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Abstract Matrix population models in which individ-
uals are classified by both age and stage can be
constructed using the vec-permutation matrix. The
resulting age-stage models can be used to derive the
age-specific consequences of a stage-specific life his-
tory or to describe populations in which the vital rates
respond to both age and stage. I derive a general for-
mula for the sensitivity of any output (scalar, vector,
or matrix-valued) of the model, to any vector of pa-
rameters, using matrix calculus. The matrices describ-
ing age-stage dynamics are almost always reducible; I
present results giving conditions under which popula-
tion growth is ergodic from any initial condition. As an
example, I analyze a published stage-specific model of
Scotch broom (Cytisus scoparius), an invasive perennial
shrub. Sensitivity analysis of the population growth rate
finds that the selection gradients on adult survival do
not always decrease with age but may increase over
a range of ages. This may have implications for the
evolution of senescence in stage-classified populations.
I also derive and analyze the joint distribution of age
and stage at death and present a sensitivity analysis of
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this distribution and of the marginal distribution of age
at death.
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Introduction

The first step in developing any kind of structured
population model is choosing one or more variables
in terms of which to describe the population structure.
The job of these i-state variables is to encapsulate
all the information about the past experience of an
individual that is relevant to its future behavior (Metz
and Diekmann 1986, Caswell 2001, Chapter 3). Classi-
cal demography (for both humans and for nonhuman
animals and plants) uses age as a i-state, but other,
more biologically relevant criteria (e.g., size, develop-
mental stage, parity, physiological condition, etc.) are
now widely used in ecology, with age-classified models
viewed as a special case.

However, it has long been recognized that cases exist
where it is important to classify individuals by both age
and stage.

1. Even in a stage-classified model, age still exists;
every individual becomes older, by one unit of
age, with the passage of each unit of time. There
is increasing interest in extracting the age-specific
demographic consequences of stage-classified mod-
els (e.g., Feichtinger 1971; Caswell 2001, 2006,
2009b; Tuljapurkar and Horvitz 2006; Horvitz and
Tuljapurkar 2008). Models that include both age
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and stage provide information on those conse-
quences that goes beyond current methods based
on the fundamental matrix of the stage-classified
model.

2. If the vital rates depend on both age and stage,
a model that includes both is necessary to reveal
the joint action of age-and stage-specific processes
(e.g., Goodman 1969; Logofet 2002). Such models,
of course, require information on the joint age
dependence and stage dependence of the vital rates
and thus are challenging to construct (see Law 1983
and van Groenendael and Slim 1988 for examples).
A special case that has been extensively explored is
the multiregional case, in which the stage variable
describes spatial location (e.g., Rogers 1966, 1995;
Lebreton 1996).

Here, I present a model framework in which indi-
viduals are classified by age and stage, using the vec-
permutation matrix approach (so-called for the role
that the vec-permutation matrix plays in rearranging
age and stage categories in the population vector).
This formalism was introduced by Hunter and Caswell
(2005) for populations classified by stage and location
(see applications by Ozgul et al. 2009; Goldberg et al.
2010; Strasser et al. 2010) and has been applied to
time-varying models classified by stage and environ-
mental state (Caswell 2006, 2009b, 2011a) and to stage-
structured epidemic models (Klepac and Caswell 2010).

Matrix models can describe both population dynam-
ics and cohort dynamics. Population dynamics (pop-
ulation growth, age and stage structure, reproductive
value) depend on both the transitions of extant indi-
viduals and the production of new individuals by repro-
duction. In contrast, cohort dynamics (survivorship, life
expectancy, age at death, generation time) depend only
on the fates of already existing individuals. The frame-
work I introduce here permits both kinds of analysis.

Perturbation analysis calculates the response of
model outputs to changes in the parameters. Demo-
graphic studies are almost always concerned with
change: over time, in response to external factors
(e.g., experimental treatments, environmental influ-
ences, policy interventions, or historical events), or as
differences among populations (e.g., among regions,
related species, or among populations differentiated
by social factors). Evolutionary demography focuses
differences caused by genetic variation; the fate of a
new phenotype depends on the changes it produces in
fitness. Hence, perturbation analysis is an important
tool in ecology, management, human demography, and
evolutionary biology (Caswell 2001). I will develop a
general formula for the sensitivity of any dependent
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variable on changes in any parameter[s] influencing
either age- or stage-dependent dynamics, using matrix
calculus methods (Caswell 2007, 2008, 2009a, b).

The perturbation analysis of fitness provides se-
lection gradients, which are particularly relevant to
the evolution of senescence (increases in mortality
rates with age; e.g., Medawar 1952, Hamilton 1966,
Charlesworth 1994, Rose 1991, Baudisch 2005, Vaupel
2010). Hamilton (1966) showed that the magnitude
of the selection gradient on mortality is nonincreas-
ing with age and is strictly decreasing with age after
maturity. This means that relatively large increases
in mortality at late ages can be compensated for by
smaller—often much smaller—reductions in mortality
at early ages. Any trait that creates such changes will
be favored, and the accumulation of such traits in
the population leads to senescence, but see Baudisch
(2005, 2008) for a discussion of the care required in the
definition of “such traits.”

As is well-known, however, Hamilton’s conclusions
are specific to age-classified life cycles. Selection
gradients may behave quite differently in stage-
classified models, leading some to suggest that stage-
classified species, particularly those where demogra-
phy is strongly size-dependent, might exhibit “negative
senescence” (Caswell 1982; Vaupel et al. 2004). How-
ever, in order to evaluate this argument, it is essen-
tial to see how selection gradients change with both
age and stage. The model framework developed to be
presented here makes this possible, and an example
is presented in section “Population growth rate and
selection gradients”). These results greatly expand the
range of ecological data that can be applied to questions
about the evolution of senescence.

Model construction

The construction and analysis of these models require
a number of different matrices and operators; some of
the notation is collected in Table 1.

Individuals are classified into stages 1, ..., s and age
classes 1, ..., w. The model treats the processes of mov-
ing among stages and moving among age classes as pe-
riodic, or alternating. First, stage-specific demography
operates to move individuals among stages and to pro-
duce new offspring. Then aging acts to move individuals
to the next older age, and the process repeats.

Define a stage-classified projection matrix A;, of
dimension s x s, for each age class, i=1,..., .
Decompose A; into

A =U +F (1)
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Tablg 1 Mathf:mat.lcal Quantity Description Dimension
notation used in this study — . o o -
A F;., U; Stage-classified projection, fertility, and transition matrices for age §X S
class i
Dy, Dr Age transition matrices for individuals already present in the X
population and for new individuals produced by reproduction
AF U, D Block-diagonal matrices. SW X S
A, U, etc. Age-stage matrices constructed from block-diagonal matrices using Sw X Sw
the vec-permutation matrix
K., K Vec-permutation matrix SW X S
I Identity matrix S XS
1 Vector of ones sx 1
e; The ith unit vector, with a 1 in the ith entry and zeros elsewhere Various
E; A matrix with a 1 in the (7, j) position, and zeros elsewhere Various
) ) ® Kronecker product
Dimensions are sl_lown, where o Hadamard, or element-by-element, product
relevant, for matrices and .
vec X The vec operator, which stacks the columns of am x n
vectors; s denotes the number . .
matrix X into a mn x 1 vector
of stages and w the number . . .
D(x) A diagonal matrix with x on the diagonal and zeros elsewhere

of age classes

where U; contains the transition probabilities of ex-
tant individuals and F; describes the generation of new
individuals by reproduction.

Aging is described by two matrices, each of di-
mension o x @ (shown here for 3 x 3, but easily
generalized),

000
100
011

Dy = dimension  x @ 2)

111
000
000

DF: w X w (3)

The matrix Dy applies to extant individuals; such an
individual advances to the next age class. I have set
the (w, w) entry of Dy to 1, so that the last age class
contains individuals of age w and older. If this entry
were set to 0, all individuals in the last age class would
die. The matrix Dy applies to individuals newly created
by reproduction; such newborn individuals are placed
in the first age class, regardless of the age of their
parents.

Using the matrices A;, U;, F;, Dy, and Dp, construct
block-diagonal matrices, each of dimension sw X sw.
For example,

A

The complete set of block-diagonal matrices is given in
Online Resource A. These block-diagonal matrices can
be written

A= 2:1: (E; ® A)) ®)
U= gwl: (E; ® Uy (6)
Fo Z (E: & F) ™)
Dy =1, ® Dy ®)
Df = I, ® D )

where E;; is of dimentison @ x w.

If the demography is truly stage-dependent, so
that A; = A, fori=1,..., o, then the block-diagonal
matrices A, IF, and U reduce to, e.g.,

with corresponding expressions for F and U.
The state of the population at time ¢ could be de-
scribed by a two-dimensional array

nip - N
N =\ : N N0

Ngyp + -+ Ny

S X w (11)
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where rows correspond to stages and columns to age
classes. However, such a two-dimensional array cannot
be projected directly; instead, it is transformed to a
vector,

n() =vec N (t) = ) sw x 1 (12)

using the vec operator, which stacks the columns of the
matrix one above the next. The vector n(¢) created in
this way contains the stages arranged within age classes.
An alternative configuration, with ages arranged within
stages, is obtained by applying the vec operator to .4

n

Niy

vec N (1) = ) sw x 1.

(13)

N

Nsw

The two vectors vec.# and vec.#" are related by
the vec-permutation matrix K (Henderson and Searle
1981), also known as the commutation matrix (Magnus
and Neudecker 1979),

vec N = K ,vec A (14)
where
K., = Z Z E;® E,T, (15)

i=1 j=1

where E;; is of dimension s x w. Where no confusion
seems likely to arise, I will supress the subscripts and
write K, as K. As with any permutation matrix,
K =K

The goal of the model is to project the age-stage vec-
tor n = vec./ from ¢ to ¢t 4+ 1. The complete projection
is given by

n(t + 1) = (K'DyKU + K'DeKF)n(r). (16)
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This deserves some explanation. Consider the first term
on the right-hand side, K'DyKU. Reading from right
to left, it first operates on the vector n(f) with the
block diagonal matrix U, which moves surviving ex-
tant individuals among stages without changing their
age. Then the resulting vector is rearranged by the
vec-permutation matrix K to group individuals by age
classes within each stage. The block diagonal matrix Dy
then moves each surviving individual to the next older
age class. Finally, K" rearranges the vector back to the
stage-within-age arrangement of n(r).

The second term in Eq. (16), K'DgKF, carries out
a similar sequence of transformations for the gener-
ation of new individuals. First, newborn individuals
are produced according to the block-diagonal fertility
matrix F. The resulting vector is rearranged by the
vec-permutation matrix, and then the matrix D places
all the newborn individuals into the first age class.
Finally, K" rearranges the vector to the stage-within-
age arrangement.

I will write the age-stage projection matrix in
Eq. (16) as

A = (K'DyKU + K'DKF) (17)

= (U+F). (18)
The matrices A, U, and F that operate on the age-
stage vector n are denoted with a tilde (A, U, F); these
matrices define the age-stage classified model and can
be subjected to all the usual demographic analyses.

Perturbation analysis

Age-stage models pose particular challenges for pertur-
bation analysis, because interest naturally focuses on
changes in the matrices F; and U; (i =1, ..., w), which
are deeply embedded within F, U, and A. However,
the computations are possible using matrix calculus,
a formalism that permits consistent calculation of the
derivatives of scalar-, vector- or matrix-valued func-
tions of scalar-, vector-, or matrix-valued arguments
(Magnus and Neudecker 1985, 1988). See Abadir and
Magnus (2005) for an introduction and Caswell (2006,
2007, 2008, 2009a, b, 2010, 2011a, b), Jenouvrier et al.
(2010), Klepac and Caswell (2010), and Strasser et al.
(2010) for ecological applications. A brief outline of the
methods is provided in “Online Resource B”.

I will present the perturbation analysis in terms of
a generic dependent variable &, which is a scalar- or
vector-valued function of A. In the examples to follow,
& will be either the population growth rate X or the joint
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distribution of age and stage at death in a cohort, but
it could be any variable calculated from A. Let 0 be
a vector of parameters; these could be entries of the
matrices, or lower-level parameters determining those
entries. The goal of perturbation analysis is to obtain
the derivative of & with respect to 6. This derivative is
a matrix whose (i, j) entry is the derivative of & with
respect to 6;:

d§ [ d&
dT?T‘(d@,»)‘ (19)

By the chain rule,

d¢  d¢ dvec A
doT  dvec’A dOT

(20)

The first term in Eq. (20) is the derivative of & with
respect to the matrix A. If, for example, & was the
dominant eigenvalue A, then this term would be the
matrix calculus version of the well-known eigenvalue
sensitivity equation.

The second term in Eq. (20) requires differentiating
A with respect to the parameters that determine it.
From Eq. (17), write

A= QuU + QgF (21)

where Qu = K'DyK and Qf = K'DeK are the (con-
stant) matrix products appearing in the definition of U
and F in Eq. (17).

Differentiating A in Eq. (21) gives

dvecA = (L ® Qu) dvecU + (I, @ Q) dvecF. (22)

This requires the differentials of U and F.
Differentiating U in Eq. (6) gives
dU =) (E; ® dU)). (23)

i=1

Applying the vec operator to dU gives

dvecU = Z (E; @ KQ L) (vecl, ® Ip)dvecU; (24)

i=1

using the results of Magnus and Neudecker (1985,
Theorem 11; see Appendix B of Klepac and Caswell
2010) on the derivative of the Kronecker product.
Differentiation of F proceeds in the same fashion,
yielding

dvecF = Z (E; @ K® L) (vecl, ® Ip) dvecF,.  (25)

i=1

In the special case where U and F are constructed from
single stage-classified matrices U and F, as in Egs. (10),
(24) and (25) simplify to

dvecU =1,  K®I) (vecl, ® I») dvecU (26)

dvecF = I,  K® L) (vecl, ® I2) dvecF. 27)

Substituting Eqs. (24) and (25) into Eq. (22) and then
substituting Eq. (22) into Eq. (20) yields the general
result for the derivative

dg dE[

@~ qri | W ®Q Y (E: KoL)
vec

i=1

dvecU;
x (vecI, ® I2) —ar + (Lw ® QF)

x Y (BE;®@K®I)
i=1

x (veel, ® Ip) — (28)

dvec Fi:|

Notice that Eq. (28) requires only three pieces of
demographic information: the derivatives of U; and F;
with respect to the parameters (whatever those may be
in the case at hand) and the sensitivity of the dependent
variable & (whatever that may be) to the elements of
the matrix A from which it is calculated. All the other
pieces of Eq. (28) are constants.!

Case studies

Here I present two examples of the use of the age-
stage model to extract age-classified information from a
stage-classified model. The first example is a sensitivity
analysis of the population growth rate A, obtaining the
sensitivity of A to both age- and stage-specific survival,
and permitting examination of how selection pressures
on senescence-inducing traits would vary from stage to
stage. The second example is an analysis of the joint
distribution of age and stage at death. This has, to my
knowledge, never been calculated before.

These examples are based on a stage-classified
model (Parker 2000) for Scotch broom (Cytisus scopar-
ius). Scotch broom is a large (up to 4 m tall) leguminous
shrub, introduced into North America from Europe in
the late 19th century. It is an invasive plant, considered
a pest in the northwestern parts of North America.

ISome of these constant matrices may be large, depending on
s and w, but they are very sparse; the sparse matrix technology
available in MATLAB can be extremely useful in implementation.
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Stage-classified demographic models have been used to
evaluate potential management policies for the plant
(Parker 2000) and to investigate its potential for spatial
spread (Neubert and Parker 2004).

The model contains seven stages (stage 1 = seeds,
2 = seedlings, 3 = juveniles, 4 = small adults,
5 = medium adults, 6 = large adults, 7 = extra-large
adults), and parameters were estimated at a number of
locations in Washington State. As is typical with many
perennial plant species, survival is low for seeds and
seedlings but increases dramatically in larger stages.
Parker’s (2000) study presented estimated projection
matrices for plants at the edge, at intermediate loca-
tions, and at the center of an invading stand. Plants near
the center experience more crowding, with resulting
reduced rates of survival, growth, and fertility.

Population growth rate and selection gradients

The population growth rate A, the stable age or stage
distribution w, and age or stage-specific reproduc-
tive value vector v are given by the dominant eigen-
value and corresponding right and left eigenvectors
of the population projection matrix, respectively. In
evolutionary demography, A measures the fitness of a
phenotype, in that it gives the eventual rate at which
descendants of an individual with that phenotype will
increase. The selection gradient on a vector of traits 0
is given by

da
FTIR (29)
These gradients play a fundamental role in evolution-
ary biodemography, whether evolution is conceived
of in terms of population genetics, quantitative genet-
ics, adaptive dynamics, or mutation accumulation (e.g.,
Metz et al. 1992; Dercole and Rinaldi 2008; Caswell
2001; Rice 2004; Barfield et al. 2011). If the gradient
is positive, selection favors an increase in the trait, and
vice-versa.

In this application, & in Eq. (20) is the dominant
eigenvalue A. Let w and v be the right and left eigenvec-
tors corresponding to A, scaled so that v'w = 1. Then, in
Eq. (28),

d =W V. (30)
dvecTA
(Caswell 2010).

In this model, the vital rates are functions only of
stage; the phenotype is blind to the age of the individ-
ual. However, the terms in the summations in Eq. (28)
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give the selection gradients on traits operating at a
different age. That is,

da da
ot = = | (w ® Qu) (E;  K® L)
det age=i dvecTA |: v

dvecU;
I, Ip) ———
x (vecl, ® I2) a0

+ (wa & QF) (Eii ® K ® Is)

dvecF;
x (vecl, ® 1) %] . (31

Thus, these terms reveal the selection patterns that
would operate on a mutation that was able to detect
the age of an individual within a given stage, or that
affected age differentially depending on the stage of the
individual.

To examine the selection gradients on survival, it is
necessary to separate survival from inter-stage transi-
tions in U. Let o be the vector of stage-specific sur-
vival probabilities. The matrix U can be written as the
product of a diagonal matrix containing the survival
probabilities and a matrix I' is a matrix of transition
probabilities, conditional on survival;

U=T 2 0). (32)
I assume that F is independent?® of o. Thus

dU =T 2 (do). (33)
Applying the vec operator gives

dvecU = (I; ® I') vec Z (do’)
=L eI 2 (vecly) 1, ® L) do (34)

which implies that

el _ 1 o1)2 (vecl) (1, ®1,). (35)
do”

Setting # = o and substituting Egs. (35) and (30) into

Eq. (20) gives the selection gradient on o. Substituting

Eq. (35) and Eq. (30) into Eq. (31), with dvecF/df" =

0, gives the selection gradient on ¢ as a function of age

and stage.

2By assuming that F does not depend on ¢, I am in effect choosing
a prebreeding census and excluding neonatal mortality from o.
It is not difficult to include F in the analysis; the implications of
doing so will be explored elsewhere.
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Table 2 The projection matrix A for Scotch broom for the
Discovery Park population, 1993-1994, edge conditions; taken
from the Appendix of Parker (2000)

0.740 0 3.400 47.1 108.700 1120.0 3339.0
0.001 0.310 O 0 0 0 0
0 0.350 0.310 O 0 0 0
A= 0 0.038 0.290 0.024 0 0 0 (36)
0 0 0.069 0.390 0.320 0 0.091
0 0 0 0440 0.440 0.530 0.091
0 0 0 0 0.029 0.400 0.730
Results

The projection matrix A for Scotch broom is given in
Table 2. The matrix U is obtained from A by setting
all elements in the first row except for a;, to zero. The
matrix F is a 7 x 7 matrix with the elements of row 1,
columns 2-7 of A in the corresponding positions, and
zeros elsewhere. The maximum age was set to w = 30.
The aging matrices Dy and Dy are given by Egs. (2) and
(3) with @ = 30. Because the vital rates do not depend
on age, the dominant eigenvalues of A and A should be
identical, and they are; 1 = 1.268.

The selection gradients on stage-specific survival
(i.e., sensitivities of A to o) are shown in Fig. 1. There
is a steady decline with increasing stage, from seeds to
medium-sized adults, but then an increase for large and
extra-large adults. A quite different pattern emerges
when the selection gradients are calculated as functions
of both age and stage, using Eq. (31). These results are

0.45

0.4

0.35

Sensitivity

=}
° — o
= ) )

o
=)
[5)

Stage

Fig. 1 Sensitivity of population growth rate A to stage-specific
survival probabilities. Calculated for the stage-classified model
of Scotch broom (C. scoparius using data from Parker (2000).
Stages: I = seeds, 2 = seedlings, 3 = juveniles, 4 = small adults, 5
= medium adults, 6 = large adults, 7 = extra-large adults

shown in Fig. 2. The age-specific selection gradients on
survival in stages 1-3 are strictly decreasing with age.
But the age-specific selection gradients on survival in
the adult stages 4-7 increase with age, level off, and then
decline. The increase is longer and more pronounced in
the larger adult stages.

To my knowledge, this pattern has never been doc-
umented before. Carrying out the same analysis for
a set of eight different populations of Scotch broom
(Parker 2000), in different locations and different years,
shows that they all exhibit this pattern to one degree
or another (see Online Resource C). The consequences
of these selection gradients for the evolution of senes-
cence are still unknown. However, any conclusions that
follow from the general decline in selection gradients
with age would not apply to traits that affect age-
specific survival differentially depending on develop-
mental stage. Traits that affect survival in adult stages
should postpone senescence for at least some time.

The elasticities of A to o show a similar pattern
(Online Resource C). These elasticities are the sensitiv-
ities of log A to changes in age—stage-specific mortality
(with opposite sign),

o;dr  dlogi
A dO’l' - d/,Li

(37)

o
- o
(&) N

Sensitivity
o

0.05

O o

Fig. 2 Sensitivity of population growth rate A to stage-specific
survival as a function of age, for Scotch broom. Stages defined as
in Fig. 1
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where p; is the mortality rate of stage i. Thus, conclu-
sions about senescence also hold for traits that cause
perturbations to mortality.

Cohort dynamics: the distribution of age and stage
at death

The pattern of longevity within a population is
captured by the probability distribution of the age at
death, one of the standard results of age-classified life
table analysis. The moments of the age at death and
their sensitivity can also be calculated directly from
stage-classifed models using Markov chain methods
(Feichtinger 1971; Caswell 2001, 2006, 2009b;
Tuljapurkar and Horvitz 2006; Horvitz and Tuljapurkar
2008). My goal here, however, is to go beyond that,
to the full joint distribution of stage and age at death,
along with the marginal distributions of age at death
and stage at death, implied by an age-stage classified
model.

To do this, note that the cohort projection matrix
U describes movement of individuals among transient
states of an absorbing Markov chain, where the absorb-
ing state is death, or death classified by stage or age at
death. The transition matrix of the chain is

- uUlo
- (4). -

The matrix P is column stochastic, written in column-
to-row orientation.

Each row of M corresponds to an absorbing state,
and m;; is the probability of a transition from transient
state jto absorbing state i. To compute the distribution
of age and stage at death, we define the absorbing states
to correspond to the age-stage combination at death.
Thus, M contains probabilities of death on the diagonal
and zeros elsewhere,

M=1, -2 (1,0). (39)

The fundamental matrix of the Markov chain in
Eq. (38) is

N= (I—ﬁ)”. (40)

The (i, j) element of N is the expected number of visits
that an individual in state j will make to transient state
i before death.

Consider the eventual fate of an individual starting
in transient state j. Let

b;; = P[eventual absorption in i | startingin j].  (41)
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The b ;; are the elements of the matrix B (sw x so) given
by

B = MN. (42)

(Losifescu 1980, Theorem 3.3; see Caswell 2001, Sec-
tion 5.1). Since the absorbing states (the rows of M)
correspond to combinations of age and stage at death,
column j of B gives the joint distribution of age and
stage at death, starting from state j:

hj = ﬁej. (43)

The rows of B correspond to combinations of stage and
age at death. Summing the rows over stages gives the
marginal distribution of age at death, starting in column
jof B, as

gi=(L,L)b.; (44)

Similarly, summing over ages gives the marginal distri-
bution of stage at death:

hj= (L, ®1,)Kb.,. (45)

Perturbation analysis

In the general sensitivity Eq. (20), the dependent vari-
able &£ =b.;. This depends only on U, so the first term
in Eq. (20) can be shown to be

de db

— = _ (46)
dvecA  dvecU
= _ (e}NT ® Isw) 7 (vecly,) (Lo ® 1,15,)
+(eN@B). (47)

The desired derivative db.;/d#" is obtained by sub-
stituting Eq. (47) for d&é/dvecA in Eq. (28), setting
dvecF;/d0™ = 0.

The sensitivities of the marginal distributions of age
and stage at death are then given by

dg; db.;

dTi = (L eL) 0; (48)
dh;, db ;

dT?i =(L®1)) KWT’. (49)

The derivation of these perturbation results, a partic-
ularly nice application of matrix calculus, is given in
Appendix A.
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Seed

Probability

Juvenile

Probability

Seedling

Small adult

Fig. 3 The joint probability distribution of age and stage at death for an individual seed, seedling, juvenile, or small adult of Scotch

broom. Stages as in Fig. 1

Results

Figure 3 shows the joint distribution of age and stage at
death for a seed of age 1 (one definition of “newborn”
in this life cycle), with @ = 40. Almost all seeds will
die as seeds, because the germination probability is
low, ax; = 0.001; see Eq. (29). The fates of seedlings
(another possible choice for newborn status) are more
diverse, and those of juveniles and small adults even
moreso; the distributions show what proportion will die
as seedlings, juveniles, etc., and at what ages (Fig. 3).
The marginal distribution of age at death, for in-
dividuals in each initial stage, is given in Fig. 4. Not
surprisingly, larger stages have an age distribution of
death shifted to later ages, including some probability
of survival to age class @ (>40 years in this calculation).
The sensitivity of g, (the marginal distribution of age
at death for a seedling) is shown in Fig. 5. Changes
in the survival of seeds (o7) have no effect on this
distribution, because seedlings have already left the
seed stage. Changes in 0,07 shift the distribution to

Probability of death
o o o o o ©
R

©
—
T
I

Initial stage

Fig. 4 The marginal distributions of age at death for individuals
of Scotch broom in each stage. The maximum age in the model is
= 40. Stages as in Fig. 1
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Fig. 5 Sensitivity of the marginal distribution of age at death, g, to the survival probabilities of each stage, for an individual starting in

stage 2 (seedlings). Stages as in Fig. 1

progressively older ages, by reducing the probability of
death at young ages and increasing it at older ages.

Discussion

Models in which individuals are classified by both age
and stage can extend demographic analyses in several
directions. They permit biodemographic analyses of
aging to take advantage of the many stage-classified
demographic analyses accumulated by ecologists (cf.
Caswell 2001). They also permit human demographers
to take account of factors other than age in determining
mortality, longevity, fertility, and population dynamics.

Age- and stage-specific demographic processes are
regularly combined in demography using multistate life
table (MSLT) methods (e.g., Rogers 1975; Willikens
2002; Hougaard 2000). These are usually focused on
cohort dynamics and associated survival statistics (but
see Rogers 1975, Chapter 5 for an explicit consideration
of population projection). MSLT models are written

@ Springer

as continuous-parameter, discrete-state Markov chains,
where the parameter represents age and the states rep-
resent stages. In order to solve the resulting equations,
the dynamics must be approximated over a (usually
short) finite age interval; this would correspond to the
sequence of matrices A; in the model here. The age-
stage model described by A is a way to solve the
discretized equations in one step and makes possible a
variety of analyses that are difficult or impossible in the
usual MSLT formulation. Further investigation of the
relation between the continuous MSLT methods and
the age-stage models will be interesting.

Age-stage models require stage-classified projection
matrices A; (or their components U; or F;) for ages
i=1,...,0. These can be obtained in several ways.
The simplest is to use a single age-invariant matrix A,
as in the Cytisus example, and infer the age-specific
properties it produces. Or, one could start with an age-
schedule of mortality and modify it by stage-specific
mortality differentials. For example, Honeycutt et al.
(2003) developed a Markov chain model for diabetes
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prevalence in the United States, in which the relative
risk of death for individuals with diabetes was used to
modify a general age-specific mortality rate.

Given sufficient longitudinal data on both age and
stage, it is possible to estimate the stage-specific ma-
trices A; as explicit functions of age; see Peeters et al.
(2002), for an example of a study of human heart dis-
ease, and Lebreton et al. (2009) for a review of methods
used in multistate capture-mark-recapture analysis in
ecology. Needless to say, the data requirements for a
full age-stage paremeterization are challenging. I sus-
pect that the development of estimation methods at
intermediate levels of detail will be an important step;
this study will help in that development.

Reducibility of age-stage matrices

The properties of A raise an important theoretical and
technical issue regarding population growth, fitness,
and selection gradients. The use of A as a measure
of fitness is usually justified by the strong ergodic
theorem (Cohen 1979; Caswell 2001, Section 4.5.2),
which guarantees the eventual convergence to the sta-
ble population structure and growth at a rate given
by the dominant eigenvalue A. A sufficient condition
for this convergence is that the projection matrix be
irreducible; i.e., that there exist a pathway connecting
any two stages (Caswell 2001, Section 4.5).

General results about the irreducibility of block-
structured matrices are difficult; see Csetenyi and
Logofet Csetenyi and Logofet (1989), Logofet (1993,
Chap. 3), and Logofet and Belova (2007) for some
important graph-theoretical results. However, the age-
stage matrices A developed here are unusual among
population models in that they are (almost) always re-
ducible, because they contain categories to which there
are no possible pathways. This arises because age 1
individuals are produced only by reproduction. Hence,
there can never be age 1 individuals in any stage that
is not produced by reproduction. For example, Scotch
broom reproduces only by seeds, so age 1 seeds appear
in the model. However, the matrix A also contains en-
tries corresponding to age 1 seedlings, age 1 juveniles,
age 1 adults, etc. These do not exist, and because there
are no pathways to these stages from any other stages,
the matrix A is reducible.

The Perron-Frobenius theorem guarantees that a
reducible nonnegative matrix will have a real, non-
negative, dominant eigenvalue that is at least as large as
any of the others. However, the asymptotic population
growth rate and structure may depend on initial con-
ditions (Caswell 2001, Section 4.5.4). This means that
one must ascertain that the eigenvalues and eigenvec-

tors under analysis correspond to initial conditions of
interest.

Appendix B shows that a necessary and sufficient
condition for population growth to be described by the
dominant eigenvalue 1 of A, regardless of the (nonneg-
ative and nonzero) initial population vector, is that the
left eigenvector v be strictly positive and that this cor-
responds to a particular form a block-triangular form
of A. This provides a simple check for the ergodicity
of population growth and justifies the use of A as a
population growth rate and measure of fitness.

Primitivity may be difficult to evaluate for an age-
stage matrix (but see Logofet 1993), but as with any
projection matrix model, the long-term average growth
rate of a primitive matrix is still given by the dominant
real eigenvalue.

The matrix A for Scotch broom in Eq. (29) is

reducible, as shown by calculating <Isa) +A>Sw and

finding that this matrix contains zeros (Caswell 2001).
However, the left eigenvector v is strictly positive, so
we know that the population eventually grows at the
rate X regardless of initial conditions.

A protocol for age-stage models

The approach outlined here gives a step-by-step pro-
cedure for constructing and analyzing age-stage matrix
population models.

1. Choose a question. Are you interested in popula-
tion dynamics (growth, structure, transients)? Or in
cohort dynamics (survival, longevity)? Or in some
combination of the two?

2. Obtain the stage-classified projection matrices A;
foragesi=1,...,w.

3. Decompose A; = U; + F;.

4. Construct the block-diagonal matrices A, F, U, and
D, according to Egs. (5)—(10).

5. Construct the age-stage matrices A F U using
Eq. (17) and, if appropriate for the question at
hand, M and P using Egs. (38) and (39).

6. Analyze the model, e.g., by computing eigenval-
ues, eigenvectors, the fundamental matrix, etc.,
as appropriate. I necessary, check for reducibility
and ergodicity using the methods in “Reducibility
of age-stage matrices”.

7. For sensitivity analysis,

a. choose a set of dependent variables & and a
vector of parameters 6,

b. compute the sensitivity matrix d& /dvec’A,
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c. compute the matrices:

dvecA; dvecU; an dvecF;
dot doT deot

(50)

d. compute d&/d6" according to (20).

The explicit connection between matrix population
models and absorbing Markov chain theory makes it
possible to analyze both population dynamics and co-
hort dynamics in a unified framework (cf. Feichtinger
1971; Caswell 2001, 2006, 2009b). Cohort dynamics are,
in essence, the demography of individuals. It may seem
paradoxical to speak of the demography of individuals,
but that is what it is, because the statistical properties
of a cohort (e.g., average lifespan) are probabilistic
properties of an individual (e.g., life expectancy). De-
mography in general, and matrix population models in
particular, provides the link between the individual and
the population.
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Appendix A: Derivation of the sensitivity
of the distribution of deaths

This appendix contains the derivation, using matrix
calculus, of the sensitivity of the distributions of age and
stage at death in Eqgs. 48 and 49. For a mathematical
introduction to matrix calculus, see Abadir and Magnus
(2005), for introductions in the context of demography,
see Caswell (2007, 2008).

The columns of the matrix B are the joint distrib-
utions of age and stage at death. Consider column j
of B,

b4j = fie]-. (51)
Differentiate both sides of Eq. (51),
db.; = (dB)e, (52)
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and then apply the vec opertor. Since db.; is a column
vector, the vec operator has no effect on the left hand
side, so

db.; = (e} ® I, )dvecB. (53)
However, from Eq. (42), B = MN, so

dB = (AM)N + M(dN). (54)
Apply the vec operator to obtain

dvecB = (NT ® I, )dvec M + (I, ® M)dvec N. (55

Caswell (2006) showed that the differential of the fun-
damental matrix is
dvecN = (N" ® N)dvec U. (56)

The differential of M is obtained as follows. Note that

M=I,—-2170) (57)

= I, — I, o A1'0). (58)
Differentiating gives
dM = —1,, o [1_gw1_1w (dﬁ)] . (59)
Applying the vec operator gives
dvecM = —2 (vecly,) (L, ® 14,17,) dvec U. (60)
Substituting Egs. (56) and (60) into Eq. (55) gives
dvecB = [ — (N"®I,)Z (vecly,) (L, ® 15,1,

+ (Lo @ M)N' @ N) | dvec T. (61)

Substituting this into Eq. (53) gives
db; = [ - (] L) (N ®1L,)
x 7 (vecly,) (I, ® 1,17,
+ (el ®L,) (L e M)(N'® N)] dvecU. (62)

Equation (62) can be simplified to obtain Eq. (47),
using the fact that
(A®B)(C®D)=(AC®BD), (63)

provided the products exist.
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Appendix B: Population growth
and reducible matrices

Some ergodic properties of population growth un-
der the action of reducible matrices are described by
Caswell (2001, Section 4.5.4). Here we can extend the
analysis.

Let A be a reducible nonnegative projection matrix.
By permutation of its rows and columns (i.e., renum-
bering the stages in the life cycle), A can be trans-
formed to a block lower-triangular form. Here is an
example:

B, 0 0 O
B B, 0 0
B;; By Bz 0
B, By By By

A= (64)

In this form, all the diagonal blocks B; are either
irreducible matrices or 1 x 1 (i.e., scalar) zero matrices.
The block triangular form is unique, up to a renumber-
ing of the blocks (Gantmacher 1959) and permutation
of indices within blocks. It corresponds to a decomposi-
tion of the state space into a set of subspaces; let R; be
the subspace corresponding to the block B;;.

Some or all of the subdiagonal blocks in (64) may be
zero. For reasons that will become apparent, consider
an example where B} = By = 0;i.e.,

B, 0 0 O

0 B, 0 O

A = 65
B;; By; Bz 0 (65)
B, By, 0 By

Gantmacher (1959, Section 13.4) calls a block B;; iso-
lated if there are no other nonzero blocks on its row,
that is, if B;; =0 for j<i. I will call such a block
row-isolated and introduce the term column-isolated to
describe any block B;; with no other nonzero blocks in
its column, that is, Bj; =0 for j > i. In Eq. (65), By;
and By, are row-isolated and Bs; and By, are column-
isolated.

If B;; is row-isolated, then the life cycle graph con-
tains no pathways from any state outside of the sub-
space R; to any state inside R;, and R; is a source. If B;
is column-isolated, then the life cycle graph contains no
pathways from any state in R; to any state outside R;,
and R; is a sink.

The eigenvalues of A are the eigenvalues of the
diagonal blocks B;;. Let A; be the dominant eigenvalue
of A, with right and left eigenvectors w; and v;. The
Perron-Frobenius theorem guarantees that A;, wy, and
v, are real and nonnegative. Gantmacher (1959, Chap-
ter 13, Theorem 6) proves that the eigenvector w; is
strictly positive if and only if X, is an eigenvalue of

every row-isolated block and is not an eigenvalue of
any of the nonrow-isolated blocks. This makes it easy
to demonstrate the following corollary.

Corollary (Positivity of v;) Let v, be the left eigen-
vector corresponding to A[A]. Then v, is strictly pos-
itive if and only if M[A] is an eigenvalue of every
column-isolated block, and is not an eigenvalue of any
noncolumn-isolated block.

To see this, note that v, is the right eigenvector of
A'. The column-isolated blocks of A become row-
isolated blocks of the block lower-triangular form of AT,
and application of Gantmacher’s Theorem 6 proves the
Corollary.

For example, transposing Eq. (65) gives

B, 0 By B
0 B22 B32 B42
0 0 B 0
0 0 0 B

AT — (66)

Reversing the order of the rows and columns gives the
block lower-triangular form

B, 0 0 0
0 B, 0 0
B, B}, B), 0
B, B; 0 Bj

(67)
The column-isolated blocks in A (Bsz and By) now
appear as row-isolated blocks in A

The usefulness of the Corollary follows from the
population projection model

ni+1)=An@  n0) =n (68)
and its solution?
n(t) = Z CiMiw; (69)
i1
= Z (vng) Alw; (70)
i1

(Caswell 2001). If ny is such that ¢; = viny is positive,
then A} will eventually dominate all other terms in the
solution and the population will grow at the rate A, with
stable structure w;. We know the following about c;:

1. If A is irreducible, then by the Perron-Frobenius
theorem v, is strictly positive, so any nonnegative,
nonzero initial population ny leads to a positive
value of ¢; and eventual growth at the rate 1;.

3This holds provided that A is diagonalizable, which is a generic
property for linear operators (Hirsch and Smale 1974, p. 157).
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2. If A is reducible and v, is strictly positive, any
nonnegative, nonzero ny leads to a positive value
of ¢; and growth at the rate A;.

3. If A is reducible and v; contains zero entries cor-
responding to a subspace R;, then initial conditions
with positive support only in R; will lead to ¢; =0,
and A; will make no contribution to population
growth from those initial vectors.

In the first two cases, population growth is ergodic from
any nonzero initial population. In the third case, there
exists a basin of attraction leading to growth according
to A; and a basin (or basins) of attraction for growth
according to the dominant eigenvalues of the diagonal
blocks B;; corresponding to the zero entries of v;.
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