97 research outputs found

    Identification of gene targets against dormant phase Mycobacterium tuberculosis infections

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Mycobacterium tuberculosis</it>, the causative agent of tuberculosis (TB), infects approximately 2 billion people worldwide and is the leading cause of mortality due to infectious disease. Current TB therapy involves a regimen of four antibiotics taken over a six month period. Patient compliance, cost of drugs and increasing incidence of drug resistant <it>M. tuberculosis </it>strains have added urgency to the development of novel TB therapies. Eradication of TB is affected by the ability of the bacterium to survive up to decades in a dormant state primarily in hypoxic granulomas in the lung and to cause recurrent infections.</p> <p>Methods</p> <p>The availability of <it>M. tuberculosis </it>genome-wide DNA microarrays has lead to the publication of several gene expression studies under simulated dormancy conditions. However, no single model best replicates the conditions of human pathogenicity. In order to identify novel TB drug targets, we performed a meta-analysis of multiple published datasets from gene expression DNA microarray experiments that modeled infection leading to and including the dormant state, along with data from genome-wide insertional mutagenesis that examined gene essentiality.</p> <p>Results</p> <p>Based on the analysis of these data sets following normalization, several genome wide trends were identified and used to guide the selection of targets for therapeutic development. The trends included the significant up-regulation of genes controlled by <it>devR</it>, down-regulation of protein and ATP synthesis, and the adaptation of two-carbon metabolism to the hypoxic and nutrient limited environment of the granuloma. Promising targets for drug discovery were several regulatory elements (<it>devR/devS</it>, <it>relA</it>, <it>mprAB</it>), enzymes involved in redox balance and respiration, sulfur transport and fixation, pantothenate, isoprene, and NAD biosynthesis. The advantages and liabilities of each target are discussed in the context of enzymology, bacterial pathways, target tractability, and drug development.</p> <p>Conclusion</p> <p>Based on our bioinformatics analysis and additional discussion of in-depth biological rationale, several novel anti-TB targets have been proposed as potential opportunities to improve present therapeutic treatments for this disease.</p

    Antioxidant and oxidative stress: a mutual interplay in age-related diseases

    Get PDF
    Aging is the progressive loss of organ and tissue function over time. Growing older is positively linked to cognitive and biological degeneration such as physical frailty, psychological impairment, and cognitive decline. Oxidative stress is considered as an imbalance between pro- and antioxidant species, which results in molecular and cellular damage. Oxidative stress plays a crucial role in the development of age-related diseases. Emerging research evidence has suggested that antioxidant can control the autoxidation by interrupting the propagation of free radicals or by inhibiting the formation of free radicals and subsequently reduce oxidative stress, improve immune function, and increase healthy longevity. Indeed, oxidation damage is highly dependent on the inherited or acquired defects in enzymes involved in the redox-mediated signaling pathways. Therefore, the role of molecules with antioxidant activity that promote healthy aging and counteract oxidative stress is worth to discuss further. Of particular interest in this article, we highlighted the molecular mechanisms of antioxidants involved in the prevention of age-related diseases. Taken together, a better understanding of the role of antioxidants involved in redox modulation of inflammation would provide a useful approach for potential interventions, and subsequently promoting healthy longevity

    Oral squamous cell carcinoma (OSCC) - molecular, viral and bacterial concepts

    No full text
    Head and neck cancers constitute the sixth most common malignant tumours worldwide, and are one of the majors problems of global public health. In the oral cavity there are several types of oral cancers, but around 90% are squamous cell carcinoma. Many different risk factors play a role in the etiology of head and neck cancer. The aim of this study is presentation from the aspect of molecular, viral and bacterial infection. Knowledge about all factors which influence the development of these malignances is essential for diagnostics and successful treatment

    In Vitro Activities of Novel 2-Fluoro-Naphthyridine-Containing Ketolides

    No full text
    In vitro activities of erythromycin A, telithromycin, and two investigational ketolides, JNJ-17155437 and JNJ-17155528, were evaluated against clinical bacterial strains, including selected common respiratory tract pathogens. Against 46 macrolide-susceptible and -resistant Streptococcus pneumoniae strains, the MIC(90) (MIC at which 90% of the isolates tested were inhibited) of the investigational ketolides was 0.25 μg/ml, twofold lower than that of telithromycin and at least 64-fold lower than that of erythromycin A. Against erm(B)-containing pneumococci, the MIC(90) of all the ketolides was 0.06 μg/ml. The MIC(90) of the investigational ketolides against mef(A)-containing pneumococci or pneumococci with both mef(A) and erm(B) was 0.25 μg/ml, two-and fourfold lower, respectively, than that of telithromycin. In contrast, the MICs of the investigational ketolides against macrolide-resistant S. pneumoniae strains with ribosomal mutations were similar to or, in some cases, as much as eightfold higher than those of telithromycin. Against Haemophilus influenzae, MICs of all the ketolides were ≤2 μg/ml. Against three Moraxella catarrhalis isolates, the MIC of the ketolides was 0.25 μg/ml. The ketolides inhibited in vitro protein synthesis, with 50% inhibitory concentrations ranging from 0.23 to 0.27 μM. In time-kill studies against macrolide-susceptible and erm- or mef-containing pneumococci, the ketolides were bacteriostatic to slowly bactericidal, with 24-h log(10) decreases ranging from 2.0 to 4.1 CFU. Intervals of postantibiotic effects for the ketolides against macrolide-susceptible and -resistant S. pneumoniae were 3.0 to 8.1 h
    corecore