28 research outputs found

    Determination of homogenized effective temperatures from stellar catalogs

    Full text link
    Some selected catalogs of the effective temperatures for F, G and K stars are analyzed. By an improved technique we estimate the external errors of these catalogs from data intercomparisons. The values of the effective temperatures are then averaged with the appropriate weights to produce a mean homogeneous catalog based on the selected data. This catalog, containing 800 stars, is compared with some other independent catalogs for estimating their external errors. The data may be used as a source of reliable homogeneous values of effective temperatures, together with their errors.Comment: 16 pages, 10 figure

    Stellar SEDs from 0.3-2.5 Microns: Tracing the Stellar Locus and Searching for Color Outliers in SDSS and 2MASS

    Full text link
    The Sloan Digital Sky Survey (SDSS) and Two Micron All Sky Survey (2MASS) are rich resources for studying stellar astrophysics and the structure and formation history of the Galaxy. As new surveys and instruments adopt similar filter sets, it is increasingly important to understand the properties of the ugrizJHKs stellar locus, both to inform studies of `normal' main sequence stars as well as for robust searches for point sources with unusual colors. Using a sample of ~600,000 point sources detected by SDSS and 2MASS, we tabulate the position and width of the ugrizJHKs stellar locus as a function of g-i color, and provide accurate polynomial fits. We map the Morgan-Keenan spectral type sequence to the median stellar locus by using synthetic photometry of spectral standards and by analyzing 3000 SDSS stellar spectra with a custom spectral typing pipeline. We develop an algorithm to calculate a point source's minimum separation from the stellar locus in a seven-dimensional color space, and use it to robustly identify objects with unusual colors, as well as spurious SDSS/2MASS matches. Analysis of a final catalog of 2117 color outliers identifies 370 white-dwarf/M dwarf (WDMD) pairs, 93 QSOs, and 90 M giant/carbon star candidates, and demonstrates that WDMD pairs and QSOs can be distinguished on the basis of their J-Ks and r-z colors. We also identify a group of objects with correlated offsets in the u-g vs. g-r and g-r vs. r-i color-color spaces, but subsequent follow-up is required to reveal the nature of these objects. Future applications of this algorithm to a matched SDSS-UKIDSS catalog may well identify additional classes of objects with unusual colors by probing new areas of color-magnitude space.Comment: 23 pages in emulateapj format, 17 figures, 7 tables. Accepted for publication in the Astronomical Journal. To access a high-resolution version of this paper, as well as machine readable tables and an archive of 'The Hammer' spectral typing suite, see http://www.cfa.harvard.edu/~kcovey v2 -- fixed typos in Table 7 (mainly affecting lines for M8-M10 III stars

    Automated Determination of Stellar Parameters from Simulated Dispersed Images for DIVA

    Get PDF
    We have assessed how well stellar parameters (T_eff, logg and [Fe/H]) can be retrieved from low-resolution dispersed images to be obtained by the DIVA satellite. Although DIVA is primarily an all-sky astrometric mission, it will also obtain spectrophotometric information for about 13 million stars (operational limiting magnitude V ~ 13.5 mag). Constructional studies foresee a grating system yielding a dispersion of ~200nm/mm on the focal plane (first spectral order). For astrometric reasons there will be no cross dispersion which results in the overlapping of the first to third diffraction orders. The one-dimensional, position related intensity function is called a DISPI (DISPersed Intensity). We simulated DISPIS from synthetic spectra (...) for a limited range of metallicites i.e. our results are for [Fe/H] in the range -0.3 to 1 dex. We show that there is no need to deconvolve these low resolution signals in order to obtain basic stellar parameters. Using neural network methods and by including simulated data of DIVA's UV telescope, we can determine T_eff to an average accuracy of about 2% for DISPIS from stars with 2000 K < T_eff < 20000 K and visual magnitudes of V=13 mag (end of mission data). logg can be determined for all temperatures with an accuracy better than 0.25 dex for magnitudes brighter than V=12 mag. For low temperature stars with 2000 K < T_eff < 5000 K and for metallicities in the range -0.3 to +1 dex a determination of [Fe/H] is possible (to better than 0.2 dex) for these magnitudes. Additionally we examined the effects of extinction E(B-V) on DISPIS and found that it can be determined to better than 0.07 mag for magnitudes brighter than V=14 mag if the UV information is included.Comment: 12 pages, 8 figures, Accepted for publication in A&

    Sub-Subgiants in the Old Open Cluster M67?

    Get PDF
    We report the discovery of two spectroscopic binaries in the field of the old open cluster M67 -- S1063 and S1113 -- whose positions in the color-magnitude diagram place them approximately 1 mag below the subgiant branch. A ROSAT study of M67 independently discovered these stars to be X-ray sources. Both have proper-motion membership probabilities greater than 97%; precise center-of-mass velocities are consistent with the cluster mean radial velocity. S1063 is also projected within one core radius of the cluster center. S1063 is a single-lined binary with a period of 18.396 days and an orbital eccentricity of 0.206. S1113 is a double-lined system with a circular orbit having a period of 2.823094 days. The primary stars of both binaries are subgiants. The secondary of S1113 is likely a 0.9 Mo main-sequence star, which implies a 1.3 Mo primary star. We have been unable to explain securely the low apparent luminosities of the primary stars; neither binary contain stars presently limited in radius by their Roche lobes. We speculate that S1063 and S1113 may be the products of close stellar encounters involving binaries in the cluster environment, and may define alternative stellar evolutionary tracks associated with mass-transfer episodes, mergers, and/or dynamical stellar exchanges

    The remarkable properties of the symbiotic star AE Circinus

    Full text link
    We present new optical spectroscopy and photometry, 2MASS infrared observations and 24 years of combined AAVSO and AFOEV photometry of the symbiotic star candidate \ae. The long-term light curve is characterized by outbursts lasting several years and having a slow decline of 2×104\sim 2 \times 10^{-4} mag/day. The whole range of variability of the star in the VV band is about 4 magnitudes. The periodogram of the photometric data reveals strong signals at \sim 342 and 171 days. The presence of the emission feature at λ\lambda 6830 \AA at minimum and the detection of absorption lines of a \sim K5 type star confirm the symbiotic classification and suggest that AE Cir is a new member of the small group of s-type yellow symbiotic stars. We estimate a distance of 9.4 kpc. Our spectrum taken at the high state shows a much flatter spectral energy distribution, the disappearance of the λ\lambda 6830 \AA emission feature and the weakness of the He II 4686 emission relative to the Balmer emission lines. Our observations indicate the presence of emission line flickering in time scales of minutes in 2001. The peculiar character of \ae is revealed in the visibility of the secondary star at the high and low state, the light curve resembling a dwarf nova superoutburst and the relatively short low states. The data are hard to reconciliate with standard models for symbiotic star outbursts.Comment: accepted for publication in MNRAS, 7 figure

    The Luminosity and Mass Functions of Low-Mass Stars in the Galactic Disk: I. The Calibration Region

    Full text link
    We present measurements of the luminosity and mass functions of low-mass stars constructed from a catalog of matched Sloan Digital Sky Survey (SDSS) and 2 Micron All Sky Survey (2MASS) detections. This photometric catalog contains more than 25,000 matched SDSS and 2MASS point sources spanning ~30 square degrees on the sky. We have obtained follow-up spectroscopy, complete to J=16, of more than 500 low mass dwarf candidates within a 1 square degree sub-sample, and thousands of additional dwarf candidates in the remaining 29 square degrees. This spectroscopic sample verifies that the photometric sample is complete, uncontaminated, and unbiased at the 99% level globally, and at the 95% level in each color range. We use this sample to derive the luminosity and mass functions of low-mass stars over nearly a decade in mass (0.7 M_sun > M_* > 0.1 M_sun). We find that the logarithmically binned mass function is best fit with an M_c=0.29 log-normal distribution, with a 90% confidence interval of M_c=0.20--0.50. These 90% confidence intervals correspond to linearly binned mass functions peaking between 0.27 M_sun and 0.12 M_sun, where the best fit MF turns over at 0.17 M_sun. A power law fit to the entire mass range sampled here, however, returns a best fit of alpha=1.1 (where the Salpeter slope is alpha = 2.35). These results agree well with most previous investigations, though differences in the analytic formalisms adopted to describe those mass functions can give the false impression of disagreement. Given the richness of modern-day astronomical datasets, we are entering the regime whereby stronger conclusions can be drawn by comparing the actual datapoints measured in different mass functions, rather than the results of analytic analyses that impose structure on the data a priori. (abridged)Comment: Accepted for publication in the Astronomical Journal. 21 pages, emulateapj format, 12 figures. Figures 1, 4, 11 and 12 degraded for astroph; full resolution version available for download at http://www.cfa.harvard.edu/~kcovey

    The ability of intermediate-band Stromgren photometry to correctly identify dwarf, subgiant, and giant stars and provide stellar metallicities and surface gravities

    Full text link
    [Abridged] Several large scale photometric and spectroscopic surveys are being undertaken to provide a more detailed picture of the Milky Way. Given the necessity of generalisation in the determination of, e.g., stellar parameters when tens and hundred of thousands of stars are considered it remains important to provide independent, detailed studies to verify the methods used in the surveys. We evaluate available calibrations for deriving [M/H] from Stromgren photometry and develop the standard sequences for dwarf stars to reflect their metallicity dependence and test how well metallicities derived from ugriz photometry reproduce metallicities derived from the well-tested system of Stromgren photometry. We use a catalogue of dwarf stars with both Stromgren uvby photometry and spectroscopically determined iron abundances (in total 451 dwarf stars with 0.3<(b-y)_0<1.0). We also evaluate available calibrations that determine log g. A larger catalogue, in which metallicity is determined directly from uvby photometry, is used to trace metallicity-dependent standard sequences for dwarf stars. We derive new standard sequences in the c_1,0 versus (b-y)_0 plane and in the c_1,0 versus (v-y)_0 plane for dwarf stars with 0.40 < (b-y)_0 < 0.95 and 1.10 < (v-y)_0 < 2.38. We recommend the calibrations by Ramirez & Me'endez (2005) for deriving metallicities from Stromgren photometry and find that intermediate band photometry, such as Stromgren photometry, more accurately than broad band photometry reproduces spectroscopically determined [Fe/H]. Stromgren photometry is also better at differentiating between dwarf and giant stars. We conclude that additional investigations of the differences between metallicities derived from ugriz photometry and intermediate-band photometry, such as Stromgren photometry, are required.Comment: Accepted for publication in A&A, 34 pages, including on-line materia

    The design and performance of the Gaia photometric system

    Get PDF
    The European Gaia astrometry mission is due for launch in 2011. Gaia will rely on the proven principles of the ESA Hipparcos mission to create an all-sky survey of about one billion stars throughout our Galaxy and beyond, by observing all objects down to 20 mag. Through its massive measurement of stellar distances, motions and multicolour photometry, it will provide fundamental data necessary for unravelling the structure, formation and evolution of the Galaxy. This paper presents the design and performance of the broad- and medium-band set of photometric filters adopted as the baseline for Gaia. The 19 selected passbands (extending from the UV to the far-red), the criteria and the methodology on which this choice has been based are discussed in detail. We analyse the photometric capabilities for characterizing the luminosity, temperature, gravity and chemical composition of stars. We also discuss the automatic determination of these physical parameters for the large number of observations involved, for objects located throughout the entire Hertzsprung-Russell diagram. Finally, the capability of the photometric system (PS) to deal with the main Gaia science case is outline

    The Anglo-Australian Planet Search. XXII. Two New Multi-Planet Systems

    Get PDF
    We report the detection of two new planets from the Anglo-Australian Planet Search. These planets orbit two stars each previously known to host one planet. The new planet orbiting HD 142 has a period of 6005\pm427 days, and a minimum mass of 5.3M_Jup. HD142c is thus a new Jupiter analog: a gas-giant planet with a long period and low eccentricity (e = 0.21 \pm 0.07). The second planet in the HD 159868 system has a period of 352.3\pm1.3 days, and m sin i=0.73\pm0.05 M_Jup. In both of these systems, including the additional planets in the fitting process significantly reduced the eccentricity of the original planet. These systems are thus examples of how multiple-planet systems can masquerade as moderately eccentric single-planet systems.Comment: 31 pages, 8 figures, accepted for publication in Ap

    Automated Spectral Classification of Stars by Means of Objective Prism Spectra

    No full text
    corecore