9 research outputs found

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≀0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Understanding Hearing Health: A Cross-Sectional Study of Determinants in a Metropolitan Area

    No full text
    Hearing health prevention has emerged as a significant public health concern worldwide. With nearly two and a half billion people experiencing some degree of hearing loss, and around seven hundred million requiring medical intervention, the impact on global health is substantial. The economic burden is equally substantial, with estimated health costs reaching 980 billion dollars in the United States alone. To shed light on this issue, we conducted a survey-based cross-sectional study involving 1150 individuals. Utilizing multiple linear regression across three models, we aimed to explore the association between demographic variables and knowledge, attitude, and behaviors related to hearing health. In Model I, we observed a correlation between knowledge and several factors, including age, smoking habits, marital status, and education. In Model II, attitudes were found to associate with non-smoking habits, education, and knowledge. Model III revealed a statistically significant correlation between behaviors and age, gender, parenthood, knowledge, and attitudes. These findings emphasize the importance of targeted public health programs aimed at improving behaviors among the general population. Such interventions can be both effective and relatively inexpensive. By addressing these determinants, we can enhance overall hearing health in the community. Our study contributes valuable information about the knowledge, attitudes, and behaviors related to hearing health in the general population. Understanding these factors is crucial in developing evidence-based strategies to promote hearing health and prevent hearing loss effectively. As we continue to work towards better hearing health, the findings from this study can serve as a cornerstone for informed decision-making and successful intervention implementation

    Standard ECG for differential diagnosis between Anderson-Fabry disease and hypertrophic cardiomyopathy

    No full text
    Objectives To evaluate the role of the ECG in the differential diagnosis between Anderson-Fabry disease (AFD) and hypertrophic cardiomyopathy (HCM). Methods In this multicentre retrospective study, 111 AFD patients with left ventricular hypertrophy were compared with 111 patients with HCM, matched for sex, age and maximal wall thickness by propensity score. Independent ECG predictors of AFD were identified by multivariate analysis, and a multiparametric ECG score-based algorithm for differential diagnosis was developed. Results Short PR interval, prolonged QRS duration, right bundle branch block (RBBB), R in augmented vector left (aVL) >= 1.1 mV and inferior ST depression independently predicted AFD diagnosis. A point-by-point ECG score was then derived with the following diagnostic performances: c-statistic 0.80 (95% CI 0.74 to 0.86) for discrimination, the Hosmel-Lemeshow chi(2) 6.14 (p=0.189) for calibration, sensitivity 69%, specificity 84%, positive predictive value 82% and negative predictive value 72%. After bootstrap resampling, the mean optimism was 0.025, and the internal validated c-statistic for the score was 0.78. Conclusions Standard ECG can help to differentiate AFD from HCM while investigating unexplained left ventricular hypertrophy. Short PR interval, prolonged QRS duration, RBBB, R in aVL >= 1.1 mV and inferior ST depression independently predicted AFD. Their systematic evaluation and the integration in a multiparametric ECG score can support AFD diagnosis

    Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo

    Get PDF
    Advanced LIGO and Advanced Virgo are monitoring the sky and collecting gravitational-wave strain data with sufficient sensitivity to detect signals routinely. In this paper we describe the data recorded by these instruments during their first and second observing runs. The main data products are gravitational-wave strain time series sampled at 16384 Hz. The datasets that include this strain measurement can be freely accessed through the Gravitational Wave Open Science Center at http://gw-openscience.org, together with data-quality information essential for the analysis of LIGO and Virgo data, documentation, tutorials, and supporting software

    Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo

    No full text
    International audienceIntermediate-mass black holes (IMBHs) span the approximate mass range 100−105 M⊙, between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∌150 M⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200 M⊙ and effective aligned spin 0.8 at 0.056 Gpc−3 yr−1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc−3 yr−1.Key words: gravitational waves / stars: black holes / black hole physicsCorresponding author: W. Del Pozzo, e-mail: [email protected]† Deceased, August 2020
    corecore