73 research outputs found

    (130) Elektra Delta -- on the stability of the new third moonlet

    Full text link
    The aim of this work is to verify the stability of the proposed orbital solutions for the third moonlet (Delta) taking into account a realistic gravitational potential for the central body of the quadruple system (Alpha). We also aim to estimate the location and size of a stability region inside the orbit of Gamma. First, we created a set of test particles with intervals of semi-major axis, eccentricities, and inclinations that covers the region interior to the orbit of Gamma, including the proposed orbit of Delta and a wide region around it. We considered three different models for the gravitational potential of Alpha: irregular polyhedron, ellipsoidal body and oblate body. For a second scenario, Delta was considered a massive spherical body and Alpha an irregular polyhedron. Beta and Gamma were assumed as spherical massive bodies in both scenarios. The simulations showed that a large region of space is almost fully stable only when Alpha was modeled as simply as an oblate body. For the scenario with Delta as a massive body, the results did not change from those as massless particles. Beta and Gamma do not play any relevant role in the dynamics of particles interior to the orbit of Gamma. Delta's predicted orbital elements are fully unstable and far from the nearest stable region. The primary instability source is Alpha's elongated shape. Therefore, in the determination of the orbital elements of Delta, it must be taken into account the gravitational potential of Alpha assuming, at least, an ellipsoidal shape

    Harmine and Piperlongumine Revert TRIB2-Mediated Drug Resistance.

    Get PDF
    Therapy resistance is responsible for most relapses in patients with cancer and is the major challenge to improving the clinical outcome. The pseudokinase Tribbles homologue 2 (TRIB2) has been characterized as an important driver of resistance to several anti-cancer drugs, including the dual ATP-competitive PI3K and mTOR inhibitor dactolisib (BEZ235). TRIB2 promotes AKT activity, leading to the inactivation of FOXO transcription factors, which are known to mediate the cell response to antitumor drugs. To characterize the downstream events of TRIB2 activity, we analyzed the gene expression profiles of isogenic cell lines with different TRIB2 statuses by RNA sequencing. Using a connectivity map-based computational approach, we identified drug-induced gene-expression profiles that invert the TRIB2-associated expression profile. In particular, the natural alkaloids harmine and piperlongumine not only produced inverse gene expression profiles but also synergistically increased BEZ235-induced cell toxicity. Importantly, both agents promote FOXO nuclear translocation without interfering with the nuclear export machinery and induce the transcription of FOXO target genes. Our results highlight the great potential of this approach for drug repurposing and suggest that harmine and piperlongumine or similar compounds might be useful in the clinic to overcome TRIB2-mediated therapy resistance in cancer patients.This work was supported by the FUNDAÇÃO PARA A CIÊNCIA E TECNOLOGIA (FCT) Research Center Grant UID/BIM/04773/2013, Centre for Biomedical Research (CBMR), and by the Spanish Ministry of Science, Innovation and Universities through Grant RTI2018-094629-B-I00 to WL. B.I.F. was supported by FCT-SFRH/BPD/100434/2014 and the Marie Curie Individual Fellowship project TRIBBLES (#748585). This work was also supported by two LPCC-NRS/Terry Fox grants (2016/2017; 2017/2018). S. Machado is the recipient of a ProRegeM grant PD/BD/114258/2016. I. Duarte was supported by a scholarship from FCT Grant PTDC/BEX-BID/5410/2014S

    The usage of Bupivacaina as anesthetic agent in knee arthroscopy.

    Get PDF
    Introduction: Artroscopy of the knee is a procedure that is frequently developed as a diagnostic and therapeutic means in patients who suffer among other diseases, from chronic sinuvitis, lesions of the meniscus and adherence . A great number of these patients receive medical assistance at the outpatient department of the orthopaedic department where the need of its use is assessed. It is a relatively short procedure that has few risks when it is performed with the appropriate technique. Objective: To show the use of intra articular Bupivacaine 0,25 % in the artroscopy of the knee. Method: Retrospective study carried out at the University Hospital ¨Dr. Gustavo Aldereguía Lima¨ from Cienfuegos province from September 2002 to February 2003. This study was developed with 20 patients who were initially assisted at the service of Orthopaedics in which a group of therapeutic procedures were decided. Bupivacaine 0,25 % together with Epinephrine 0,1 % in a dose of 0,1 ml were injected in the intra articular space in a volume of 20 ml distributed in 4 sections with 5 ml each. At the level of the section where the artroscope was inserted , 5 ml of Bupivacaine 0,25 % was applied. Result: the age of the patient ranged 30 to 61 years of age with a media of 44,6 years and a standard deviation of 12,6 years. The introduction and application of the procedure throughout artroscopy was possible in al patients. Conclusion: Bupivacaine is a good local anaesthetic because of its slow action since the onset of application and its prolonged duration, and because of the intensity and the duration of the sensorial block that is superior to the motor block

    Sirt1 protects from K-Ras-driven lung carcinogenesis.

    Get PDF
    The NAD+-dependent deacetylase SIRT1 can be oncogenic or tumor suppressive depending on the tissue. Little is known about the role of SIRT1 in non-small cell lung carcinoma (NSCLC), one of the deadliest cancers, that is frequently associated with mutated K-RAS Therefore, we investigated the effect of SIRT1 on K-RAS-driven lung carcinogenesis. We report that SIRT1 protein levels are downregulated by oncogenic K-RAS in a MEK and PI3K-dependent manner in mouse embryo fibroblasts (MEFs), and in human lung adenocarcinoma cell lines. Furthermore, Sirt1 overexpression in mice delays the appearance of K-RasG12V-driven lung adenocarcinomas, reducing the number and size of carcinomas at the time of death and extending survival. Consistently, lower levels of SIRT1 are associated with worse prognosis in human NSCLCs. Mechanistically, analysis of mouse Sirt1-Tg pneumocytes, isolated shortly after K-RasG12V activation, reveals that Sirt1 overexpression alters pathways involved in tumor development: proliferation, apoptosis, or extracellular matrix organization. Our work demonstrates a tumor suppressive role of SIRT1 in the development of K-RAS-driven lung adenocarcinomas in mice and humans, suggesting that the SIRT1-K-RAS axis could be a therapeutic target for NSCLCs.We thank Jesus Herranz for his biostatistical advice; and Alba de Martino, Patricia Gonzalez, Maria Gomez, and Zaira Vega, from the Histopathology Unit at the CNIO, for their work in mouse histopathology. Work in the laboratory of P.J.F.-M. was funded by the IMDEA Food, the Spanish Association against Cancer (aecc) and the Ramon Areces (CIVP18A3891) Foundation. Work in the laboratory of M.S. was funded by the CNIO and by grants from the Spanish Ministry of Economy co-funded by the European Regional Development Fund (SAF project), the European Research Council (ERC Advanced Grant), the European Union (RISK-IR project), and the Botin Foundation and Banco Santander (Santander Universities Global Division). Work in the laboratory of DH was funded by Rutgers Cancer Institute of New Jersey, the Alex's Lemonade Stand Foundation Shark Tank Award and by the National Institutes of Health Grant K99/R00 CA197869. Work in the laboratory of M.S.C. was supported by a grant (SAF2012-40026) from the Spanish Ministry of Science and Innovation. L.F.C-M. was supported by a PhD Fellowship from the Portuguese Foundation for Science and Technology (FCT-MCTES, SFRH/BD/124022/2016).S

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    A search for point sources of EeV photons

    Full text link
    Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical Journa

    Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    Full text link
    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 6060^\circ detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.Comment: 27 pages, 19 figures, accepted for publication in Journal of Cosmology and Astroparticle Physics (JCAP

    Bounds on the density of sources of ultra-high energy cosmic rays from the Pierre Auger Observatory

    Get PDF
    We derive lower bounds on the density of sources of ultra-high energy cosmic rays from the lack of significant clustering in the arrival directions of the highest energy events detected at the Pierre Auger Observatory. The density of uniformly distributed sources of equal intrinsic intensity was found to be larger than similar to (0.06 – 5) x 10(-4) Mpc(-3) at 95% CL, depending on the magnitude of the magnetic defections. Similar bounds, in the range (0.2 – 7) x 10(-4) Mpc(-3), were obtained for sources following the local matter distribution.We are very grateful to the following agencies and organizations for financial support,: Comision Nacional de Energia Atomica, Fundacion Antorchas, Gobierno De La, Provincia de Ailendoza. Municipalidad de Malargile. INDM floldings and Valle Las Lenas, in gratitude for their continuing cooperation over land access. Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e 'Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacdo de Amparo a Pesquisa do Est ado de Rio de Janeiro (FAP HRJ), Fundacdo de Amparo Pesquisa do Estado de Sdo Paulo (FAPESP), Ministerio de Ciencia e Tecnologia (IVICT), Brazil; AVCR AVOZ10100502 and AVOZ10100522, GAAV KJB100100904, AISMT-CR LA08016, LG11044, 1VIEB111003, MSAI0021620859, LA08015, TACR TA01010517 and GA U.K. 119810, Czech Republic; Centre de Calcul I-N2P3/CNRS, Centre National de la -Recherche Scientifique ((1 NRS), Conseil Regional Ile-de-France, f)epartement, Physique Nuclealre et Corpusculaire (I N( Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DITG), Finanzministerium Baden-Wurttemberg, flelmholtz-Gemeinschaft Deutscher Forschungszentren Ministerium fur Wissenschaft und Forschung, Nordrhein-Westfalen, Ministerimn fur Wissenschaft, Forschung und Kunst, Baden-WUrttemberg, Germany; Istituto Nazion ale di Fisica Nucleare (INFN), Ministero dell'Istruzione, delhLniversita e della Ricerca (MIUR), Italy: Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onden s Cultuur on NVetenschap Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Rmdamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Grant Nos. N N202 200239 and N N202 207238, Poland; Portuguese national funds and FEDER funds within COMPETE - Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia, Portugal; Romanian Authority for Scientific Research ANCS, CNDI-UEFISETD1 partnership projects nr.20/2012 and nr.194/2012, project nr.1 /ASPERA2/20I2 ERA-NET and PN-IIRU-PD-2011-3-0145-17, Romania; Ministry for Higher Education, Science, and 'Technology, Slovenian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Ciencia e Innovacion and Consolider-Ingenio 2010 (( PAN), X unta de Galicia Spain; Science and Technology Facilities Council, United kingdom; Department of Luergy, Contract Nos. DE-ACO2-07(11-111359, DE-FR02-04E1(41300, DE-FG02-99E1(41107, National Science Foundation, Grant No. 0450696, The Grainger Foundation U.S.A.; NAFOSTED, Vietnam; Marie Curie-IRSES/HPLANET, European Particle Physics Latin American Network, European Union 7th Frarneworlc Program. Grant No. IIRSES-2009-GA-246806; and UNESCO.Peer reviewe

    The rapid atmospheric monitoring system of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a facility built to detect air showers produced by cosmic rays above 10(17) eV. During clear nights with a low illuminated moon fraction, the UV fluorescence light produced by air showers is recorded by optical telescopes at the Observatory. To correct the observations for variations in atmospheric conditions, atmospheric monitoring is performed at regular intervals ranging from several minutes (for cloud identification) to several hours (for aerosol conditions) to several days (for vertical profiles of temperature, pressure, and humidity). In 2009, the monitoring program was upgraded to allow for additional targeted measurements of atmospheric conditions shortly after the detection of air showers of special interest, e. g., showers produced by very high-energy cosmic rays or showers with atypical longitudinal profiles. The former events are of particular importance for the determination of the energy scale of the Observatory, and the latter are characteristic of unusual air shower physics or exotic primary particle types. The purpose of targeted (or 'rapid') monitoring is to improve the resolution of the atmospheric measurements for such events. In this paper, we report on the implementation of the rapid monitoring program and its current status. The rapid monitoring data have been analyzed and applied to the reconstruction of air showers of high interest, and indicate that the air fluorescence measurements affected by clouds and aerosols are effectively corrected using measurements from the regular atmospheric monitoring program. We find that the rapid monitoring program has potential for supporting dedicated physics analyses beyond the standard event reconstruction

    Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    Get PDF
    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud. identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km(2) of the Pierre Auger Observatory twice per hour with a spatial resolution of similar to 2.4 km by similar to 5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories. (C) 2013 Elsevier B.V. All rights reserved.The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and adminis- trative staff in Malargüe. We are very grateful to the following agencies and organiza- tions for financial support: Comisión Nacional de Energía Atómica, Fundación Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargüe, NDM Holdings and Valle Las Leñas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de Rio de Janeiro (FAPERJ), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Ministério de Ciência e Tecnolo- gia (MCT), Brazil; AVCR AV0Z10100502 and AV0Z10100522, GAAV KJB100100904, MSMT-CR LA08016, LG11044, MEB111003, MSM0021620859, LA08015, TACR TA01010517 and GA UK 119810, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre Na- tional de la Recherche Scientifique (CNRS), Conseil Régional Ile-de- France, Département Physique Nucléaire et Corpusculaire (PNC- IN2P3/CNRS), Département Sciences de l’Univers (SDU-INSU/ CNRS), France; Bundesministerium für Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministeri- um Baden-Württemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium für Wissenschaft und Forschung, Nordrhein-Westfalen, Ministerium für Wissenschaft, Forschung und Kunst, Baden-Württemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR), Italy; Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico; Ministerie van Ond- erwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wet- enschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Grant Nos. N N202 200239 and N N202 207238, Poland; Portuguese national funds and FEDER funds with- in COMPETE - Programa Operacional Factores de Competitividade through Fundação para a Ciência e a Tecnologia, Portugal; Roma- nian Authority for Scientific Research ANCS, CNDI-UEFISCDI part- nership projects nr.20/2012 and nr.194/2012, project nr.1/ ASPERA2/2012 ERA-NET and PN-II-RU-PD-2011-3-0145-17, Roma- nia; Ministry for Higher Education, Science, and Technology, Slove- nian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Ciencia e Innovación and Consolider-Ingenio 2010 (CPAN), Xunta de Galicia, Spain; The Leverhulme Foundation, Science and Technology Facilities Council, United Kingdom; Department of Energy, Contract Nos. DE-AC02-07CH11359, DE- FR02-04ER41300, DE-FG02-99ER41107, National Science Founda- tion, Grant No. 0450696, The Grainger Foundation USA; NAFO- STED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program, Grant No. PIRSES-2009-GA-246806; and UNESCO. We would like to thank the former Michigan Tech students: Nathan Kelley-Hoskins, Kyle Luck and Arin Nelson for their impor- tant contribution to the development of this paper. We would like to thank NOAA for the GOES satellite data that we freely down- loaded from their website. Also, we would like to mention in these acknowledgments Dr. Steve Ackerman and Dr. Tony Schreiner for very valuable conversationsPeer reviewe
    corecore