121 research outputs found

    Formation of CaS-MgS in Enstatite Chondrites and Achondrites as a Function of Redox Conditions and Temperature: Constraints on Their Evolution in a Planetesimal and in a Proto-planet

    Get PDF
    The cubic monosulfide series with the general formula (Mg,Mn,Ca,Fe)S are common phases in the enstatite chondrite (EH) and aubrite meteorite groups. In the Earth s mantle, sulfide minerals are associated with peridotites and eclogites. Study of these sulfide mineral systems is of interest for the mineralogy and petrology of planetary mantles. For example, MgS could occur in the primitive Earth and because it remains a low density phase compared to metal, would stay a separate phase during the core formation process, and thus not segregate to the core. (Mg,Ca,Mn,Fe)S sulphides might thus be important phases even in planetary differentiation processes. The importance of such minerals, and their formation, composition and textural relationships for understanding the genesis of enstatite chondrites and aubrites, has long been recognized. The main objective of this experimental study is to understand the formation and evolution of (Mg,Ca,Mn,Fe)S sulphides, particularly the oldhamite CaS and ningerite MgS, with pressure, temperature but also with redox conditions because EH and aubrites are meteorites that formed under reduced conditions. Piston-cylinder (PC) and multi-anvil (MA) experiments at high pressure (HP) and high temperature (HT) have been performed in order to simulate the evolution of these phases in a small planetary body from a planetesimal (with PC experiments) up to a proto-planet (with MA experiments)

    Evolution of Indarch (EH4 Chondrite) at 1 GPa and High Temperature

    Get PDF
    The chondritic meteorites are materials that are as old as the solar system itself characterized by variations in bulk chemical and oxidation state, and have long been considered possible building blocks that accreted to form the terrestrial inner planets. Enstatite chondrites contain nearly FeO free enstatite, silicon-rich kamacite and various sulfides indicating formation under highly reducing conditions. These materials could have participated in the formation of the Earth. However, "fingerprinting" of meteoritic materials has shown that no known meteoritic class corresponds to a hypothetical bulk Earth composition in every aspect. To derive constraints on early accretion and differentiation processes and possibly resolve the debate on the formation of the Earth, it is required to study experimentally a variety of chondritic materials and investigate their melting relations and elemental partitioning behavior at variable pressure (P), temperature (T) and oxygen fugacities (fO2). Variations in fO2 can indeed change chemical features and phase equilibria dramatically. The P-T phase diagrams of peridotites and carbonaceous chondrites have been extensively studied experimentally up to pressures and temperatures corresponding to the transition zone and lower mantle. Even though partial melting experiments have been conducted at ambient pressure on the enstatite chondrite Indarch, enstatite meteorites have never been experimentally investigated at high PT. The following investigation focuses on the effect of the fO2 on the phase relations of Indarch, an EH4 chondrite

    Pt, Au, Pd and Ru Partitioning Between Mineral and Silicate Melts: The Role of Metal Nanonuggets

    Get PDF
    The partition coefficients of Pt and other Pt Group Elements (PGE) between metal and silicate D(sub Metal-Silicate) and also between silicate minerals and silicate melts D(sub Metal-Silicate) are among the most challenging coefficients to obtain precisely. The PGE are highly siderophile elements (HSE) with D(sub Metal-Silicate) >10(exp 3) due to the fact that their concentrations in silicates are very low (ppb to ppt range). Therefore, the analytical difficulty is increased by the possible presence of HSE-rich-nuggets in reduced silicate melts during experiments). These tiny HSE nuggets complicate the interpretation of measured HSE concentrations. If the HSE micro-nuggets are just sample artifacts, then their contributions should be removed before calculations of the final concentration. On the other hand, if they are produced during the quench, then they should be included in the analysis. We still don't understand the mechanism of nugget formation well. Are they formed during the quench by precipitation from precursor species dissolved homogeneously in the melts, or are they precipitated in situ at high temperature due to oversaturation? As these elements are important tracers of early planetary processes such as core formation, it is important to take up this analytical and experimental challenge. In the case of the Earth for example, chondritic relative abundances of the HSE in some mantle xenoliths have led to the concept of the "late veneer" as a source of volatiles (such as water) and siderophiles in the silicate Earth. Silicate crystal/liquid fractionation is responsible for most, if not all, the HSE variation in the martian meteorite suites (SNC) and Pt is the element least affected by these fractionations. Therefore, in terms of reconstructing mantle HSE abundances for Mars, Pt becomes a very important player. In the present study, we have performed high temperature experiments under various redox conditions in order to determine the abundances of Pt, Au, Ru and Pd in minerals (olivine and diopside) and in silicate melts, but also to characterize the sizes, density and chemistry of HSE nuggets when present in the samples

    The Evolution of the EH4 Chondrite Indarch at High Pressure and Temperature: The First Experimental Results

    Get PDF
    Chondrite groups are characterized by variations in bulk composition and oxidation state, illustrating in part heterogeneity in the early solar nebula. Planetary accretion could be explained by at least two different scenarios: the homogeneous [1] and heterogeneous accretion models [2, 3]. In particular, for the formation of the Earth, some studies (e.g. [2, 3]) assume that one component is highly reduced material comparable to enstatite chondrites, devoid of volatile elements but containing all other elements in C1 abundance ratios. To derive constraints on the understanding of early differentiation processes, studies of the silicate phase relations and their interactions with metal, at relevant P-T-fO2, are required. Melting relations and equilibrium partitioning behaviour have been studied on peridotitic and chondritic starting compositions at pressures and temperatures corresponding to the transition zone and lower mantle [4, 5, 6]. However, enstatite chondrites, which are highly reduced primitive meteorites, have not yet been studied experimentally under such conditions. Thus, multianvil experiments have been performed at 20-25 GPa and 2000-2400 C on the EH4 chondrite Indarch

    Experimental Behavior of Sulfur Under Primitive Planetary Differentiation Processes, the Sulfide Formations in Enstatite Meteorites and Implications for Mercury.

    Get PDF
    Enstatite meteorites are the most reduced naturally-occuring materials of the solar system. The cubic monosulfide series with the general formula (Mg,Mn,Ca,Fe)S are common phases in these meteorite groups. The importance of such minerals, their formation, composition and textural relationships for understanding the genesis of enstatite chondrites (EC) and aubrites, has long been recognized (e.g. [1]). However, the mechanisms of formation of these sulfides is still not well constrained certainly because of possible multiple ways to produce them. We propose to simulate different models of formation in order to check their mineralogical, chemical and textural relevancies. The solubility of sulfur in silicate melts is of primary interest for planetary mantles, particularly for the Earth and Mercury. Indeed, these two planets could have formed, at least partly, from EC materials (e.g. [2, 3, 4]). The sulfur content in silicate melts depends on the melt composition but also on pressure (P), temperature (T) and oxygen fugacity fO2. Unfortunately, there is no model of general validity in a wide range of P-T-fO2-composition which describes precisely the evolution of sulfur content in silicate melts, even if the main trends are now known. The second goal of this study is to constrain the sulfur content in silicate melts under reducing conditions and different temperatures

    Geo-neutrinos and Silicate Earth Enrichment of U and Th

    Full text link
    The terrestrial distribution of U, Th, and K abundances governs the thermal evolution, traces the differentiation, and reflects the bulk composition of the earth. Comparing the bulk earth composition to chondritic meteorites estimates the net amounts of these radiogenic heat-producing elements available for partitioning to the crust, mantle, and core. Core formation enriches the abundances of refractory lithophile elements, including U and Th, in the silicate earth by ~1.5. Global removal of volatile elements potentially increases this enrichment to ~2.8. The K content of the silicate earth follows from the ratio of K to U. Variable enrichment produces a range of possible heat-producing element abundances in the silicate earth. A model assesses the essentially fixed amounts of U, Th, and K in the approximately closed crust reservoir. Subtracting these sequestered crustal amounts from the variable amounts in the silicate earth results in a range of possible mantle allocations, leaving global dynamics and thermal evolution poorly constrained. Terrestrial antineutrinos from {\beta}-emitting daughter nuclei in the U and Th decay series traverse the earth with negligible attenuation. The rate at which large subsurface instruments observe these geo-neutrinos depends on the distribution of U and Th relative to the detector. Geo-neutrino observations with sensitivity to U and Th in the mantle are able to estimate silicate earth enrichment, leading to a more complete understanding of the origin, accretion, differentiation, and thermal history of the planet.Comment: published version: 21 pages, 3 figures, 5 table

    The tides of Mercury and possible implications for its interior structure

    Get PDF
    The combination of the radio tracking of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft and Earth-based radar measurements of the planet's spin state gives three fundamental quantities for the determination of the interior structure of Mercury: mean density ρ, moment of inertia C, and moment of inertia of the outer solid shell Cm. This work focuses on the additional information that can be gained by a determination of the change in gravitational potential due to planetary tides, as parameterized by the tidal potential Love number k2. We investigate the tidal response for sets of interior models that are compatible with the available constraints (ρ, C, and Cm). We show that the tidal response correlates with the size of the liquid core and the mean density of material below the outer solid shell and that it is affected by the rheology of the outer solid shell of the planet, which depends on its temperature and mineralogy. For a mantle grain size of 1 cm, we calculate that the tidal k2 of Mercury is in the range 0.45 to 0.52. Some of the current models for the interior structure of Mercury are compatible with the existence of a solid FeS layer at the top of the core. Such a layer, if present, would increase the tidal response of the planet

    The phase diagram of NiSi under the conditions of small planetary interiors

    Get PDF
    The phase diagram of NiSi has been determined using in situ synchrotron X-ray powder diffraction multi-anvil experiments to 19 GPa, with further preliminary results in the laser-heated diamond cell reported to 60 GPa. The low-pressure MnP-structured phase transforms to two different high-pressure phases depending on the temperature: the ε-FeSi structure is stable at temperatures above ∼1100 K and a previously reported distorted-CuTi structure (with Pmmn symmetry) is stable at lower temperature. The invariant point is located at 12.8 ± 0.2 GPa and 1100 ± 20 K. At higher pressures, ε -FeSi-structured NiSi transforms to the CsCl structure with CsCl-NiSi as the liquidus phase above 30 GPa. The Clapeyron slope of this transition is -67 MPa/K. The phase boundary between the ε -FeSi and Pmmn structured phases is nearly pressure independent implying there will be a second sub-solidus invariant point between CsCl, ε -FeSi and Pmmn structures at higher pressure than attained in this study. In addition to these stable phases, the MnP structure was observed to spontaneously transform at room temperature to a new orthorhombic structure (also with Pnma symmetry) which had been detailed in previous ab initio simulations. This new phase of NiSi is shown here to be metastable

    Experimental constraints on the rheology, eruption and emplacement dynamics of analog lavas comparable to Mercury's northern volcanic plains

    Full text link
    We present new viscosity measurements of a synthetic silicate system considered an analogue for the lava erupted on the surface of Mercury. In particular, we focus on the northern volcanic plains (NVP), which correspond to the largest lava flows on Mercury and possibly in the Solar System. High-temperature viscosity measurements were performed at both superliquidus (up to 1736 K) and subliquidus conditions (1569-1502 K) to constrain the viscosity variations as a function of crystallinity (from 0 to 28\%) and shear rate (from 0.1 to 5 s 1). Melt viscosity shows moderate variations (4-16 Pa s) in the temperature range of 1736-1600 K. Experiments performed below the liquidus temperature show an increase in viscosity as shear rate decreases from 5 to 0.1 s 1, resulting in a shear thinning behavior, with a decrease in viscosity of 1 log unit. The low viscosity of the studied composition may explain the ability of NVP lavas to cover long distances, on the order of hundreds of kilometers in a turbulent flow regime. Using our experimental data we estimate that lava flows with thickness of 1, 5, and 10 m are likely to have velocities of 4.8, 6.5, and 7.2 m/s, respectively, on a 5 degree ground slope. Numerical modeling incorporating both the heat loss of the lavas and its possible crystallization during emplacement allows us to infer that high effusion rates (>10,000 m3/s) are necessary to cover the large distances indicated by satellite data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft
    corecore