38 research outputs found

    Heat-related cardiorespiratory mortality: effect modification by air pollution across 482 cities from 24 countries

    Get PDF
    Background Evidence on the potential interactive effects of heat and ambient air pollution on cause-specific mortality is inconclusive and limited to selected locations. Objectives We investigated the effects of heat on cardiovascular and respiratory mortality and its modification by air pollution during summer months (six consecutive hottest months) in 482 locations across 24 countries. Methods Location-specific daily death counts and exposure data (e.g., particulate matter with diameters ≤ 2.5 µm [PM2.5]) were obtained from 2000 to 2018. We used location-specific confounder-adjusted Quasi-Poisson regression with a tensor product between air temperature and the air pollutant. We extracted heat effects at low, medium, and high levels of pollutants, defined as the 5th, 50th, and 95th percentile of the location-specific pollutant concentrations. Country-specific and overall estimates were derived using a random-effects multilevel meta-analytical model. Results Heat was associated with increased cardiorespiratory mortality. Moreover, the heat effects were modified by elevated levels of all air pollutants in most locations, with stronger effects for respiratory than cardiovascular mortality. For example, the percent increase in respiratory mortality per increase in the 2-day average summer temperature from the 75th to the 99th percentile was 7.7% (95% Confidence Interval [CI] 7.6-7.7), 11.3% (95%CI 11.2-11.3), and 14.3% (95% CI 14.1-14.5) at low, medium, and high levels of PM2.5, respectively. Similarly, cardiovascular mortality increased by 1.6 (95%CI 1.5-1.6), 5.1 (95%CI 5.1-5.2), and 8.7 (95%CI 8.7-8.8) at low, medium, and high levels of O3, respectively. Discussion We observed considerable modification of the heat effects on cardiovascular and respiratory mortality by elevated levels of air pollutants. Therefore, mitigation measures following the new WHO Air Quality Guidelines are crucial to enhance better health and promote sustainable development

    A European aerosol phenomenology - 7 : High-time resolution chemical characteristics of submicron particulate matter across Europe

    Get PDF
    Similarities and differences in the submicron atmospheric aerosol chemical composition are analyzed from a unique set of measurements performed at 21 sites across Europe for at least one year. These sites are located between 35 and 62 degrees N and 10 degrees W - 26 degrees E, and represent various types of settings (remote, coastal, rural, industrial, urban). Measurements were all carried out on-line with a 30-min time resolution using mass spectroscopy based instruments known as Aerosol Chemical Speciation Monitors (ACSM) and Aerosol Mass Spectrometers (AMS) and following common measurement guidelines. Data regarding organics, sulfate, nitrate and ammonium concentrations, as well as the sum of them called non-refractory submicron aerosol mass concentration ([NR-PM1]) are discussed. NR-PM1 concentrations generally increase from remote to urban sites. They are mostly larger in the mid-latitude band than in southern and northern Europe. On average, organics account for the major part (36-64%) of NR-PM1 followed by sulfate (12-44%) and nitrate (6-35%). The annual mean chemical composition of NR-PM1 at rural (or regional background) sites and urban background sites are very similar. Considering rural and regional background sites only, nitrate contribution is higher and sulfate contribution is lower in midlatitude Europe compared to northern and southern Europe. Large seasonal variations in concentrations (mu g/m(3)) of one or more components of NR-PM1 can be observed at all sites, as well as in the chemical composition of NR-PM1 (%) at most sites. Significant diel cycles in the contribution to [NR-PM1] of organics, sulfate, and nitrate can be observed at a majority of sites both in winter and summer. Early morning minima in organics in concomitance with maxima in nitrate are common features at regional and urban background sites. Daily variations are much smaller at a number of coastal and rural sites. Looking at NR-PM1 chemical composition as a function of NR-PM1 mass concentration reveals that although organics account for the major fraction of NR-PM1 at all concentration levels at most sites, nitrate contribution generally increases with NR-PM1 mass concentration and predominates when NR-PM1 mass concentrations exceed 40 mu g/m(3) at half of the sites.Peer reviewe

    Joint effect of heat and air pollution on mortality in 620 cities of 36 countries

    Get PDF
    Background The epidemiological evidence on the interaction between heat and ambient air pollution on mortality is still inconsistent. Objectives To investigate the interaction between heat and ambient air pollution on daily mortality in a large dataset of 620 cities from 36 countries. Methods We used daily data on all-cause mortality, air temperature, particulate matter ≤ 10 μm (PM10), PM ≤ 2.5 μm (PM2.5), nitrogen dioxide (NO2), and ozone (O3) from 620 cities in 36 countries in the period 1995–2020. We restricted the analysis to the six consecutive warmest months in each city. City-specific data were analysed with over-dispersed Poisson regression models, followed by a multilevel random-effects meta-analysis. The joint association between air temperature and air pollutants was modelled with product terms between non-linear functions for air temperature and linear functions for air pollutants. Results We analyzed 22,630,598 deaths. An increase in mean temperature from the 75th to the 99th percentile of city-specific distributions was associated with an average 8.9 % (95 % confidence interval: 7.1 %, 10.7 %) mortality increment, ranging between 5.3 % (3.8 %, 6.9 %) and 12.8 % (8.7 %, 17.0 %), when daily PM10 was equal to 10 or 90 μg/m3, respectively. Corresponding estimates when daily O3 concentrations were 40 or 160 μg/m3 were 2.9 % (1.1 %, 4.7 %) and 12.5 % (6.9 %, 18.5 %), respectively. Similarly, a 10 μg/m3 increment in PM10 was associated with a 0.54 % (0.10 %, 0.98 %) and 1.21 % (0.69 %, 1.72 %) increase in mortality when daily air temperature was set to the 1st and 99th city-specific percentiles, respectively. Corresponding mortality estimate for O3 across these temperature percentiles were 0.00 % (-0.44 %, 0.44 %) and 0.53 % (0.38 %, 0.68 %). Similar effect modification results, although slightly weaker, were found for PM2.5 and NO2. Conclusions Suggestive evidence of effect modification between air temperature and air pollutants on mortality during the warm period was found in a global dataset of 620 cities.Massimo Stafoggia, Francesca K. de’ Donato, Masna Rai and Alexandra Schneider were partially supported by the European Union’s Horizon 2020 Project Exhaustion (Grant ID: 820655). Jan Kyselý and Aleš Urban were supported by the Czech Science Foundation project (22-24920S). Joana Madureira was supported by the Fundação para a Ciência e a Tecnologia (FCT) (grant SFRH/BPD/115112/2016). Masahiro Hashizume was supported by the Japan Science and Technology Agency (JST) as part of SICORP, Grant Number JPMJSC20E4. Noah Scovronick was supported by the NIEHS-funded HERCULES Center (P30ES019776). South African Data were provided by Statistics South Africa, which did not have any role in conducting the study. Antonio Gasparrini was supported by the Medical Research Council-UK (Grants ID: MR/V034162/1 and MR/R013349/1), the Natural Environment Research Council UK (Grant ID: NE/R009384/1), and the European Union’s Horizon 2020 Project Exhaustion (Grant ID: 820655)

    A European aerosol phenomenology - 7: High-time resolution chemical characteristics of submicron particulate matter across Europe

    Get PDF
    Similarities and differences in the submicron atmospheric aerosol chemical composition are analyzed from a unique set of measurements performed at 21 sites across Europe for at least one year. These sites are located between 35 and 62°N and 10° W – 26°E, and represent various types of settings (remote, coastal, rural, industrial, urban). Measurements were all carried out on-line with a 30-min time resolution using mass spectroscopy based instruments known as Aerosol Chemical Speciation Monitors (ACSM) and Aerosol Mass Spectrometers (AMS) and following common measurement guidelines. Data regarding organics, sulfate, nitrate and ammonium concentrations, as well as the sum of them called non-refractory submicron aerosol mass concentration ([NR-PM1]) are discussed. NR-PM1 concentrations generally increase from remote to urban sites. They are mostly larger in the mid-latitude band than in southern and northern Europe. On average, organics account for the major part (36–64%) of NR-PM1 followed by sulfate (12–44%) and nitrate (6–35%). The annual mean chemical composition of NR-PM1 at rural (or regional background) sites and urban background sites are very similar. Considering rural and regional background sites only, nitrate contribution is higher and sulfate contribution is lower in mid-latitude Europe compared to northern and southern Europe. Large seasonal variations in concentrations (μg/m³) of one or more components of NR-PM1 can be observed at all sites, as well as in the chemical composition of NR-PM1 (%) at most sites. Significant diel cycles in the contribution to [NR-PM1] of organics, sulfate, and nitrate can be observed at a majority of sites both in winter and summer. Early morning minima in organics in concomitance with maxima in nitrate are common features at regional and urban background sites. Daily variations are much smaller at a number of coastal and rural sites. Looking at NR-PM1 chemical composition as a function of NR-PM1 mass concentration reveals that although organics account for the major fraction of NR-PM1 at all concentration levels at most sites, nitrate contribution generally increases with NR-PM1 mass concentration and predominates when NR-PM1 mass concentrations exceed 40 μg/m³ at half of the sites

    Coarse particulate air pollution and daily mortality a global study in 205 cities

    Get PDF
    Please read abstract in the article.The National Natural Science Foundation of China; the Ministry of Science and Technology, Taiwan; the Medical Research Council-UK; Fundação para a Ciência e a Tecnologia; the Australian Research Council the European Union’s Horizon 2020 Project Exhaustion ; the Natural Environment Research Council UK; the Australian National Health and Medical Research Council; and an Emerging Leader Fellowship of the Australian National Health and Medical Research Council.http://www.atsjournals.org/journal/ajrccm2023-06-07hj2023Geography, Geoinformatics and Meteorolog

    Heat-related cardiorespiratory mortality: Effect modification by air pollution across 482 cities from 24 countries.

    Get PDF
    BACKGROUND: Evidence on the potential interactive effects of heat and ambient air pollution on cause-specific mortality is inconclusive and limited to selected locations. OBJECTIVES: We investigated the effects of heat on cardiovascular and respiratory mortality and its modification by air pollution during summer months (six consecutive hottest months) in 482 locations across 24 countries. METHODS: Location-specific daily death counts and exposure data (e.g., particulate matter with diameters ≤ 2.5 µm [PM2.5]) were obtained from 2000 to 2018. We used location-specific confounder-adjusted Quasi-Poisson regression with a tensor product between air temperature and the air pollutant. We extracted heat effects at low, medium, and high levels of pollutants, defined as the 5th, 50th, and 95th percentile of the location-specific pollutant concentrations. Country-specific and overall estimates were derived using a random-effects multilevel meta-analytical model. RESULTS: Heat was associated with increased cardiorespiratory mortality. Moreover, the heat effects were modified by elevated levels of all air pollutants in most locations, with stronger effects for respiratory than cardiovascular mortality. For example, the percent increase in respiratory mortality per increase in the 2-day average summer temperature from the 75th to the 99th percentile was 7.7% (95% Confidence Interval [CI] 7.6-7.7), 11.3% (95%CI 11.2-11.3), and 14.3% (95% CI 14.1-14.5) at low, medium, and high levels of PM2.5, respectively. Similarly, cardiovascular mortality increased by 1.6 (95%CI 1.5-1.6), 5.1 (95%CI 5.1-5.2), and 8.7 (95%CI 8.7-8.8) at low, medium, and high levels of O3, respectively. DISCUSSION: We observed considerable modification of the heat effects on cardiovascular and respiratory mortality by elevated levels of air pollutants. Therefore, mitigation measures following the new WHO Air Quality Guidelines are crucial to enhance better health and promote sustainable development

    Mortality risk attributable to wildfire-related PM2·5 pollution : a global time series study in 749 locations

    Get PDF
    BACKGROUND : Many regions of the world are now facing more frequent and unprecedentedly large wildfires. However, the association between wildfire-related PM2·5 and mortality has not been well characterised. We aimed to comprehensively assess the association between short-term exposure to wildfire-related PM2·5 and mortality across various regions of the world. METHODS : For this time series study, data on daily counts of deaths for all causes, cardiovascular causes, and respiratory causes were collected from 749 cities in 43 countries and regions during 2000–16. Daily concentrations of wildfire-related PM2·5 were estimated using the three-dimensional chemical transport model GEOS-Chem at a 0·25° × 0·25° resolution. The association between wildfire-related PM2·5 exposure and mortality was examined using a quasi-Poisson time series model in each city considering both the current-day and lag effects, and the effect estimates were then pooled using a random-effects meta-analysis. Based on these pooled effect estimates, the population attributable fraction and relative risk (RR) of annual mortality due to acute wildfire-related PM2·5 exposure was calculated. FINDINGS : 65·6 million all-cause deaths, 15·1 million cardiovascular deaths, and 6·8 million respiratory deaths were included in our analyses. The pooled RRs of mortality associated with each 10 μg/m³ increase in the 3-day moving average (lag 0–2 days) of wildfire-related PM2·5 exposure were 1·019 (95% CI 1·016–1·022) for all-cause mortality, 1·017 (1·012–1·021) for cardiovascular mortality, and 1·019 (1·013–1·025) for respiratory mortality. Overall, 0·62% (95% CI 0·48–0·75) of all-cause deaths, 0·55% (0·43–0·67) of cardiovascular deaths, and 0·64% (0·50–0·78) of respiratory deaths were annually attributable to the acute impacts of wildfire-related PM2·5 exposure during the study period. INTERPRETATION : Short-term exposure to wildfire-related PM2·5 was associated with increased risk of mortality. Urgent action is needed to reduce health risks from the increasing wildfires.The Australian Research Council, the Australian National Health and Medical Research Council, a Career Development Fellowship of the Australian National Health and Medical Research Council, an Early Career Fellowship of the Australian National Health and Medical Research Council, the National Natural Science Foundation of China, the Czech Science Foundation, the Spanish Ministry of Economy, Industry and Competitiveness, the National Key Research and Development Program of China, EU’s Horizon 2020 Project Exhaustion, the Ministry of Science and Technology of Taiwan, the Medical Research Council UK, the Natural Environment Research Council UK, a fellowship of the Fundação para a Ciência e a Tecnologia, the Science and Technology Commission of Shanghai Municipality and the National Institute of Environmental Health Sciences-funded HERCULES Center.http://www.thelancet.com/planetary-healtham2022Geography, Geoinformatics and Meteorolog
    corecore