296 research outputs found

    Diagnostic accuracy of patient interview items and clinical tests for cervical radiculopathy.

    Get PDF
    ObjectiveTo determine the diagnostic accuracy of patient interview items and clinical tests to diagnose cervical radiculopathy.DesignA prospective diagnostic accuracy study.ParticipantsConsecutive patients (N=134) with a suspicion of cervical radiculopathy were included. A medical specialist made the diagnosis of cervical radiculopathy based on the patient's clinical presentation and corresponding Magnetic Resonance Imaging findings. Participants completed a list of patient interview items and the clinical tests were performed by a physiotherapist.Main outcome measuresDiagnostic accuracy was determined in terms of sensitivity, specificity, and positive (+LR) and negative likelihood ratios (-LR). Sensitivity and specificity values ≥0.80 were considered high. We considered +LR≥5 and -LR≤0.20 moderate, and +LR≥10 and -LR≤0.10 high.ResultsThe history items 'arm pain worse than neck pain', 'provocation of symptoms when ironing', 'reduction of symptoms by walking with your hand in your pocket', the Spurling test and the presence of reduced reflexes showed high specificity and are therefore useful to increase the probability of cervical radiculopathy when positive. The presence of 'paraesthesia' and 'paraesthesia and/or numbness' showed high sensitivity, indicating that the absence of these patient interview items decreases the probability of cervical radiculopathy. Although most of these items had potentially relevant likelihood ratios, none showed moderate or high likelihood ratios.ConclusionsSeveral patient interview items, the Spurling test and reduced reflexes are useful to assist in the diagnosis of cervical radiculopathy. Because there is no gold standard for cervical radiculopathy, caution is required to not over-interpret diagnostic accuracy values

    Mathematical modeling of the metastatic process

    Full text link
    Mathematical modeling in cancer has been growing in popularity and impact since its inception in 1932. The first theoretical mathematical modeling in cancer research was focused on understanding tumor growth laws and has grown to include the competition between healthy and normal tissue, carcinogenesis, therapy and metastasis. It is the latter topic, metastasis, on which we will focus this short review, specifically discussing various computational and mathematical models of different portions of the metastatic process, including: the emergence of the metastatic phenotype, the timing and size distribution of metastases, the factors that influence the dormancy of micrometastases and patterns of spread from a given primary tumor.Comment: 24 pages, 6 figures, Revie

    Breast and other cancer dormancy as a therapeutic endpoint: speculative recombinant T cell receptor ligand (RTL) adjuvant therapy worth considering?

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: Most individuals who died of trauma were found to harbour microscopic primary cancers at autopsies. Surgical excision of the primary tumour, unfortunately, seems to disturb tumour dormancy in over half of all metastatic relapses. PRESENTATION OF THE HYPOTHESIS: A recently developed immune model suggested that the evolutionary pressure driving the creation of a T cell receptor repertoire was primarily the homeostatic surveillance of the genome. The model is based on the homeostatic role of T cells, suggesting that molecular complementarity between the positively selected T cell receptors and the self peptide-presenting major histocompatibility complex molecules establishes and regulates homeostasis, strictly limiting variations of its components. The repertoire is maintained by continuous peripheral stimulation via soluble forms of self-peptide-presenting major histocompatibility complex molecules governed by the law of mass action. The model states that foreign peptides inhibit the complementary interactions between the major histocompatibility complexes and T cell receptors. Since the vast majority of clinically detected cancers present self-peptides the model assumes that tumour cells are, paradoxically, under homeostatic T cell control.The novelty of our hypothesis therefore is that resection of the primary tumour mass is perceived as loss of 'normal' tissue cells. Consequently, T cells striving to reconstitute homeostasis stimulate rather than inhibit the growth of dormant tumour cells and avascular micrometastases. Here we suggest that such kick-start growths could be prevented by a recombinant T cell receptor ligand therapy that modifies T cell behaviour through a partial activation mechanism. TESTING THE HYPOTHESIS: The homeostatic T cell regulation of tumours can be tested in a tri-transgenic mice model engineered to express potent oncogenes in a doxycycline-dependent manner. We suggest seeding dissociated, untransformed mammary cells from doxycycline naïve mice into the lungs of two mice groups: one carries mammary tumours, the other does not. Both recipient groups to be fed doxycycline in order to activate the oncogenes of the untransformed mammary cells in the lungs, where solitary nodules are expected to develop 6 weeks after injection. We expect that lung metastasis development will be stimulated following resection of the primary tumour mass compared to the tumour-free mice. A recombinant T cell receptor ligand therapy, starting at least one day before resection and continuing during the entire experimental period, would be able to prevent the stimulating effect of surgery. IMPLICATIONS OF THE HYPOTHESIS: Recombinant T cell receptor ligand therapy of diagnosed cancer would keep all metastatic deposits microscopic for as long as the therapy is continued without limit and could be pursued as one method of cancer control. Improving the outcome of therapy by preventing the development of metastases is perhaps achievable more readily than curing patients with overt metastases

    Constraints on Nucleon Decay via "Invisible" Modes from the Sudbury Neutrino Observatory

    Get PDF
    Data from the Sudbury Neutrino Observatory have been used to constrain the lifetime for nucleon decay to ``invisible'' modes, such as n -> 3 nu. The analysis was based on a search for gamma-rays from the de-excitation of the residual nucleus that would result from the disappearance of either a proton or neutron from O16. A limit of tau_inv > 2 x 10^{29} years is obtained at 90% confidence for either neutron or proton decay modes. This is about an order of magnitude more stringent than previous constraints on invisible proton decay modes and 400 times more stringent than similar neutron modes.Comment: Update includes missing efficiency factor (limits change by factor of 2) Submitted to Physical Review Letter

    Characterization of a new simian immunodeficiency virus strain in a naturally infected Pan troglodytes troglodytes chimpanzee with AIDS related symptoms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Data on the evolution of natural SIV infection in chimpanzees (SIVcpz) and on the impact of SIV on local ape populations are only available for Eastern African chimpanzee subspecies (<it>Pan troglodytes schweinfurthii</it>), and no data exist for Central chimpanzees (<it>Pan troglodytes troglodytes</it>), the natural reservoir of the ancestors of HIV-1 in humans. Here, we report a case of naturally-acquired SIVcpz infection in a <it>P.t.troglodytes </it>chimpanzee with clinical and biological data and analysis of viral evolution over the course of infection.</p> <p>Results</p> <p>A male chimpanzee (Cam155), 1.5 years, was seized in southern Cameroon in November 2003 and screened SIV positive during quarantine. Clinical follow-up and biological analyses have been performed for 7 years and showed a significant decline of CD4 counts (1,380 cells/mm<sup>3 </sup>in 2004 vs 287 in 2009), a severe thrombocytopenia (130,000 cells/mm<sup>3 </sup>in 2004 vs 5,000 cells/mm<sup>3 </sup>in 2009), a weight loss of 21.8% from August 2009 to January 2010 (16 to 12.5 kg) and frequent periods of infections with diverse pathogens.</p> <p>DNA from PBMC, leftover from clinical follow-up samples collected in 2004 and 2009, was used to amplify overlapping fragments and sequence two full-length SIVcpz<it>Ptt</it>-Cam155 genomes. SIVcpz<it>Ptt</it>-Cam155 was phylogenetically related to other SIVcpz<it>Ptt </it>from Cameroon (SIVcpz<it>Ptt</it>-Cam13) and Gabon (SIVcpz<it>Ptt</it>-Gab1). Ten molecular clones 5 years apart, spanning the V1V4 gp120 <it>env </it>region (1,100 bp), were obtained. Analyses of the <it>env </it>region showed positive selection (dN-dS >0), intra-host length variation and extensive amino acid diversity between clones, greater in 2009. Over 5 years, N-glycosylation site frequency significantly increased (p < 0.0001).</p> <p>Conclusions</p> <p>Here, we describe for the first time the clinical history and viral evolution of a naturally SIV infected <it>P.t.troglodytes </it>chimpanzee. The findings show an increasing viral diversity over time and suggest clinical progression to an AIDS-like disease, showing that SIVcpz can be pathogenic in its host, as previously described in <it>P.t.schweinfurthii</it>. Although studying the impact of SIV infection in wild apes is difficult, efforts should be made to better characterize the pathogenicity of the ancestors of HIV-1 in their natural host and to find out whether SIV infection also plays a role in ape population decline.</p

    Stimulus-Related Independent Component and Voxel-Wise Analysis of Human Brain Activity during Free Viewing of a Feature Film

    Get PDF
    Understanding how the brain processes stimuli in a rich natural environment is a fundamental goal of neuroscience. Here, we showed a feature film to 10 healthy volunteers during functional magnetic resonance imaging (fMRI) of hemodynamic brain activity. We then annotated auditory and visual features of the motion picture to inform analysis of the hemodynamic data. The annotations were fitted to both voxel-wise data and brain network time courses extracted by independent component analysis (ICA). Auditory annotations correlated with two independent components (IC) disclosing two functional networks, one responding to variety of auditory stimulation and another responding preferentially to speech but parts of the network also responding to non-verbal communication. Visual feature annotations correlated with four ICs delineating visual areas according to their sensitivity to different visual stimulus features. In comparison, a separate voxel-wise general linear model based analysis disclosed brain areas preferentially responding to sound energy, speech, music, visual contrast edges, body motion and hand motion which largely overlapped the results revealed by ICA. Differences between the results of IC- and voxel-based analyses demonstrate that thorough analysis of voxel time courses is important for understanding the activity of specific sub-areas of the functional networks, while ICA is a valuable tool for revealing novel information about functional connectivity which need not be explained by the predefined model. Our results encourage the use of naturalistic stimuli and tasks in cognitive neuroimaging to study how the brain processes stimuli in rich natural environments

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    The Evolution of Functionally Redundant Species; Evidence from Beetles

    Get PDF
    While species fulfill many different roles in ecosystems, it has been suggested that numerous species might actually share the same function in a near neutral way. So-far, however, it is unclear whether such functional redundancy really exists. We scrutinize this question using extensive data on the world’s 4168 species of diving beetles. We show that across the globe these animals have evolved towards a small number of regularly-spaced body sizes, and that locally co-existing species are either very similar in size or differ by at least 35%. Surprisingly, intermediate size differences (10–20%) are rare. As body-size strongly reflects functional aspects such as the food that these generalist predators can eat, these beetles thus form relatively distinct groups of functional look-a-likes. The striking global regularity of these patterns support the idea that a self-organizing process drives such species-rich groups to self-organize evolutionary into clusters where functional redundancy ensures resilience through an insurance effect

    Research priorities for non-pharmacological therapies for common musculoskeletal problems: nationally and internationally agreed recommendations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Musculoskeletal problems such as low back pain, neck, knee and shoulder pain are leading causes of disability and activity limitation in adults and are most frequently managed within primary care. There is a clear trend towards large, high quality trials testing the effectiveness of common non-pharmacological interventions for these conditions showing, at best, small to moderate benefits. This paper summarises the main lessons learnt from recent trials of the effectiveness of non-pharmacological therapies for common musculoskeletal conditions in primary care and provides agreed research priorities for future clinical trials.</p> <p>Methods</p> <p>Consensus development using nominal group techniques through national (UK) and international workshops. During a national Clinical Trials Thinktank workshop in April 2007 in the UK, a group of 30 senior researchers experienced in clinical trials for musculoskeletal conditions and 2 patient representatives debated the possible explanations for the findings of recent high quality trials of non-pharmacological interventions. Using the qualitative method of nominal group technique, these experts developed and ranked a set of priorities for future research, guided by the evidence from recent trials of treatments for common musculoskeletal problems. The recommendations from the national workshop were presented and further ranked at an international symposium (hosted in Canada) in June 2007.</p> <p>Results</p> <p>22 recommended research priorities were developed, of which 12 reached consensus as priorities for future research from the UK workshop. The 12 recommendations were reduced to 7 agreed priorities at the international symposium. These were: to increase the focus on implementation (research into practice); to develop national musculoskeletal research networks in which large trials can be sited and smaller trials supported; to use more innovative trial designs such as those based on stepped care and subgrouping for targeted treatment models; to routinely incorporate health economic analysis into future trials; to include more patient-centred outcome measures; to develop a core set of outcomes for new trials of interventions for musculoskeletal problems; and to focus on studies that advance methodological approaches for clinical trials in this field.</p> <p>Conclusion</p> <p>A set of research priorities for future trials of non-pharmacological therapies for common musculoskeletal conditions has been developed and agreed through national (UK) and international consensus processes. These priorities provide useful direction for researchers and research funders alike and impetus for improvement in the quality and methodology of clinical trials in this field.</p

    Matrix models and sensitivity analysis of populations classified by age and stage : a vec-permutation matrix approach

    Get PDF
    © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Theoretical Ecology 5 (2012): 403-417, doi:10.1007/s12080-011-0132-2.Matrix population models in which individuals are classified by both age and stage can be constructed using the vec-permutation matrix. The resulting age-stage models can be used to derive the age-specific consequences of a stage-specific life history or to describe populations in which the vital rates respond to both age and stage. I derive a general formula for the sensitivity of any output (scalar, vector, or matrix-valued) of the model, to any vector of parameters, using matrix calculus. The matrices describing age-stage dynamics are almost always reducible; I present results giving conditions under which population growth is ergodic from any initial condition. As an example, I analyze a published stage-specific model of Scotch broom (Cytisus scoparius), an invasive perennial shrub. Sensitivity analysis of the population growth rate finds that the selection gradients on adult survival do not always decrease with age but may increase over a range of ages. This may have implications for the evolution of senescence in stage-classified populations. I also derive and analyze the joint distribution of age and stage at death and present a sensitivity analysis of this distribution and of the marginal distribution of age at death.This research was supported by National Science Foundation Grant DEB-0816514 and by a Research Award from the Alexander von Humboldt Foundation
    corecore