research

Formation of CaS-MgS in Enstatite Chondrites and Achondrites as a Function of Redox Conditions and Temperature: Constraints on Their Evolution in a Planetesimal and in a Proto-planet

Abstract

The cubic monosulfide series with the general formula (Mg,Mn,Ca,Fe)S are common phases in the enstatite chondrite (EH) and aubrite meteorite groups. In the Earth s mantle, sulfide minerals are associated with peridotites and eclogites. Study of these sulfide mineral systems is of interest for the mineralogy and petrology of planetary mantles. For example, MgS could occur in the primitive Earth and because it remains a low density phase compared to metal, would stay a separate phase during the core formation process, and thus not segregate to the core. (Mg,Ca,Mn,Fe)S sulphides might thus be important phases even in planetary differentiation processes. The importance of such minerals, and their formation, composition and textural relationships for understanding the genesis of enstatite chondrites and aubrites, has long been recognized. The main objective of this experimental study is to understand the formation and evolution of (Mg,Ca,Mn,Fe)S sulphides, particularly the oldhamite CaS and ningerite MgS, with pressure, temperature but also with redox conditions because EH and aubrites are meteorites that formed under reduced conditions. Piston-cylinder (PC) and multi-anvil (MA) experiments at high pressure (HP) and high temperature (HT) have been performed in order to simulate the evolution of these phases in a small planetary body from a planetesimal (with PC experiments) up to a proto-planet (with MA experiments)

    Similar works