452 research outputs found

    Supported bilayers: combined specular and diffuse x-ray scattering

    Full text link
    A new method is proposed for the analysis of specular and off-specular reflectivity from supported lipid bilayers. Both thermal fluctuations and the "static" roughness induced by the substrate are carefully taken into account. Examples from supported bilayers and more complex systems comprising a bilayer adsorbed or grafted on the substrate and another "floating" bilayer are given. The combined analysis of specular and off-specular reflectivity allows the precise determination of the structure of adsorbed and floating bilayers, their tension, bending rigidity and interaction potentials. We show that this new method gives a unique opportunity to investigate phenomena like protusion modes of adsorbed bilayers and opens the way to the investigation of more complex systems including different kinds of lipids, cholesterol or peptides

    Controlling interactions in supported bilayers from weak electrostatic repulsion to high osmotic pressure

    Full text link
    Understanding interactions between membranes requires measurements on well-controlled systems close to natural conditions, in which fluctuations play an important role. We have determined, by grazing incidence X-ray scattering, the interaction potential between two lipid bilayers, one adsorbed on a solid surface and the other floating close by. We find that interactions in this highly hydrated model system are two orders of magnitude softer than in previously reported work on multilayer stacks. This is attributed to the weak electrostatic repulsion due to the small fraction of ionized lipids in supported bilayers with a lower number of defects. Our data are consistent with the Poisson-Boltzmann theory, in the regime where repulsion is dominated by the entropy of counter ions. We also have unique access to very weak entropic repulsion potentials, which allowed us to discriminate between the various models proposed in the literature. We further demonstrate that the interaction potential between supported bilayers can be tuned at will by applying osmotic pressure, providing a way to manipulate these model membranes, thus considerably enlarging the range of biological or physical problems that can be addressed.Comment: 14 pages, 8 figure

    A Poisson-Boltzmann approach for a lipid membrane in an electric field

    Full text link
    The behavior of a non-conductive quasi-planar lipid membrane in an electrolyte and in a static (DC) electric field is investigated theoretically in the nonlinear (Poisson-Boltzmann) regime. Electrostatic effects due to charges in the membrane lipids and in the double layers lead to corrections to the membrane elastic moduli which are analyzed here. We show that, especially in the low salt limit, i) the electrostatic contribution to the membrane's surface tension due to the Debye layers crosses over from a quadratic behavior in the externally applied voltage to a linear voltage regime. ii) the contribution to the membrane's bending modulus due to the Debye layers saturates for high voltages. Nevertheless, the membrane undulation instability due to an effectively negative surface tension as predicted by linear Debye-H\"uckel theory is shown to persist in the nonlinear, high voltage regime.Comment: 15 pages, 4 figure

    Microcontact printing process for the patterned growth of individual CNTs

    Get PDF
    We report an original approach to pattern a substrate with isolated carbon nanotubes. Through the improvement of the microcontact printing technique by the use of a new composite stamp, we were able to produce on flat substrates micrometric features of a catalyst suitable for the localised growth of single-walled carbon nanotubes by catalytic chemical vapour deposition. This catalyst material is for the first time prepared via an original sol–gel process. The growth of straight carbon nanotubes between the patterns was observed and a method to promote the controlled growth of such isolated nanoobjects is thus conceivable

    Collective beating of artificial microcilia

    Full text link
    We combine technical, experimental and theoretical efforts to investigate the collective dynamics of artificial microcilia in a viscous fluid. We take advantage of soft-lithography and colloidal self-assembly to devise microcapets made of hundreds of slender magnetic rods. This novel experimental setup is used to investigate the dynamics of extended cilia arrays driven by a precessing magnetic field. Whereas the dynamics of an isolated cilium is a rigid body rotation, collective beating results in a symmetry breaking of the precession patterns. The trajectories of the cilia are anisotropic and experience a significant structural evolution as the actuation frequency increases. We present a minimal model to account for our experimental findings and demonstrate how the global geometry of the array imposes the shape of the trajectories via long range hydrodynamic interactions.Comment: 5 pages, 3 figure

    Stress Clamp Experiments on Multicellular Tumor Spheroids

    Get PDF
    The precise role of the microenvironment on tumor growth is poorly understood. Whereas the tumor is in constant competition with the surrounding tissue, little is known about the mechanics of this interaction. Using a novel experimental procedure, we study quantitatively the effect of an applied mechanical stress on the long-term growth of a spheroid cell aggregate. We observe that a stress of 10 kPa is sufficient to drastically reduce growth by inhibition of cell proliferation mainly in the core of the spheroid. We compare the results to a simple numerical model developed to describe the role of mechanics in cancer progression.Comment: 5 pages, 4 figure
    • …
    corecore