129 research outputs found

    Climate variability along latitudinal and longitudinal transects in East Antarctica

    Get PDF
    AbstractIn the framework of the International Trans-Antarctic Scientific Expedition (ITASE) programme, France and Italy carried out a traverse along one west–east and two north–south transects in East Antarctica from November 2001 to January 2002. Eighteen shallow snow–firn cores were drilled, and surface snow samples were collected every 5km along the traverse. Firn temperatures were measured in boreholes down to 30 m. The cores were analyzed for β radioactivity to obtain snow accumulation-rate data. The surface snow samples were analyzed for δ18O to correlate isotopic values with borehole temperatures. Multiple regression analysis shows a global near-dry-adiabatic lapse rate and a latitudinal lapse rate of 1.05˚C(˚ lat. S)–1, in the Dome C drainage area. Analysis of firn temperatures reveals a super-adiabatic lapse rate along the ice divide between Talos Dome and the Southern Ocean coast, and in some sectors along the ice divide between the Astrolabe Basin and D59. Snow accumulation rates and firn temperatures show warmer temperatures and higher accumulation values close to the ice divides extending from Talos Dome and Dome C to the Southern Ocean. The spatial pattern of data is linked with a katabatic-wind-source basin and moisture-source region

    Spatial distribution of biogenic sulphur compounds (MSA, nssSO4 2- ) in the northern Victoria Land-Dome C-Wilkes Land area, East Antarctica

    Get PDF
    AbstractDuring the 1992–2002 Antarctic expeditions, in the framework of the International Trans-Antarctic Expedition (ITASE) project, about 600 sites were sampled (superficial snow, snow pits and firn cores) along traverses in the northern Victoria Land–Dome C–Wilkes Land region. The sites were characterized by different geographical (distance from the sea, altitude) and climatological (annual mean accumulation rate, temperature) conditions and were affected by air masses from different marine sectors (Ross Sea, Pacific Ocean). Mean anion and cation contents were calculated at each site, in order to evaluate the spatial distribution of chemical impurities in snow. Here we discuss the distribution of non-sea-salt sulphate (nssSO42–) and of methanesulphonic acid (MSA) mainly originating from atmospheric oxidation of biogenic dimethyl sulphide; these compounds play a key role in climate control processes by acting as cloud condensation nuclei. The spatial distribution of nssSO42– and MSA is discussed as a function of distance from the sea, altitude and accumulation rate. Depositional fluxes of nssSO42– and MSA decrease as a function of distance from the sea, with a higher gradient in the first 200km step. There is an analogous trend with the site altitude, and the first 1600m step is relevant in determining the nssSO42– and MSA content in snow. The nssSO42–/MSA ratio depends on the distance from the sea and the biogenic source strength. At coastal sites, where biogenic inputs are dominant, this ratio is ~2. As biogenic input decreases (low MSA content) inland, the ratio increases, indicating the presence of alternative sources of nssSO42– (crustal, volcanic background) or advection of low-latitude air masses. By plotting total flux as a function of accumulation rate, dry depositional contributions were evaluated for nssSO42– and MSA in the Ross Sea and Pacific Ocean sectors. Non-sea-salt sulphate wet deposition prevails at sites where the accumulation rate (expressed as water equivalent) is higher than 70 kgm–2 a–1 (Ross Sea sector) or 370 kgm–2 a–1 (Pacific Ocean sector). MSA threshold values in these sectors are respectively 90 and 220 kgm–2 a–1

    Sea-spray deposition in Antarctic coastal and plateau areas from ITASE traverses

    Get PDF
    AbstractSea-salt markers (Na+, Mg2+ and Cl–) were analyzed in recent snow collected at more than 600 sites located in coastal and central areas of East Antarctica (northern Victoria Land–Dome C–Wilkes Land), in order to understand the effect of site remoteness, transport efficiency and depositional and post-depositional processes on the spatial distribution of the primary marine aerosol. Firn-core, snow-pit and 1m integrated superficial snow samples were collected in the framework of the International Trans-Antarctic Scientific Expeditions (ITASE) project during recent Italian Antarctic Campaigns (1992–2002). The sampling sites were mainly distributed along coast–inland traverses (northern Victoria Land– Dome C) and an east–west transect following the 2100m contour line (Wilkes Land). At each site, the snow ionic composition was determined. Here, we discuss the distribution of sea-spray components (Na+, Mg2+ and Cl–) as a function of distance from the sea, altitude and accumulation rate, in order to discover the pulling-down rate, possible fractionating phenomena and alternative sources moving inland from coastal areas. Sea-spray depositional fluxes decrease as a function of distance from the sea and altitude. A two-order-of-magnitude decrease occurs in the first 200km from the sea, corresponding to about 2000ma.s.l. Correlations of Mg2+ and Cl– with Na+ and trends of Mg2+/Na+ and Cl–/Na+ ratios showed that chloride has other sources than sea spray (HCl) and is affected by post-depositional processes. Accumulation rate higher than 80 kgm–2 a–1 preserves the chloride record in the snow. Sea-spray atmospheric scavenging is dominated by wet deposition in coastal and inland sites

    Spatial and temporal distributions of surface mass balance between Concordia and Vostok stations, Antarctica, from combined radar and ice core data: first results and detailed error analysis

    Get PDF
    Results from ground-penetrating radar (GPR) measurements and shallow ice cores carried out during a scientific traverse between Dome Concordia (DC) and Vostok stations are presented in order to infer both spatial and temporal characteristics of snow accumulation over the East Antarctic Plateau. Spatially continuous accumulation rates along the traverse are computed from the identification of three equally spaced radar reflections spanning about the last 600 years. Accurate dating of these internal reflection horizons (IRHs) is obtained from a depth-age relationship derived from volcanic horizons and bomb testing fallouts on a DC ice core and shows a very good consistency when tested against extra ice cores drilled along the radar profile. Accumulation rates are then inferred by accounting for density profiles down to each IRH. For the latter purpose, a careful error analysis showed that using a single and more accurate density profile along a DC core provided more reliable results than trying to include the potential spatial variability in density from extra (but less accurate) ice cores distributed along the profile. The most striking feature is an accumulation pattern that remains constant through time with persistent gradients such as a marked decrease from 26 mm w.e. yr(-1) at DC to 20 mm w.e. yr(-1) at the south-west end of the profile over the last 234 years on average (with a similar decrease from 25 to 19 mm w.e. yr(-1) over the last 592 years). As for the time dependency, despite an overall consistency with similar measurements carried out along the main East Antarctic divides, interpreting possible trends remains difficult. Indeed, error bars in our measurements are still too large to unambiguously infer an apparent time increase in accumulation rate. For the proposed absolute values, maximum margins of error are in the range 4 mm w.e. yr(-1) (last 234 years) to 2 mm w.e. yr(-1) (last 592 years), a decrease with depth mainly resulting from the time-averaging when computing accumulation rates

    Understanding mercury oxidation and air–snow exchange on the East Antarctic Plateau: a modeling study

    Get PDF
    Distinct diurnal and seasonal variations of mercury (Hg) have been observed in near-surface air at Concordia Station on the East Antarctic Plateau, but the processes controlling these characteristics are not well understood. Here, we use a box model to interpret the Hg0 (gaseous elemental mercury) measurements in thes year 2013. The model includes atmospheric Hg0 oxidation (by OH, O3, or bromine), surface snow HgII (oxidized mercury) reduction, and air-snow exchange, and is driven by meteorological fields from a regional climate model. The simulations suggest that a photochemically driven mercury diurnal cycle occurs at the air-snow interface in austral summer. The fast oxidation of Hg0 in summer may be provided by a two-step bromine-initiated scheme, which is favored by low temperature and high nitrogen oxides at Concordia. The summertime diurnal variations of Hg0 (peaking during daytime) may be confined within several tens of meters above the snow surface and affected by changing mixed layer depths. Snow re-emission of Hg0 is mainly driven by photoreduction of snow HgII in summer. Intermittent warming events and a hypothesized reduction of HgII occurring in snow in the dark may be important processes controlling the mercury variations in the non-summer period, although their relative importance is uncertain. The Br-initiated oxidation of Hg0 is expected to be slower at Summit Station in Greenland than at Concordia (due to their difference in temperature and levels of nitrogen oxides and ozone), which may contribute to the observed differences in the summertime diurnal variations of Hg0 between these two polar inland stations.National Science Foundation (U.S.) (Grant ACP-1053648

    Seasonal patterns of atmospheric mercury in tropical South America as inferred by a continuous total gaseous mercury record at Chacaltaya station (5240 m) in Bolivia

    Get PDF
    High-quality atmospheric mercury (Hg) data are rare for South America, especially for its tropical region. As a consequence, mercury dynamics are still highly uncertain in this region. This is a significant deficiency, as South America appears to play a major role in the global budget of this toxic pollutant. To address this issue, we performed nearly 2 years (July 2014-February 2016) of continuous high-resolution total gaseous mercury (TGM) measurements at the Chacaltaya (CHC) mountain site in the Bolivian Andes, which is subject to a diverse mix of air masses coming predominantly from the Altiplano and the Amazon rainforest. For the first 11 months of measurements, we obtained a mean TGM concentration of 0 :89 +/- 0 :01 ngm(-3), which is in good agreement with the sparse amount of data available from the continent. For the remaining 9 months, we obtained a significantly higher TGM concentration of 1 :34 +/- 0 :01 ngm(-3), a difference which we tentatively attribute to the strong El Nino event of 2015-2016. Based on HYSPLIT (Hybrid SingleParticle Lagrangian Integrated Trajectory) back trajectories and clustering techniques, we show that lower mean TGM concentrations were linked to either westerly Altiplanic air masses or those originating from the lowlands to the southeast of CHC. Elevated TGM concentrations were related to northerly air masses of Amazonian or southerly air masses of Altiplanic origin, with the former possibly linked to artisanal and small-scale gold mining (ASGM), whereas the latter might be explained by volcanic activity. We observed a marked seasonal pattern, with low TGM concentrations in the dry season (austral winter), rising concentrations during the biomass burning (BB) season, and the highest concentrations at the beginning of the wet season (austral summer). With the help of simultaneously sampled equivalent black carbon (eBC) and carbon monoxide (CO) data, we use the clearly BB-influenced signal during the BB season (August to October) to derive a mean TGM = CO emission ratio of (2.3 +/- 0.6 x 10(-7) ppbvTGM ppbv (-1)(CO), which could be used to constrain South American BB emissions. Through the link with CO2 measured in situ and remotely sensed solarinduced fluorescence (SIF) as proxies for vegetation activity, we detect signs of a vegetation sink effect in Amazonian airPeer reviewe

    The recording of floods and earthquakes in Lake Chichój, Guatemala during the twentieth century

    Get PDF
    Laguna Chichój (Lake Chichój) is the only deep permanent lake in the central highlands of Guatemala. The lake is located in the boundary zone between the North American and Caribbean plates. The lake has been struck by devastating earthquakes and tropical cyclones in historical times. We investigated the imprint of twentieth century extreme events on the sedimentary record of this tropical lake using a bathymetric survey of the lake, coring the lake floor, and providing a chronology of sediment accumulation. The lake occupies a series of circular depressions likely formed by the rapid dissolution of a buried body of gypsum. 210Pb and 137Cs inventories and varve counting indicate high rates of sedimentation (1-2cmyear−1). The annually layered sediment is interrupted by turbidites of two types: a darker-colored turbidite, enriched in lake-derived biogenic constituents, and interpreted as a seismite, and a lighter-colored type, enriched in catchment-derived constituents, interpreted as a flood layer. Comparison of our 137Cs-determined layer ages with a catalog of twentieth century earthquakes shows that an earthquake on the Motagua fault in 1976 generated a conspicuous darker-colored turbidite and slumped deposits in separate parts of the lake. The entire earthquake inventory further reveals that mass movements in the lake are triggered at Modified Mercalli Intensities higher than V. Tropical cyclonic depressions known to have affected the lake area had limited effect on the lake, including Hurricane Mitch in 1998. One storm however produced a significantly thicker flood layer in the 1940s. This storm is reportedly the only event to have generated widespread slope failures in the lake catchment. It is thus inferred that abundant landsliding provided large amounts of concentrated sediment to the lake, through hyperpycnal flows

    A Comparison Of New Calculations Of The Yearly 10Be Production In The Earths Polar Atmosphere By Cosmic Rays With Yearly 10Be Measurements In Multiple Greenland Ice Cores Between 1939 And 1994 - A Troubling Lack Of Concordance Paper #2

    Full text link
    We have compared the yearly production rates of 10Be by cosmic rays in the Earths polar atmosphere over the last 50-70 years with 10Be measurements from two separate ice cores in Greenland. These ice cores provide measurements of the annual 10Be concentration and 10Be flux levels during this time. The scatter in the ice core yearly data vs. the production data is larger than the average solar 11 year production variations that are being measured. The cross correlation coefficients between the yearly 10Be production and the ice core 10Be measurements for this time period are <0.4 in all comparisons between ice core data and 10Be production, including 10Be concentrations, 10Be fluxes and in comparing the two separate ice core measurements. In fact, the cross correlation between the two ice core measurements, which should be measuring the same source, is the lowest of all, only ~0.2. These values for the correlation coefficient are all indicative of a "poor" correlation. The regression line slopes for the best fit lines between the 10Be production and the 10Be measurements used in the cross correlation analysis are all in the range 0.4-0.6. This is a particular problem for historical projections of solar activity based on ice core measurements which assume a 1:1 correspondence. We have made other tests of the correspondence between the 10Be predictions and the ice core measurements which lead to the same conclusion, namely that other influences on the ice core measurements, as large as or larger than the production changes themselves, are occurring. These influences could be climatic or instrumentally based. We suggest new ice core measurements that might help in defining more clearly what these influences are and-if possible-to correct for them.Comment: 24 pages, 6 figure

    Multi-tracer study of gas trapping in an East Antarctic ice core

    Get PDF
    We study a firn and ice core drilled at the new "Lock-In" site in East Antarctica, located 136 km away from Concordia station towards Durmont d'Urville. High resolution chemical and physical measurements were performed on the core, with a particular focus on the trapping zone of the firn where air bubbles are formed. We measured the air content in the ice, closed and open porous volumes in the firn, firn density, firn liquid conductivity and major ion concentrations, as well as methane concentrations in the ice. The closed and open porosity volumes of firn samples were obtained by the two independent methods of pycnometry and tomography, that yield similar results. The measured increase of the closed porosity with density is used to estimate the air content trapped in the ice with the aid of a simple gas trapping model. Results show a discrepancy, with the model trapping too much air. Experimental errors have been considered but do not explain the discrepancy between the model and the observations. The model and data can be reconciled with the introduction of a reduced compression of the closed porosity compared to the open porosity. Yet, it is not clear if this limited compression of closed pores is the actual mechanism responsible for the low amount of air in the ice. High resolution density measurements reveal the presence of a strong layering, manifesting itself as centimeter scale variations. Despite this heterogeneous stratification, all layers, including the ones that are especially dense or less dense compared to their surroundings, display similar pore morphology and closed porosity as function of density. This implies that all layers close in a similar way, even though some close in advance or later compared to the bulk firn. Investigation of the chemistry data suggests that in the trapping zone, the observed stratification is partly related to the presence of chemical impurities
    • …
    corecore