionic strengths, TSS and initial 

calcium and phosphorus concentrations were tested. Simulations with PHREEQC software 

considering the supernatant quality at the starting point of each test indicated the 

minerals that were supersaturated in the bulk (SI>0 in table V.2).   

In all tests, hydroxyapatite (HAP), amorphous calcium phosphate (ACP) and 

tricalcium phosphate (TCP) were systematically supersaturated in the bulk. Aragonite, 

which is one of the polymorphs of calcium carbonate, was only thermodynamically 

susceptible to form in tests with high pH and low VSS, or initially at high VSS 

concentration, when inorganic carbon was not already depleted. Neither octacalcium 

phosphate (OCP), nor newberite and magnesium phosphate. Brushite (DCPD), phosphate 

dicalcic anhydrous (DCPA) andhydroxidicalcium phosphate (HDP) were only 

supersaturated for some of the tests (coinciding with aragonite saturation).  
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Table V.2: Supersaturation Indexes with respect to different minerals in the bulk at the 

beginning of the batch precipitation tests calculated with PHREEQC at T=25ºC. 

 

supersaturated solid phases calculated by PHREQC 

test  HAP ACP HDP TCP OCP DCPD DCPA CAL ARAG NEW Mg3(PO4)2  

S1P1 1.28 0.57 0.05 1.31 -5.43 -0.18 -0.04 -0.87 0.11 -1.62 -1.79 

S1P2 1.06 0.45 -0.22 1.19 -5.40 0.20 0.34 0.29 -0.38 -1.29 -1.97 

S1P3 1.81 1.03 0.54 1.77 -4.88 -0.24 -0.10 0.60 0.51 -1.04 -0.57 

S1P4 1.02 0.40 -0.26 1.14 -5.48 0.17 0.31 -0.39 -0.48 -1.01 -1.64 

S1P5 1.19 0.54 -0.10 1.28 -5.32 0.13 0.27 -0.19 -0.28 -0.97 -1.41 

S1P6 0.92 0.25 -0.29 1.00 -5.80 -0.13 0.02 -0.39 -0.48 -1.16 -1.62 

S2P1 1.18 0.48 -0.03 1.22 -5.55 -0.20 -0.06 -1.00 -0.03 -1.26 -1.44 

S2P2 1.43 0.75 0.13 1.49 -5.07 0.09 0.23 -0.88 0.10 -1.04 -1.24 

S2P3 1.52 0.77 0.28 1.51 -5.21 -0.24 -0.10 -0.60 0.38 -1.20 -1.02 

S2P4 1.59 0.80 0.39 1.54 -5.27 -0.44 -0.30 -0.43 0.55 -1.33 -0.91 

S2P5 2.26 1.64 0.76 2.38 -3.65 0.73 0.87 0.72 0.63 -1.59 -0.87 

S2P6 0.98 0.38 -0.31 1.13 -5.44 0.28 0.42 -0.58 -0.67 -0.84 -1.72 

 

Only the batch tests in which pH values coincided with the range of pH observed in 

the GSBR (6.5-9.1) were considered for evaluating Ca:P stoechiometry. Figure V.5 shows 

the variation of calcium versus phosphate, indicating the experimental Ca:P stoichiometry 

in the different tests. For each point, relative standard deviation was 25% (mainly due to 

chromatography analysis). The sets of experiments were correlated to a straight line, the 

average slope of which gave a Ca:P ratio of 1.43 ± 0.03.  
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Figure 

V.6: experimental ∆Ca versus ∆P (mmol) precipitated in the batch tests, compared to the 

reference ratios for minerals that were supersaturated in the bulk. 

It can be seen that most of the points are arranged in a row close to that of the 

theoretical mineral ACP/TCP (Ca:P=1.5), indicating that the last two phases are the most 

likely to precipitate prior to HAP crystallization in the different conditions tested. No 

significant influence of pH (range 6.5-9.1), calcium and phosphorus concentrations (range 

20-300mg/L) or ionic strength (range 1.2·10-2-5.7·10-2) was found on this ratio. Since ACP 

and TCP have the same molar Ca/P ratios, the above methodology does not distinguish 

between the two minerals. Considering the fact that pH could vary between 6.5 and 9 in a 

biological reactor, figure 7 shows the influence of pH on the SI of the three major 

supersaturated phases according to PHREEQC: ACP, TCP and HAP. Simulations were 

conducted with the concentrations corresponding to experiment S2P1, comparable to 

those in the range measured in the biological reactor (33 mg/L for Ca and 14 mg/L for P). 

The SI of the minerals increased proportionally to the pH in the bulk, revealing for 

all of them, one pH value at which HAP, then TCP and finally ACP started to become 

supersaturated, the other parameters remaining constant. Since the Ca:P ratios of ACP and 

TCP were similar due to the similarities in their chemical formula, modeling was further 

evaluated to isolate the most probable precursor driving HAP crystallization in aerobic 

granules. 
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Figure V.7: pH influence on ACP, TCP and HAP supersaturation index calculated by 

PHREEQC® for test S2P1.  

V.3.3 Modelling calcium phosphate precipitation  

Based on the batch tests, three experiments (S2P1 and S2P2 at low VSS 

concentration, and S1P5 at high VSS concentration) were modeled using AQUASIM 

software, combined with PHREEQC for the initial conditions. The kinetic constant rate of 

the mineral (K) and the thermodynamic constant were fitted in the model as the values 

proposed for the last one in literature vary widely according to the different authors (table 

V.3). 

 

Table V.3: Thermodynamic precipitation constants of ACP and TCP from 
the literature  

Mineral phase pKsp (T=25ºC) Reference 

ACP 

25.46 Hoffmann, 1977 

26.52 Seckler et al., 1996 

25.20 Meyer and Weatherall 1982 

28.92 NIST database, 2011 

Β-TCP 

32.63 Murray and May, 1996 

32.70 NIST database, 2011 

28.77 Song et al., 2001 

 

Figure V.8 shows the calcium and phosphorus profiles modeled in the 

aforementioned tests compared to the experimental points. The adjusted model matches 
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the experimental data well, and the kinetic constants together with the pKsp fitted for 

each experiment are shown in table V.4.  

 

Table V.4: Thermodynamic precipitation and kinetic rate constants deduced 

from the model.  

Assay TSS(g/L) pKsp value Kinetic constant rate (min-1) 

S1P5 18.40 28.36 3.81·107 

S2P1 2.86 27.99 4.13·105 

S2P2 2.66 27.88 1.16·105 

 

Results show that the higher the TSS concentration in the bulk, the higher the 

kinetic constant rate of precipitation. In contrast, pKsp values were very similar in all the 

experiments. An average value of pKsp=28.07±0.58 was obtained. Considering a single 

pKsp for all the experiments, a satisfactory pKsp value was obtained from the mean of the 

previously fitted values, allowing the thermodynamic constant of the precursor phase to 

be found. 
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Figure V.8: Comparison of experimental and modeled assays at different MLSS concentrations: 
a) 18.4 g/L; b) 2.66 g/L; c) 2.86 g/L. Legend: [Ca] in gray; [P] in black. 

 

The sensitivity of the model to pKsp value is evaluated in figure V.9. The three sets 

of tests chosen were modeled taking 3 different pKsp values into account according to table 

V.3: the minimum provided in the literature (25.2), the maximum provided (32.63) and 

the mean value calculated above from the experiments modeled (28.07). It can be seen 

that the model (with a pKsp=28.07±0.58) described the observations correctly for 

different initial Ca:P ratios. 
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Figure V.9: Model sensitivity to the different precipitation constants (pKsp) (a) [P] prediction;  (b) [Ca]  

V.3.4 Analysis of the solid phases  

Precipitates were collected and analyzed at the end of each experimental series 

and were representative of the cumulated mineral matter in the 2L reactor.  

Figure V.10 shows the XRD analysis conducted on two samples: the suspended 

matter precipitated (black), and the sample of biological granules. Both samples were 

compared to the most coincident mineral patterns in the database of the software used 

(EVA®). The XRD spectra highlighted two coincident patterns with clear individual peaks: 

hydroxyapatite (HAP) and sylvite (KCl). Sylvite (KCl) was only observed in the suspended 

matter. It is a very soluble salt which was certainly not precipitated in the reactor initially 

but was formed during the evaporation of the sample (the presence of K+ and Cl- in the 

solution was due to the potassium phosphates and calcium chloride used for batch tests). 

The HAP spectrum was the one that explained the major peaks for both granules and 

suspended solids samples. In addition, the spectra indicated the probable presence of 

amorphous phases, which could explain the large peaks that do not exactly match any 

crystalline forms. 
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The most important conclusion is that both sample patterns match and coincide 

with that of HAP almost perfectly, despite the black peak at 33º, 47º and 58º in the 2θ 

abscissa axis, which corresponds to that of the sylvite mentioned above. Another 

conclusion is that, whatever the precursor is, the final phase crystallized seems to be HAP, 

both in the bulk and in the granules, and that the time scale for its precipitation is less than 

7 days. These results confirm the similarities between the precipitated phases found in the 

supernatant during the batch tests and those observed inside the granules.  

Figure V.10: Comparison of the mineral precipitated at the end of the batch tests and 

mineral fraction in the core of biological granules. 

 

V.4. DISCUSSION 

V.4.1. ACP: the precursor of HAP in granular sludge processes 

The results globally confirm that HAP is the major crystallized mineral 

accumulated in the granular sludge in the long term. But data also indicate that calcium 

phosphate precipitated first during each batch cycle, due to super-saturation in a 

precursor form which was probably ACP. According to House and Donaldson (1986), HAP 

precipitation crystallizes through a precursor when heterogeneous nucleation takes place, 

which was the case here. Although different precursors are proposed in the literature, ACP 

or TCP seems to be the one that can be formed at a wider pH range, and different ionic 

strengths. Results obtained in this paper for the precipitation batch tests (in which 
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biological activity was limited), led to a calcium phosphate precursor with Ca:P molar 

ratios between 1.38-1.59, with a mean value of 1.43±0.03, which fits with ACP or TCP. 

Modeling different assays at different MLSS concentrations revealed that the pKsp that 

best fitted the data was pKsp25ºC = 28.07±0.58. The thermodynamic constant was 

compared to that provided in the literature (table V.3) and corresponds to ACP for the 

NIST database, whereas TCP, which has the same Ca/P ratio,  should theoretically present 

a higher pKsp. Regarding the precursor phases able to form in acidic conditions (Gao et al., 

2010), neither brushite (DCPD), nor monetite (DCPA) and octacalcium phosphate (OCP) 

were likely to form in the batch tests from a thermodynamic point of view, considering the 

SI negative values. This result first contrasts with the model by Maurer and Boller, 1999, 

who proposed the HDP as a precursor form, with Ca:P molar ratio = 2. In our work, the 

only test in which the Ca:P removal ratio was close to 2 could be explained by a 

simultaneous precipitation of calcium carbonate, probably aragonite at high pH, which is 

supported by the supersaturation index (SI) calculated with PHREEQC (see table V.2). 

Thus, our results confirm the approach of Barat et al., 2011, and those of Musvoto et al., 

2000a and 2000b, who considered ACP, as the first step of calcium phosphate 

precipitation. 

Finally, modeling ACP formation by the Koutsoukos model (1980), predicted 

calcium and phosphate behavior during the batch tests quite well. These assays were 

predicted only for the short term (from 3 to 15 h) and it should be noted that the 

progressive formation of HAP should also be included in the long term as it was 

demonstrated to accumulate after several days. 

V.4.2. Operating pH conditions influencing MIPP in GSBR 

Supersaturation with respect to Ca and P concentrations and pH were the major 

parameters that influenced precipitation, in agreement with Mulkerrins et al., (2004). 

 In order to evaluate how pH drives calcium phosphate precipitation, figure V.11 

shows the evolution of calcium concentration as a function of pH, obtained by modeling 

different pH values over different kinetics during the running period in order to assess the 

contribution of P precipitated with calcium at each pH in equilibrium. Simulations were 

carried out using the model described above, which allowed the calculation of the 

equilibrium concentration for Ca2+ and PO43- at the different pH tested between 6.5 and 

9.5. Different Ca:P ratios and initial concentrations were tested in the influent, in order to 
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assess the limiting conditions for the maximum P removal fraction by precipitation (in the 

case that no biological P removal takes place).  
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Figure V11: Contribution of calcium phosphate precipitation within different pH attained at 
the end of each kinetic phase in the GSBR. Ca:P ratios in the inlet are in mol.  a) % of Ca 

removed by precipitation (gray); b) % of P removed by precipitation (black) 

 

The results in figure V.11 pointed out that in the current influent conditions ([Ca] = 

50 mg/L and [P]= 30 mg/L), the maximum fraction of P that could be removed by 

precipitation achieves the 55% at final pH=8. This is under the assumption that no 

interference with EBPR process took place. Indeed in the bioreactor, experimental kinetics 

showed a higher P removal but a lower contribution of the precipitation mechanism (39.6 

%), which is due to simultaneous biological P removal (EBPR). Figure 11.b confirms that 

pH seriously influences the Ca-P precipitation: variation of one pH unit from 7.5 to 8.5 

leads theoretically to an increase from 40% to 75%, at the GSBR working pH range. 

Therefore, P removal by Ca-P precipitation can vary a lot depending on the final pH 

attained at the end of the cycle. For example,  varying 25% to 85% of P could precipitate 

varying pH in a range from 7 to 9 in the model. As indicated in Figure V.11, precipitation 

was observed in the sequencing batch reactor due to an enough level of calcium and 

phosphate achieved in the influent (50 mg/L of Ca and 30 mg/L of P). The amount of 

calcium-phosphate formed in the reactor is first driven by the amount of calcium and 

a) b) 

[Ca:P]in=1.29 

[Ca:P]in=0.65 

[Ca:P]in=2.58 
[Ca:P]in=0.65 

[Ca:P]in=1.29 

[Ca:P]in=2.58 
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phosphate present in the bulk. Finally, figure V.11 also shows how the amount of P 

removed by precipitation increased as the influent Ca/P ratio increases.  

V.4.3. Influence of biomass and bioreactions on precipitation  

The precipitation process is also influenced by biomass in different ways: (1) bio-

aggregates play a catalyzing role at the nucleation sites, (2) some of the bioreactions 

modify the pH locally and transiently, (3) some of the bio-reactions transiently release 

phosphates (coming from internal polyphosphate).  

Identification of the model parameters indicated that the kinetic rate of calcium 

phosphate precipitation increased with suspended solids concentration. Obviously, it is 

well-known that precipitation is a surface-controlled process and the differences in the 

values of the kinetic constants can be due to the surface available for crystal nucleation. 

Moreover no precipitates were observed in batch tests without any sludge addition 

(VSS=0, results not shown) whereas crystal formation was observed in tests with even 

lower initial Ca and P concentrations and even lower pH but previously seeded with 

microbial aggregates, leading to the conclusion that heterogeneous nucleation onto the 

suspended biological aggregates constitutes a first step towards the MIPP process. Figure 

V.12 shows different images of microscopic observations over the different experiments in 

the batch reactor.   

At the end of a normal cycle in the bioreactor, no crystals were found in the 

supernatant (figure 12.a). In contrast, in the batch assays, nucleation began (figure 12.b) 

and some crystals started appearing on the bioaggregates interface (figure 12.c). Different 

crystallization forms were observed during the physicochemical tests (figs. 12.d, e and f), 

all converging in dendritic crystals centered in rhombohedral structures that finally 

superposed to form rectangular terraces like the HAP formation reported by 

(Chakhmouradian and Mitchel, 1999; Elliott, 1994). 
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Figure V.12: Mineral precipitation in the batch tests at different periods (Scale bar =100 

μm): a) at the end of the aerobic period in the biological reactor, b) beginning of the batch test 

with low VSS concentration; c) dendritic growth of precipitates that have nucleated on organic 

sludge filaments; d) rhombohedral shape of calcium phosphate growing at the crossing point of the 

dendritic crystals; e) illustrates a co-precipitation of another phase onto the previous crystals and f) 

shows the final helicoidal crystal growth of presumed HAP. 

 

As calcium phosphate in the form of HAP was observed in the center of granules, it 

is likely to think that bioreactions could locally increase the supersaturation either by a pH 

increase or an anaerobic phosphate release. In the beginning of the GSBR cycle when pH 

starts to increase due to denitrification (and also acetate consumption) and when P is 

released by PAO,  heterogeneous nucleation of ACP probably begins on the surface walls of 

bacterial and maybe also in the internal pore of aggregates where anoxic or anaerobic 
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activities are the most important. Partial solubilization of ACP at the surface of the 

bioaggregates could also take place during subsequent aerobic period as the nitrification 

provokes a proton release. On the other hand, the pH in the center could be maintained 

relatively high due to oxygen limitation favoring simultaneous denitrification, and 

amorphous calcium phosphate could be progressively converted to HAP in the core of 

granules. ACP cannot be detected by XRD (Banu, 1995), so no peaks of the precursor could 

be observed in the core of granules, only those of the crystallized HAP have been 

demonstrated. However, previous analysis with EDX probes showed that Ca and P content 

in the external part of bioliths was lower than those measured in the center (Mañas et al. 

2011). Thus, HAP would probably crystallize with time and grow in an organic confined 

medium that would store it as a stable phosphate resource until granule breakage or 

purge.  

V.5. CONCLUSIONS 

In this work, experiments were conducted to investigate calcium phosphate 

precipitation in an EBPR process with granular sludge.  

Short term calcium phosphate precipitation was characterized by a Ca:P 

stoichiometry of 1.43±0.03 which is close to those of ACP or TCP. Calcium and phosphate 

behavior were successfully modeled considering a mean pKsp value adjusted to 

28.07±0.58, which is in accordance with the literature and comparable to that of ACP. 

After several days, amorphous calcium phosphate was converted to HAP, which was 

detected by XRD analysis. 

The contribution of P removal by precipitation, which is linked to the MIPP 

mechanism responsible of the phosphate bioliths found in granules, is basically influenced 

by pH and Ca and P concentrations. In the conditions tested, a maximal contribution of 

precipitation between 40 % to 75 % of the P removed could take place depending on the 

final pH achieved in the biological reactor.  

The presence of biomass influenced calcium phosphate precipitation in different 

ways: heterogeneous precipitation took place on bio-aggregates which formed the 

nucleation site, and the kinetic rate is hence proportional to suspended solid 

concentration (no signs of precipitation were found in the test carried out without 

biomass). Bioreactions that produce alkalinity, i.e. denitrification or VFA consumption, 



Chapter V: Parameters influencing calcium phosphate precipitation and precursors 

 

 

156 

 

encourage precipitation in the bioreactor and also probably in the core of microbial 

granules, where hydroxyapatite is observed to accumulate. 
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** Needs to be determined by this method 

 

 

Rate of the forward dissociation Rate of the reverse dissociation 

H2O K_r_w*((10^(-pK_w))/(fm^2)) K_r_w*S_OH*S_H 

H2CO3
* K_r_c1*((10^(-pK_c1))/(fm^2))*S_H2CO3star K_r_c1*S_H*S_HCO3 

HCO3
- K_r_c2*((10^(-pK_c2))/fd)*S_HCO3 K_r_c2*S_H*S_CO3 

H3PO4 K_r_p1*((10^(-pK_p1))/(fm^2))*S_H3PO4 K_r_p1*S_H*S_H2PO4 

H2PO4
- K_r_p2*((10^(-pK_p2))/fd)*S_H2PO4 K_r_p2*S_H*S_HPO4 

HPO4
2- K_r_p3*(((10^(-pK_p3))*fd)/(ft*fm))*S_HPO4 K_r_p3*S_H*S_PO4 

NH4
+ K_r_n*(10^(-pK_n))*S_NH4 K_r_n*S_H*S_NH3 

CaOH+ K_r_ca1*S_CaOH K_r_ca1*((10^(-pK_caoh))*fd)*S_Ca*S_OH 

CaCO3(aq) K_r_ca2*S_CaCO3aq K_r_ca2*((10^(-pK_caco3))*(fd^2))*S_Ca*S_CO3 

CaHCO3 K_r_cahco3*S_CaHCO3 K_r_cahco3*((10^(-pK_cahco3))*fd)*S_Ca*S_HCO3 

CaPO4
- K_r_capo4*S_CaPO4 K_r_capo4*((10^(-pK_capo4))*fd*ft/fm)*S_Ca*S_PO4 

CaHPO4 K_r_cahpo4*S_CaHPO4 K_r_cahpo4*((10^(-pK_cahpo4))*(fd^2))*S_Ca*S_HPO4 

CaH2PO4
+ K_r_cah2po4*S_CaH2PO4 K_r_cah2po4*((10^(-pK_cah2po4))*fd)*S_Ca*S_H2PO4 

MgOH+ K_r_mgoh*S_MgOH K_r_mgoh*((10^(-pK_mgoh))*fd)*S_Mg*S_OH 

MgCO3 K_r_mgco3*S_MgCO3 K_r_mgco3*((10^(-pK_mgco3))*(fd^2))*S_Mg*S_CO3 

MgHCO3
+ K_r_mghco3*S_MgHCO3 K_r_mghco3*((10^(-pK_mghco3))*fd)*S_Mg*S_HCO3 

MgHPO4 K_r_mghpo4*S_MgHPO4 K_r_mghpo4*((10^(-pK_mghpo4))*(fd^2))*S_Mg*S_HPO4 

MgPO4
- K_r_mgpo4*S_MgPO4 K_r_mgpo4*((10^(-pK_mgpo4))*fd*ft/fm)*S_Mg*S_PO4 

MgH2PO4
+ K_r_mgh2po4*S_MgH2PO4 K_r_mgh2po4*((10^(-pK_mgh2po4))*fd)*S_Mg*S_H2PO4 

NaHPO4
- K_r_nahpo4*S_NaHPO4 K_r_nahpo4*((10^(-pK_nahpo4))*fd)*S_Na*S_HPO4 

 1  

Table V.5: Petersen matrix simplified for aqueous species in the solution: acid/base equilibria, ion pairing and 

Ca3(PO4)2 precipitation. 

Table V.6: Kinetic rate of the forward and reverse equations for dissolved species. 

 

CO3
2- HCO3

- H+ OH- H2PO4
- HPO4

2- PO4
3- Mg2+ Ca2+ Na+ NH3 pK Kr 

 (s-1) 

H2O  
 1 1 

  
 

 
 

  
14 10

10
 

H2CO3  
1 1  

  
 

 
 

  
(3404.7/T)-14.8435+T*0.03279 10

7
 

HCO3
- 1  1  

  
 

 
 

  
(2902.4/T)-6.498+T*0.02379 10

10
 

H3PO4  
 1  1 

 
 

 
 

  
(799.3/T)-4.5535+T*0.01349 10

8
 

H2PO4
- 

 
 1  

 
1  

 
 

  
(1979.5/T)-5.3541+T*0.01984 10

12
 

HPO4
2- 

 
 1  

  
1 

 
 

  
12.02 10

15
 

NH4
+ 

 
 1  

  
 

 
 

 
1 (2835.8/T)-0.6322+T*0.00123 10

12
 

CaOH+ 
 

 
 

1 
  

 
 

1 
  

-1.22 10
7
 

CaCO3(aq) 1  
 

 
  

 
 

1 
  

-3.20 10
7
 

CaHCO3
+ 

 
1 
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-1.26 10

7
 

CaPO4
- 

 
 

 
 

  
1 

 
1 

  
-6.46 10

7
 

CaHPO4  
 

 
 

 
1  

 
1 

  
-2.73 10

7
 

CaH2PO4
+ 

 
 

 
 1 

 
 

 
1 

  
-1.41 10

7
 

MgOH+ 
 

 
 

1 
  

 1  
  

-2.20 10
7
 

MgCO3 1  
 

 
  

 1  
  

-3.40 10
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MgHCO3
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-1.16 10
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MgHPO4
 

 
 

 
 

 
1  1  
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MgPO4
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1 1  
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MgH2PO4
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NaHPO4
- 

 
 

 
 

 
1  

 
 1 
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Ca3(PO4)2  
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CHAPTER VI:  

CONCLUSIONS AND PERSPECTIVES 
 

 

 

“Tout ce qu’un homme est capable d’imaginer, un jour, d’autres hommes seront capables de 
le réaliser.” Jules Verne 

 

*** 

 

This short chapter overviews the main outcomes of this thesis, the work that has not been 
valorized as result chapters yet, as well as some guidelines for future work. 
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VI.1.GENERAL CONCLUSIONS AND RESULTS  

This thesis has been focused on phosphorus removal in biological aerobic granular 

sludge reactors, and particularly, on a particular phenomenon observed, namely by the first 

time: Microbially Induced Phosphorus Mineralization (MIPP), consisting on the 

bioaccumulation of phosphate minerals inside granules.  

The first strategy consisted on evaluating the performances and the different processes 

that took place in a GSBR which contained a mixture of flocs and granules, and working with 

anoxic/aerobic cycles. During 500 days of study, COD, N-NH4 and phosphorus removal yields 

varied from 92-97%, 93-100% and 30-70% respectively. The assessment of different reactor 

kinetics cycles, and the absence of solid minerals in the bulk, lead us think that some 

biomineralization processes could take place inside aerobic granules.  

According to this, a set of tests with different analytical techniques (Raman, SEM-EDX, 

XDR, MPL, chemical extractions) were carried out in the research of mineral deposits in the flocs 

matrix, in the supernatant and in different granule-cut slices.  

The observation of the granules with microscopic polarized light (MPL), first revealed a 

crystalline structure in the internal slices of aerobic granules grown in the afore-mentioned 

GSBR. Raman, XRD and SEM-EDX analysis converged that a calcium phosphate crystal in the 

major form of hydroxyapatite [Ca5(PO4)3(OH)], precipitated in the core of granules.  

In the third chapter, the stability and performances of two GSBR were studied. GSBR1 

was the same precedent reactor (working with anoxic/aerobic cycles), whereas GSBR2 was 

seeded with biomass from GSBR1, and it was run in anaerobic/aerobic cycles, encouraging bio-P 

removal. At the end of the 250 days of study, a part of the biomass in GSBR2 was washed out, 

due to the filamentous bacteria outgrowth on granules surface (associated with the fast growth 

of granules’ size up to 4mm). Conversely, the parent reactor maintained its good properties. 

GSBR1 was stable during the course and achieved good COD and nitrogen removal yields (99 

and 100% respectively), whereas GSBR2 achieved 97% of COD removal and 86% on average of 

nitrogen removal, being very variable this last performance. Regarding phosphorus, both 

reactors attained similar yields on average (45%), although GSBR2 was more unstable. The 

contribution of precipitation in both reactors was of 28 and 21 % of the incoming phosphorus 

for GSBR1 and GSBR2, respectively, based on average calcium removal yields. Therefore, 

precipitation phenomena seemed to be more important in GSBR1, which was assumed to be 

enhanced by the higher pH achieved (up to 9.2) during the denitrification stage.  
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In chapter IV, the analytic techniques developed in chapter II, were applied for anaerobic 

granules originated from different full scale UASB treating wastewater from cheese industry. 

Granules from anaerobic processes presented a broad heterogeneity of samples, some 

contained mineral bioliths sparsely inside, others outside and some samples did not contain bio-

minerals neither inside nor wrapping the granule. But most of the samples contained either 

calcium phosphate concretions inside, probably ACP or TCP (considered like HAP precursors); 

or calcium carbonate, for the UASB working at the highest pH. The calculation of 

supersaturation indexes for the minerals assessed in the bulk of all reactors (UASB and GSBR) 

and SEM-EDX analyses, lead to think that calcium phosphate tended to cumulate inside granules 

due to the more favorable local conditions induced by biological reactions. In any case, struvite 

does not appear to precipitate neither in the bulk nor inside granules of any reactor (anaerobic 

nor aerobic). Aeration tests over the effluent coming from different anaerobic digesters (Annex 

VI.1), showed that struvite could form if proper pH was attained by CO2 stripping (aerating the 

effluent). Despite of the higher pH achieved in aerobic reactors, ammonium is depleted via 

nitrification during the aerobic phase, and magnesium concentrations were not high enough to 

precipitate struvite at the end of the cycles, although figures II.9 and II.11 show that it could be 

transiently formed during the anaerobic/anoxic phase.  

It is assumed that in aerobic granules, calcium phosphates were formed gradually by 

means of a precursor of the most thermodynamic stable phase, as suggested with SEM-EDX 

analysis. The research of such precursors is important regarding modeling, and it was thus 

assessed in chapter V.  

Therefore, different precipitation batch tests were carried out in order to assess 

physicochemical precipitation at different pH, TSS and calcium and phosphorus concentrations. 

A physicochemical model was used for modeling the different set of tests. Those experiments 

revealed that the most probable precursor of HAP in the operating conditions of the GSBR 

reactor was ACP, providing a pKsp constant of 28.07 ± 0.58; and a kinetic constants varying with 

the TSS concentration.  

Phosphorus removal by Ca-P precipitation can vary depending on the final pH reached 

at the end of the cycle, varying from 25% to 85% in a pH range from 7 to 9 according to the 

model. The free evolution of pH from 7.2 to 8.5 during the kinetic cycle course in GSBR2, seems 

to be the best strategy to encourage bio-P removal, and with the current synthetic effluent 
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concentrations, the maximum fraction of P that could be removed by precipitation achieves the 

55% at final pH=8.  

The bio-precipitation process is influenced by biomass in different ways: (1) bio-

aggregates play a catalyzing role as nucleation sites, (2) some of the bioreactions modify the pH 

locally and transiently, (3) some of the bacteria (PAO) transiently release phosphates (coming 

from internal polyphosphate). The first point was illustrated by the fact that no crystal 

precipitation was found in physicochemical experiments with TSS = 0 g/L. The second point 

could explain the stratification of calcium phosphates in the core of granules, as denitrification 

(responsible of pH rise) takes place in the anoxic zones of the granule (Mañas et al., 2009).  

Summarizing, this thesis has contributed to two different aspects: from a fundamental 

point of view, it has been evaluated the mechanisms of biomineralization in aerobic granules, 

developing some analytical techniques for characterizing the nature of the bioliths. A physico-

chemical model as well as some calculation softwares, have been coupled in order to provide 

thermodynamic information for the comprehension of the different phenomena. From an 

applied point of view, it has been evaluated the performances and stability of different reactor 

configurations, in sight of applying the process for a real case of industrial wastewater effluent.  

 

VI.2.PERSPECTIVES  

Finally, providing information about the mineralization phenomenon in aerobic 

granular sludge, this work sheds light on the possibility of treating calcium and phosphorus-rich 

effluents, like those coming from the dairy and cheese industry, with aerobic granules cultivated 

in SBR, for several reasons: 1) in order to achieve better nutrient removal yields 2) in order to 

facilitate sludge valorization with a phosphate-rich, stable and easily dewatering mineral 3) 

driving mineral precipitation inside granules can provide them stable settling properties. And 

finally it could reduce the clogging problem in pipes, pumps and reactor walls. 

Nevertheless, work is now in progress in order to evaluate some aspects that have not 

been possible to assess during this Ph.D dissertation:  

1) The use of a real effluent with higher concentrations of nutrients and calcium is now 

planned in a SBR with a volume of 345 L (figure VI.1) located in one of the cheese wastewater 

treatment plants. It will be placed after the anaerobic digester, and a VFA by-pass stream could 
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be envisaged in order to provide more easily biodegradable carbon sources and avoid the 

filamentous bacteria growth that destabilized reactor GSBR2, and to enhance EBPR. This 

process will be combined and compared with a struvite crystallizer.  

 

 

 

 

 

 

 

 

 

 

Figure VI. 1: GSBR (right) and crystallizer (left) pilots 

for real wastewater treatment coming from the cheese 

industry. 

Even if some commercial technologies (see chapter I) aim hydroxyapatite pellet 

formation, hydroxyapatite is one of the most thermodynamic stable phases among calcium 

phosphates, thus, phosphate bio-availability is considered insufficient for direct fertilization.  A 

post-treatment process of granules withdrawn, could consist on an acid solubilization of 

smashed dried granules in water (figure VI.2), used for irrigating the fields.  

 

 

 

 

 

Figure VI. 2: Air-Dried granular sludge purged from GSBR1. 
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2) Another perspective of this thesis consists on the coupling of the physicochemical 

model and the biological one in order to assess the precipitation phenomenon inside granules. 

Preliminary results using the ASM3 model for GSBR1 showed proton gradients inside these 

aggregates, and they were compared to titrimetric results that had been found in the literature 

(Mañas et al., 2009). However, future work implies the coupling of both models in aerobic 

granules (that has not been done to the present). Given that biological phosphorus removal 

takes place in the reactor, the choice of a suitable biological model must be considered (like 

ASM2d including pH calculations –Henze et al., 1999; Serralta et al., 2004; García-Usach et al., 

2010). We have chosen the possibility of using ASM3+bio-P model (Rieger et al., 2001) and 

research is now focused on this aspect.  

3) Another axis that should be envisaged is the use of pH microsensors for measuring pH 

gradients inside the granules. Some trials with O2 probes were performed on granules 

embedded on an agar gel (results not here shown), revealing that O2 was depleted immediately 

in the first 100 μm from the granule surface, and further work needs to be done, especially 

regarding the granule fixation methods and the medium. The goal of carrying out the set of tests 

performed with oxygen microsensors, was to i) prove the microprobes resistance when passing 

through the mineral core ii) verifying that the channels created by the microsensors did not 

affect the internal gradients in the granule (by creating a macropore channel). The results 

ensured the resistance of the sensor to the internal solid core as well as the minimum influence 

of the macropore created.  

4) Finally, the biomineralization potential of granules could be explored for different 

particular cases of polluted effluents, like in the metal bioremediation field. Metals are involved 

in different industrial waste effluents (textile, tannery and dyes, painting, metallurgical, paper-

ink industry, etc.) and some experiments with aerobic granules have been proven to accumulate 

higher metal concentrations than other sorbents, like alginate (Maiti et al., 2009), bacterial spp. 

(Qiu et al., 2009), or activated sludge biomass (Boswell et al ., 2001).  Moreover, the advantage 

of the use of granules for this purpose relies on the easy solid-liquid separation conversely to 

activated sludge. Aerobic granules have been investigated for their capacity of accumulate 

divalent metals like Ni2+, Cu2+, Zn2+ (Liu et al., 2002; Liu and Xu, 2007), Cr2+ (Yao et al., 2009), 

Co2+ (sun et al., 2009) and Cd2+ (Xu and Liu, 2008). They established that precipitation and ion-

exchange mechanisms could be responsible of this phenomenon, and some of them identified 

some functional groups like alcohol, carboxyles, amines and phosphates as metal binding sites. 



Chapter VI: Conclusions and Perspectives 

 

 

167 

 

However, further work could be made in order to enhance metal accumulation potential 

phenomenon in granules for detoxification processes and better understanding the metal-

binding mechanisms in these aggregates and the knowledge of the functional groups involved. 

In fact, the porous structure of bio minerals revealed for the bioliths precipitated inside 

granules, could constitute a proper matrix for scavenging and entrapping metals inside, without 

the redisolubilization problem.  

5) A last research axis that this thesis could provide as a starting point (introduced in 

chapter IV), is the use of bio-genetic tools for driving the precipitation of a desired mineral 

(struvite for example, rather than hydroxyapatite). The study of the lipoproteins rich in aspartic 

acid (Weiner et al., 2008; de Muynck et al., 2010), as well as the enrichment of sludge with 

bacterial spp. like M. Xanthus and M. Coralloides D. (Ben Omar, 1995 and González-Muñoz, 

1993), could be promising for this purpose.  
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1. DESCRIPTION: 

Aeration test with the effluent from a UASB digester from a dairy industrial wastewater 

treatment plant (Site 2, according to Chapter IV). 

2. MATERIAL AND METHODS: 

A batch stirred reactor of 2.5L-volume has been aerated during 24 hours in order to promote pH 

changes due to the stripping phenomenon. (Stirring: 300 rpm; air flow: 120 L/h). pH has been 

followed during the course, and samples were taken regularly for the physico-chemical 

characterization according to AFNOR 1994. The instantaneous concentrations of Ca2+, PO43-, 

Mg2+, K+, Cl-, Na+, NH4+, NO2- and NO3- have been determined by Ionic chromatography (IC25, 

2003, DIONEX, USA), prior filtering the samples through a 0.2 μm pore-size acetate filters. 

Microscopic observations of drops sampled at regular intervals have been performed during the 

kinetics, and the final precipitate has been dried and analyzed with XDR and SEM-EDX, similarly 

as in the precedent chapters. Initial TSS concentrations were of 730 mg/L (mainly due to 

floccular biomass) and initial VSS=462 mg/L. 

3. RESULTS AND DISCUSSION: 

3.1. Kinetics 
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Figure A.VI.1: Evolution of pH, Ca2+, Mg2+, NH4
+, P-PO4

3- concentration during the 

batch kinetics at 120L/h and 300 rpm. 
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Figure A.VI.1 shows the evolution in the bulk of different ions involved in struvite and calcium 

phosphate minerals. All ions considered decrease during the course as pH rises due to the CO2 

stripping phenomenon, being 1.50, 1.29, 4.74 and 0.63, the Ca2+, PO43-, NH4+ and Mg2+ 

diminutions, respectively. Ammonium depletion could be due to simultaneous struvite 

precipitation, and ammoniac stripping (as pH rises up to 9).  

3.2. Solid phase analysis  

Samples taken during the kinetic course were observed with a microscope in order in the 

research of crystal structures (figure A.VI.2). The crystals shown have the same appearance as 

struvite crystals.  

  

  

Figure A.VI.2: Microscopic observations of the bulk at a) 0min; b) 45 min; c) 2 h; d) 24h 

 

 

a) b) 

c) d) 
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Figure A.VI.3. shows the XDR analysis carried out over the air-dried solid phase 

collected at the end of the aeration test. Conversely to the methods used in the precedent 

chapters, the sample was not calcined, and the organic matter could have interferred the 

spectrum, and no MAP or HAP patterns from the database matched with the sample.  
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Figure A.VI.3: XDR pattern of the sample solid phase 

3.3. Influence of different operating conditions (aeration and stirring rates) 

Another test performed at higher aerating rates and stirring velocities (150L/h 

and 520 rpm) were tested in order to compare the phosphorus removal yields, which are 

shown in table A.VI.1. 

Table A.VI. 1: Comparison of the ion removal yields(%) at two different operating 
conditions 

 

 

 

 

 

 

Ion Test 1: 300rpm/120L·h-1 Test 2: 520rpm/150L·h-1 

Ca2+ 58 73 

PO4
3- 61 60 

Mg2+ 68 72 

NH4+ 31 0 
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Figure A.VI.4: Evolution of pH, Ca2+, Mg2+, NH4
+, P-PO4

3- concentration during the batch 

kinetics at high aeration and high stirring conditions (150L/h and 520 rpm). 

 

4. CONCLUSIONS: 

Preliminary tests with real effluents have been conducted for assessing the 

precipitation potential by pH rise induced by aeration. Table A.VI.1 reveals similar 

removal yields for phosphorus, slightly higher removal yields for calcium and magnesium 

in the second test, and a probable struvite redisolubilization phenomenon in the second 

test. Indeed, conversely to the first test, ammonium is not removed at the end of the 

course, probably due to the competition of phosphorus for the calcium and magnesium 

phosphates.  

These observations bear out that mineral precipitation takes place in the bulk when there 

is higher pH values than 7.4 and ions supersaturation. It was also useful to validate the 

physico-chemical model. 
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