662 research outputs found

    Concurrent panel session 1: Challenges of economic growth & diversification & labor preparation in Las Vegas

    Full text link
    Moderator: Dr. Mel Jameson, UNLV College of Business Scribe: Angela Moor, UNLV Department of History Conference white paper & Full summary of panel session, 6 page

    Was the Progenitor of the Sagittarius Stream a Disc Galaxy?

    Full text link
    We use N-body simulations to explore the possibility that the Sagittarius (Sgr) dwarf galaxy was originally a late-type, rotating disc galaxy, rather than a non-rotating, pressure-supported dwarf spheroidal galaxy, as previously thought. We find that bifurcations in the leading tail of the Sgr stream, similar to those detected by the SDSS survey, naturally arise in models where the Sgr disc is misaligned with respect to the orbital plane. Moreover, we show that the internal rotation of the progenitor may strongly alter the location of the leading tail projected on the sky, and thus affect the constraints on the shape of the Milky Way dark matter halo that may be derived from modelling the Sgr stream. Our models provide a clear, easily-tested prediction: although tidal mass stripping removes a large fraction of the original angular momentum in the progenitor dwarf galaxy, the remnant core should still rotate with a velocity amplitude ~20 km/s that could be readily detected in future, wide-field kinematic surveys of the Sgr dwarf.Comment: Letter accepted by MNRAS. N-body model animations can be downloaded from http://www.ast.cam.ac.uk/~jorpega/files/sgr

    PAndAS' cubs: discovery of two new dwarf galaxies in the surroundings of the Andromeda and Triangulum galaxies

    Full text link
    We present the discovery of two new dwarf galaxies, Andromeda XXI and Andromeda XXII, located in the surroundings of the Andromeda and Triangulum galaxies (M31 and M33). These discoveries stem from the first year data of the Pan-Andromeda Archaeological Survey (PAndAS), a photometric survey of the M31/M33 group conducted with the Megaprime/MegaCam wide-field camera mounted on the Canada-France-Hawaii Telescope. Both satellites appear as spatial overdensities of stars which, when plotted in a color-magnitude diagram, follow metal-poor, [Fe/H]=-1.8, red giant branches at the distance of M31/M33. Andromeda XXI is a moderately bright dwarf galaxy (M_V=-9.9+/-0.6), albeit with low surface brightness, emphasizing again that many relatively luminous M31 satellites still remain to be discovered. It is also a large satellite, with a half-light radius close to 1 kpc, making it the fourth largest Local Group dwarf spheroidal galaxy after the recently discovered Andromeda XIX, Andromeda II and Sagittarius around the Milky Way, and supports the trend that M31 satellites are larger than their Milky Way counterparts. Andromeda XXII is much fainter (M_V=-6.5+/-0.8) and lies a lot closer in projection to M33 than it does to M31 (42 vs. 224 kpc), suggesting that it could be the first Triangulum satellite to be discovered. Although this is a very exciting possibility in the context of a past interaction of M33 with M31 and the fate of its satellite system, a confirmation will have to await a good distance estimate to confirm its physical proximity to M33. Along with the dwarf galaxies found in previous surveys of the M31 surroundings, these two new satellites bring the number of dwarf spheroidal galaxies in this region to 20.Comment: 10 pages, 6 figures, accepted for publication in ApJ; v2: minor typographical correction

    A Catalog of Chandra X-ray Sources in the Carina Nebula

    Full text link
    We present a catalog of ~14,000 X-ray sources observed by the ACIS instrument on the Chandra X-ray Observatory within a 1.42 square degree survey of the Great Nebula in Carina, known as the Chandra Carina Complex Project (CCCP). This study appears in a Special Issue of the ApJS devoted to the CCCP. Here, we describe the data reduction and analysis procedures performed on the X-ray observations, including calibration and cleaning of the X-ray event data, point source detection, and source extraction. The catalog appears to be complete across most of the field to an absorption-corrected total-band luminosity of ~10^{30.7} erg/s for a typical low-mass pre-main sequence star. Counterparts to the X-ray sources are identified in a variety of visual, near-infrared, and mid-infrared surveys. The X-ray and infrared source properties presented here form the basis of many CCCP studies of the young stellar populations in Carina.Comment: Accepted for the ApJS Special Issue on the Chandra Carina Complex Project (CCCP), scheduled for publication in May 2011. All 16 CCCP Special Issue papers are available at http://cochise.astro.psu.edu/Carina_public/special_issue.html through 2011 at least. 29 pages, 11 figure

    Strong RR Lyrae excess in the Hercules-Aquila Cloud

    Get PDF
    We map the large-scale sub-structure in the Galactic stellar halo using accurate 3D positions of ~14,000 RR Lyrae reported by the Catalina Sky Survey. In the heliocentric distance range of 10-25 kpc, in the region of the sky approximately bounded by 30{\deg} < l < 55{\deg} and -45{\deg} < b < -25{\deg}, there appears to be a strong excess of RRab stars. This overdensity, peaking at 18 kpc, is most likely associated with the so-called Hercules-Aquila Cloud, previously detected using Main Sequence tracers at similar distances in the Sloan Digital Sky Survey data. Our analysis of the period-amplitude distribution of RR Lyrae in this region indicates that the HAC is dominated by the Oosterhoff I type population. By comparing the measured RR Lyrae number density to models of a smooth stellar halo, we estimate the significance of the observed excess and provide an updated estimate of the total luminosity of the Cloud's progenitor.Comment: 12 pages, 9 figures, 3 tables. Accepted for publication in MNRA

    A spectroscopic confirmation of the Bootes II dwarf spheroidal

    Full text link
    We present a new suite of photometric and spectroscopic data for the faint Bootes II dwarf spheroidal galaxy candidate. Our deep photometry, obtained with the INT/WFC, suggests a distance of 46 kpc and a small half-light radius of 4.0 arcmin (56 pc), consistent with previous estimates. Follow-up spectroscopy obtained with the Gemini/GMOS instrument yielded radial velocities and metallicities. While the majority of our targets covers a broad range in velocities and metallicities, we find five stars which share very similar velocities and metallicities and which are all compatible with the colors and magnitudes of the galaxy's likely red giant branch. We interpret these as a spectroscopic detection of the Bootes II system. These stars have a mean velocity of -117 km/s, a velocity dispersion of (10.5+-7.4) km/s and a mean [Fe/H] of -1.79 dex, with a dispersion of 0.14 dex. At this metallicity, Boo II is not consistent with the stellar-mass-metallicity relation for the more luminous dwarf galaxies. Coupled with our distance estimate, its high negative systemic velocity rules out any physical connection with its projected neighbor, the Bootes I dwarf spheroidal, which has a velocity of ~+100 km/s. The velocity and distance of Bootes II coincide with those of the leading arm of Sagittarius, which passes through this region of the sky, so that it is possible that Bootes II may be a stellar system associated with the Sagittarius stream. Finally, we note that the properties of Bootes II are consistent with being the surviving remnant of a previously larger and more luminous dSph galaxy.Comment: 10 pages, 8 figures, accepted for publication in the Astrophysical Journa

    The Milky Way Tomography With SDSS. III. Stellar Kinematics

    Get PDF
    We study Milky Way kinematics using a sample of 18.8 million main-sequence stars with r 20 degrees). We find that in the region defined by 1 kpc < Z < 5 kpc and 3 kpc < R < 13 kpc, the rotational velocity for disk stars smoothly decreases, and all three components of the velocity dispersion increase, with distance from the Galactic plane. In contrast, the velocity ellipsoid for halo stars is aligned with a spherical coordinate system and appears to be spatially invariant within the probed volume. The velocity distribution of nearby (Z < 1 kpc) K/M stars is complex, and cannot be described by a standard Schwarzschild ellipsoid. For stars in a distance-limited subsample of stars (< 100 pc), we detect a multi-modal velocity distribution consistent with that seen by HIPPARCOS. This strong non-Gaussianity significantly affects the measurements of the velocity-ellipsoid tilt and vertex deviation when using the Schwarzschild approximation. We develop and test a simple descriptive model for the overall kinematic behavior that captures these features over most of the probed volume, and can be used to search for substructure in kinematic and metallicity space. We use this model to predict further improvements in kinematic mapping of the Galaxy expected from Gaia and the Large Synoptic Survey Telescope.NSF AST-615991, AST-0707901, AST-0551161, AST-02-38683, AST-06-07634, AST-0807444, PHY05-51164NASA NAG5-13057, NAG5-13147, NNXO-8AH83GPhysics Frontier Center/Joint Institute for Nuclear Astrophysics (JINA) PHY 08-22648U.S. National Science FoundationMarie Curie Research Training Network ELSA (European Leadership in Space Astrometry) MRTN-CT-2006-033481Fermi Research Alliance, LLC, United States Department of Energy DE-AC02-07CH11359Alfred P. Sloan FoundationParticipating InstitutionsJapanese MonbukagakushoMax Planck SocietyHigher Education Funding Council for EnglandMcDonald Observator

    The INT/WFC survey of the Monoceros Ring: Accretion origin or Galactic Anomaly?

    Full text link
    We present the results of a wide-field camera survey of the stars in the Monoceros Ring, thought to be an additional structure in the Milky Way of unknown origin. Lying roughly in the plane of the Milky Way, this may represent a unique equatorial accretion event which is contributing to the Thick Disk of the Galaxy. Alternatively, the Monoceros Ring may be a natural part of the Disk formation process. With ten pointings in symmetric pairs above and below the plane of the Galaxy, this survey spans 90 degrees about the Milky Way's equator. Signatures of the stream of stars were detected in three fields, ({\it l},{\it b}) = (118,+16)^\circ and (150,+15)^\circ plus a more tentative detection at (150,-15)^\circ. Galactocentric distance estimates to these structures gave \sim17, \sim17, and \sim13 kpc respectively. The Monoceros Ring seems to be present on both sides of the Galactic plane, in a form different to that of the Galactic suggestive of a tidal origin with streams multiply wrapping the Galaxy. A new model of the stream has shown a strong coincidence with our results and has also provided the opportunity to make several more detections in fields in which the stream is less significant. The confirmed detection at ({\it l},{\it b}) = (123,-19)^\circ at \sim14, kpc from the Galactic centre allows a re-examination revealing a tentative new detection with a Galactocentric distance of \sim21 kpc. (Abridged)Comment: 14 pages, figure resolution reduced. Accepted for publication in MNRA

    The Milky Way Tomography with SDSS: III. Stellar Kinematics

    Full text link
    We study Milky Way kinematics using a sample of 18.8 million main-sequence stars with r<20 and proper-motion measurements derived from SDSS and POSS astrometry, including ~170,000 stars with radial-velocity measurements from the SDSS spectroscopic survey. Distances to stars are determined using a photometric parallax relation, covering a distance range from ~100 pc to 10 kpc over a quarter of the sky at high Galactic latitudes (|b|>20 degrees). We find that in the region defined by 1 kpc <Z< 5 kpc and 3 kpc <R< 13 kpc, the rotational velocity for disk stars smoothly decreases, and all three components of the velocity dispersion increase, with distance from the Galactic plane. In contrast, the velocity ellipsoid for halo stars is aligned with a spherical coordinate system and appears to be spatially invariant within the probed volume. The velocity distribution of nearby (Z<1Z<1 kpc) K/M stars is complex, and cannot be described by a standard Schwarzschild ellipsoid. For stars in a distance-limited subsample of stars (<100 pc), we detect a multimodal velocity distribution consistent with that seen by HIPPARCOS. This strong non-Gaussianity significantly affects the measurements of the velocity ellipsoid tilt and vertex deviation when using the Schwarzschild approximation. We develop and test a simple descriptive model for the overall kinematic behavior that captures these features over most of the probed volume, and can be used to search for substructure in kinematic and metallicity space. We use this model to predict further improvements in kinematic mapping of the Galaxy expected from Gaia and LSST.Comment: 90 pages, 26 figures, submitted to Ap

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected
    corecore