55 research outputs found

    Non-obstructive hypertrohic cardiomyopathy in pregnancy: a clue not to be missed

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is a primary myocardial disorder caused by mutations in several different genes coding for contractile proteins. It can occur sporadically or in an autosomal dominant pattern of inheritance. It may be first diagnosed during pregnancy and can remain well tolerated. Nevertheless, early diagnosis and referral is crucial to ensure comprehensive management and risk evaluation is being made in order to prevent complications such as arrhythmia, heart failure and sudden cardiac death

    Speed and Accuracy of Static Image Discrimination by Rats

    Get PDF
    When discriminating dynamic noisy sensory signals, human and primate subjects achieve higher accuracy when they take more time to decide, an effect attributed to accumulation of evidence over time to overcome neural noise. We measured the speed and accuracy of twelve freely behaving rats discriminating static, high contrast photographs of real-world objects for water reward in a self-paced task. Response latency was longer in correct trials compared to error trials. Discrimination accuracy increased with response latency over the range of 500-1200ms. We used morphs between previously learned images to vary the image similarity parametrically, and thereby modulate task difficulty from ceiling to chance. Over this range we find that rats take more time before responding in trials with more similar stimuli. We conclude that rats' perceptual decisions improve with time even in the absence of temporal information in the stimulus, and that rats modulate speed in response to discrimination difficulty to balance speed and accuracy

    Uncertainty Compensation in Human Attention: Evidence from Response Times and Fixation Durations

    Get PDF
    BACKGROUND: Uncertainty and predictability have remained at the center of the study of human attention. Yet, studies have only examined whether response times (RT) or fixations were longer or shorter under levels of stimulus uncertainty. To date, no study has examined patterns of stimuli and responses through a unifying framework of uncertainty. METHODOLOGY/PRINCIPAL FINDINGS: We asked 29 college students to generate repeated responses to a continuous series of visual stimuli presented on a computer monitor. Subjects produced these responses by pressing on a keypad as soon a target was detected (regardless of position) while the durations of their visual fixations were recorded. We manipulated the level of stimulus uncertainty in space and time by changing the number of potential stimulus locations and time intervals between stimulus presentations. To allow the analyses to be conducted using uncertainty as common description of stimulus and response we calculated the entropy of the RT and fixation durations. We tested the hypothesis of uncertainty compensation across space and time by fitting the RT and fixation duration entropy values to a quadratic surface. The quadratic surface accounted for 80% of the variance in the entropy values of both RT and fixation durations. RT entropy increased as a function of spatial and temporal uncertainty of the stimulus, alongside a symmetric, compensatory decrease in the entropy of fixation durations as the level of spatial and temporal uncertainty of the stimuli was increased. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that greater uncertainty in the stimulus leads to greater uncertainty in the response, and that the effects of spatial and temporal uncertainties are compensatory. We also observed compensatory relationship across the entropies of fixation duration and RT, suggesting that a more predictable visual search strategy leads to more uncertain response patterns and vice versa

    The effect of infectious dose on humoral and cellular immune responses in Chlamydophila caviae primary ocular infection

    Get PDF
    Following infection, the balance between protective immunity and immunopathology often depends on the initial infectious load. Several studies have investigated the effect of infectious dose; however, the mechanism by which infectious dose affects disease outcomes and the development of a protective immune response is not known. The aim of this study was to investigate how the infectious dose modulates the local and systemic humoral and the cellular immune responses during primary ocular chlamydial infection in the guinea pig animal model. Guinea pigs were infected by ocular instillation of a Chlamydophila caviae-containing eye solution in the conjunctival sac in three different doses: 1x10(2), 1x10(4), and 1x10(6) inclusion forming units (IFUs). Ocular pathology, chlamydial clearance, local and systemic C. caviae-specific humoral and cellular immune responses were assessed. All inocula of C. caviae significantly enhanced the local production of C. caviae-specific IgA in tears, but only guinea pigs infected with the higher doses showed significant changes in C. caviae-specific IgA levels in vaginal washes and serum. On complete resolution of infection, the low dose of C. caviae did not alter the ratio of CD4(+) and CD8(+) cells within guinea pigs' submandibular lymph node (SMLN) lymphocytes while the higher doses increased the percentages of CD4(+) and CD8(+) cells within the SMLN lymphocytes. A significant negative correlation between pathology intensity and the percentage of CD4(+) and CD8(+) cells within SMLN lymphocyte pool at selected time points post-infection was recorded for both 1x10(4), and 1x10(6) IFU infected guinea pigs. The relevance of the observed dose-dependent differences on the immune response should be further investigated in repeated ocular chlamydial infections

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference

    A histone acetylome-wide association study of Alzheimer’s disease identifies disease-associated H3K27ac differences in the entorhinal cortex

    Get PDF
    We quantified genome-wide patterns of lysine H3K27 acetylation (H3K27ac) in entorhinal cortex samples from Alzheimer’s disease (AD) cases and matched controls using chromatin immunoprecipitation and highly parallel sequencing. We observed widespread acetylomic variation associated with AD neuropathology, identifying 4,162 differential peaks (false discovery rate < 0.05) between AD cases and controls. Differentially acetylated peaks were enriched in disease-related biological pathways and included regions annotated to genes involved in the progression of amyloid-β and tau pathology (for example, APP, PSEN1, PSEN2, and MAPT), as well as regions containing variants associated with sporadic late-onset AD. Partitioned heritability analysis highlighted a highly significant enrichment of AD risk variants in entorhinal cortex H3K27ac peak regions. AD-associated variable H3K27ac was associated with transcriptional variation at proximal genes including CR1, GPR22, KMO, PIM3, PSEN1, and RGCC. In addition to identifying molecular pathways associated with AD neuropathology, we present a framework for genome-wide studies of histone modifications in complex disease
    corecore