74 research outputs found

    High Phenotypic Plasticity, but Low Signals of Local Adaptation to Climate in a Large-Scale Transplant Experiment of Picea abies (L.) Karst. in Europe

    Get PDF
    The most common tool to predict future changes in species range are species distribution models. These models do, however, often underestimate potential future habitat, as they do not account for phenotypic plasticity and local adaptation, although being the most important processes in the response of tree populations to rapid climate change. Here, we quantify the difference in the predictions of future range for Norway spruce, by (i) deriving a classic, occurrence-based species distribution model (OccurrenceSDM), and (ii) analysing the variation in juvenile tree height and translating this to species occurrence (TraitSDM). Making use of 32 site locations of the most comprehensive European trial series that includes 1,100 provenances of Norway spruce originating from its natural and further beyond from its largely extended, artificial distribution, we fit a universal response function to quantify growth as a function of site and provenance climate. Both the OccurrenceSDM and TraitSDM show a substantial retreat towards the northern latitudes and higher elevations (−55 and −43%, respectively, by the 2080s). However, thanks to the species’ particularly high phenotypic plasticity in juvenile height growth, the decline is delayed. The TraitSDM identifies increasing summer heat paired with decreasing water availability as the main climatic variable that restricts growth, while a prolonged frost-free period enables a longer period of active growth and therefore increasing growth potential within the restricted, remaining area. Clear signals of local adaptation to climatic clines spanning the entire range are barely detectable, as they are disguised by a latitudinal cline. This cline strongly reflects population differentiation for the Baltic domain, but fails to capture the high phenotypic variation associated to the geographic heterogeneity in the Central European mountain ranges paired with the species history of postglacial migration. Still the model is used to provide recommendations of optimal provenance choice for future climate conditions. In essence, assisted migration may not decrease the predicted range decline of Norway spruce, but may help to capitalize on potential opportunities for increased growth associated with warmer climates

    Modeling dominant height growth using permanent plot data for Pinus brutia stands in the Eastern Mediterranean region

    Get PDF
    Aim of the study: At current, forest management in the Eastern Mediterranean region is largely based on experience rather than on management plans. To support the development of such plans, this study develops and compares site index equations for pure even-aged Pinus brutia stands in Syria using base-age invariant techniques that realistically describe dominant height growth.Materials and methods: Data on top height and stand age were obtained in 2008 and 2016 from 80 permanent plots capturing the whole range of variation in site conditions, stand age and stand density. Both the Algebraic Difference Approach (ADA) and the Generalized Algebraic Difference Approach (GADA) were used to fit eight generalized algebraic difference equations in order to identify the one which describes the data best. For this, 61 permanent plots were used for model calibration and 19 plots for validation.Main results: According to both biological plausibility and model accuracy, the so-called Sloboda equation based on the GADA approach showed the best performance.Research highlights: The study provides a solid classification and comparison of Pinus brutia stands growing in the Eastern Mediterranean region and can thus be used to support sustainable forest management planning.Keywords: site index; Generalized Algebraic Difference Approach (GADA); Sloboda equation

    dendrometeR : analyzing the pulse of trees in R

    Get PDF
    Dendrometers are measurement devices proven to be useful to analyze tree water relations and growth responses in relation to environmental variability. To analyze dendrometer data, two analytical methods prevail: (1) daily approaches that calculate or extract single values per day, and (2) stem-cycle approaches that separate high-resolution dendrometer records into distinct phases of contraction, expansion and stem-radius increment. Especially the stem-cycle approach requires complex algorithms to disentangle cyclic phases. Here, we present an R package, named dendrometeR, that facilitates the analysis of dendrometer data using both analytical methods. By making the package freely available, we make a first step towards comparable and reproducible methods to analyze dendrometer data. The package contains customizable functions to prepare, verify, process and plot dendrometer series, as well as functions that facilitate the analysis of dendrometer data (i.e. daily statistics or extracted phases) in relation to environmental data. The functionality of dendrometeR is illustrated in this note

    Accuracy, realism and general applicability of European forest models

    Get PDF
    Forest models are instrumental for understanding and projecting the impact of climate change on forests. A considerable number of forest models have been developed in the last decades. However, few systematic and comprehensive model comparisons have been performed in Europe that combine an evaluation of modelled carbon and water fluxes and forest structure. We evaluate 13 widely used, state-of-the-art, stand-scale forest models against field measurements of forest structure and eddy-covariance data of carbon and water fluxes over multiple decades across an environmental gradient at nine typical European forest stands. We test the models\u27 performance in three dimensions: accuracy of local predictions (agreement of modelled and observed annual data), realism of environmental responses (agreement of modelled and observed responses of daily gross primary productivity to temperature, radiation and vapour pressure deficit) and general applicability (proportion of European tree species covered). We find that multiple models are available that excel according to our three dimensions of model performance. For the accuracy of local predictions, variables related to forest structure have lower random and systematic errors than annual carbon and water flux variables. Moreover, the multi-model ensemble mean provided overall more realistic daily productivity responses to environmental drivers across all sites than any single individual model. The general applicability of the models is high, as almost all models are currently able to cover Europe\u27s common tree species. We show that forest models complement each other in their response to environmental drivers and that there are several cases in which individual models outperform the model ensemble. Our framework provides a first step to capturing essential differences between forest models that go beyond the most commonly used accuracy of predictions. Overall, this study provides a point of reference for future model work aimed at predicting climate impacts and supporting climate mitigation and adaptation measures in forests

    Accuracy, realism and general applicability of European forest models

    Get PDF
    Forest models are instrumental for understanding and projecting the impact of climate change on forests. A considerable number of forest models have been developed in the last decades. However, few systematic and comprehensive model comparisons have been performed in Europe that combine an evaluation of modelled carbon and water fluxes and forest structure. We evaluate 13 widely used, state-of-the-art, stand-scale forest models against field measurements of forest structure and eddy-covariance data of carbon and water fluxes over multiple decades across an environmental gradient at nine typical European forest stands. We test the models' performance in three dimensions: accuracy of local predictions (agreement of modelled and observed annual data), realism of environmental responses (agreement of modelled and observed responses of daily gross primary productivity to temperature, radiation and vapour pressure deficit) and general applicability (proportion of European tree species covered). We find that multiple models are available that excel according to our three dimensions of model performance. For the accuracy of local predictions, variables related to forest structure have lower random and systematic errors than annual carbon and water flux variables. Moreover, the multi-model ensemble mean provided overall more realistic daily productivity responses to environmental drivers across all sites than any single individual model. The general applicability of the models is high, as almost all models are currently able to cover Europe's common tree species. We show that forest models complement each other in their response to environmental drivers and that there are several cases in which individual models outperform the model ensemble. Our framework provides a first step to capturing essential differences between forest models that go beyond the most commonly used accuracy of predictions. Overall, this study provides a point of reference for future model work aimed at predicting climate impacts and supporting climate mitigation and adaptation measures in forests.Peer reviewe

    Jet stream position explains regional anomalies in European beech forest productivity and tree growth.

    Get PDF
    The mechanistic pathways connecting ocean-atmosphere variability and terrestrial productivity are well-established theoretically, but remain challenging to quantify empirically. Such quantification will greatly improve the assessment and prediction of changes in terrestrial carbon sequestration in response to dynamically induced climatic extremes. The jet stream latitude (JSL) over the North Atlantic-European domain provides a synthetic and robust physical framework that integrates climate variability not accounted for by atmospheric circulation patterns alone. Surface climate impacts of north-south summer JSL displacements are not uniform across Europe, but rather create a northwestern-southeastern dipole in forest productivity and radial-growth anomalies. Summer JSL variability over the eastern North Atlantic-European domain (5-40E) exerts the strongest impact on European beech, inducing anomalies of up to 30% in modelled gross primary productivity and 50% in radial tree growth. The net effects of JSL movements on terrestrial carbon fluxes depend on forest density, carbon stocks, and productivity imbalances across biogeographic regions

    Identifying drivers of non-stationary climate-growth relationships of European beech.

    Get PDF
    The future performance of the widely abundant European beech (Fagus sylvatica L.) across its ecological amplitude is uncertain. Although beech is considered drought-sensitive and thus negatively affected by drought events, scientific evidence indicating increasing drought vulnerability under climate change on a cross-regional scale remains elusive. While evaluating changes in climate sensitivity of secondary growth offers a promising avenue, studies from productive, closed-canopy forests suffer from knowledge gaps, especially regarding the natural variability of climate sensitivity and how it relates to radial growth as an indicator of tree vitality. Since beech is sensitive to drought, we in this study use a drought index as a climate variable to account for the combined effects of temperature and water availability and explore how the drought sensitivity of secondary growth varies temporally in dependence on growth variability, growth trends, and climatic water availability across the species' ecological amplitude. Our results show that drought sensitivity is highly variable and non-stationary, though consistently higher at dry sites compared to moist sites. Increasing drought sensitivity can largely be explained by increasing climatic aridity, especially as it is exacerbated by climate change and trees' rank progression within forest communities, as (co-)dominant trees are more sensitive to extra-canopy climatic conditions than trees embedded in understories. However, during the driest periods of the 20th century, growth showed clear signs of being decoupled from climate. This may indicate fundamental changes in system behavior and be early-warning signals of decreasing drought tolerance. The multiple significant interaction terms in our model elucidate the complexity of European beech's drought sensitivity, which needs to be taken into consideration when assessing this species' response to climate change

    The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests

    Get PDF
    Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes

    The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes.Peer reviewe

    Wood density variations of Norway spruce (Picea abies (L.) Karst.) under contrasting climate conditions in southwestern Germany

    No full text
    We analyzed inter-annual variations in ring width and maximumwood density of Norway spruce (Picea abies (L.) Karst.) at different altitudes in Baden-Württemberg, southwestern Germany, to determine the climate response of these parameters under contrasting climate conditions. In addition, we compared maximum, average and minimum wood density between sites. Bootstrapped correlation coefficients of ring width and maximum wood density with monthly temperature and precipitation, revealed a different climate sensitivity of both parameters. Ring width showed strong correlations with climate variables in the previous year and in the first half of the growingseason. Further, a negative relationship with summer temperature was observed at the low-altitude sites. Maximum wood density correlated best with temperature during the growing season, whereby strongest correlations were found between September temperature and maximum wood density at the high-altitude sites. Observed differences in maximum, average and minimum wood density are suggested to relate to the local climate; with lower temperature and higher water availability having a negative effect on wood density
    corecore