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Abstract 1	
  

Differentiation of hematopoietic stem cells follows a hierarchical program of 2	
  

transcription factor regulated events1-3. Early myeloid cell differentiation is dependent 3	
  

on PU.1 and CEBPA (CCAAT/enhancer binding protein alpha), late myeloid 4	
  

differentiation is orchestrated by CEBPE (CCAAT/enhancer binding protein epsilon)4. 5	
  

The influence of SWI/SNF (SWItch/Sucrose Non-Fermentable) chromatin 6	
  

remodelling factors as novel master regulators of hematopoietic differentiation is only 7	
  

beginning to be explored3,5,6. Here, we identify SMARCD2 (SWI/SNF related, matrix 8	
  

associated, actin dependent regulator of chromatin, subfamily d, member 2) as a 9	
  

critical regulator of myeloid differentiation in humans, mice, and zebrafish. Studying 10	
  

patients from three unrelated pedigrees characterized by neutropenia, specific granule 11	
  

deficiency, myelodysplasia with excess of blast cells and various developmental 12	
  

aberrations, we identified three loss-of-function mutations in SMARCD2. Using mice 13	
  

and zebrafish as model systems, we showed that SMARCD2 controls early steps in the 14	
  

differentiation of myeloid-erythroid progenitor cells. In vitro, SMARCD2 interacts 15	
  

with the transcription factor CEBPE and controls expression of neutrophil proteins 16	
  

stored in specific granules. Defective expression of SMARCD2 leads to transcriptional 17	
  

and chromatin changes in acute myeloid leukemia (AML) human promyelocytic cells. 18	
  

In summary, SMARCD2 is a key factor controlling myelopoiesis and a potential 19	
  

tumor suppressor in leukemia. 20	
  

 21	
  

Article  22	
  

 23	
  

Differentiation of hematopoietic cells is controlled by transcription-factor mediated 24	
  

instructive events and less well-defined permissive events orchestrated by a variety of 25	
  

epigenetic modulators7,8. Dynamic chromatin remodelling adds another level of complexity. 26	
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Embedding of promoter DNA into nucleosome landscapes restricts accessibility of cognate 27	
  

binding sites to transcription factors and restricts gene expression 9-11. The SWI/SNF complex 28	
  

is composed of multimeric units that use energy derived from ATP hydrolysis to unwrap or 29	
  

restructure nucleosomes12. SMARCD2 is a component of the SWI/SNF complex in 30	
  

hematopoietic stem cells (HSC) and other hematopoietic cells6,13,14. The two paralogous 31	
  

proteins, SMARCD1 (BAF60A) and SMARCD3 (BAF60C), control embryonic stem cell15 32	
  

and heart muscle cell differentiation16, respectively.  33	
  

Here, we investigated three independent pedigrees with four patients who presented as 34	
  

neonates with delayed separation of umbilical cord and subsequently developed severe 35	
  

bacterial infections associated with neutropenia, parasitosis or chronic diarrhea (Table S1). 36	
  

Extrahematopoietic findings included mild to moderate developmental delay and dysmorphic 37	
  

features (Figure S1, Table S1). The bone marrow of patients showed hypercellularity, paucity 38	
  

of neutrophil granulocytes, dysplastic features (Figure 1), and progressive development of 39	
  

myelodysplasia (Figure 1, S2). Neutrophil granulocytes were characterized by absence of 40	
  

granules (Figure S3).	
   41	
  

In search of the underlying genetic defect, we performed homozygosity mapping and whole 42	
  

exome sequencing (WES), followed by Sanger sequencing of patients and family members 43	
  

(see Supplementary Materials & Methods for details). Homozygosity mapping identified an 44	
  

especially large perfect marker interval of over 50Mbp in family A on chromosome 17; 45	
  

within this interval, family B had two non-adjacent perfect intervals spanning 1.8Mbp and 46	
  

0.5Mbp. The asymptotic LOD scores for these intervals are +4.2 (+1.8 for A and +2.4 for B) 47	
  

and peak observed LOD scores with a more realistic disease haplotype frequency of 0.05, are 48	
  

3.0 (+1.2, +1.8). There were approximately 36 genes located in the two shared intervals, 49	
  

including SMARCD2. 50	
  

 51	
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We identified distinct segregating homozygous mutations in SMARCD2 in all three pedigrees 52	
  

(Figure 2a, b, c). Mutations are described by their putative effect on transcript SMARCD2-001 53	
  

(ENST00000448276). Effects on hypothetical transcripts are shown in Table S2. At the DNA 54	
  

level, the mutations in pedigrees A and C affect splice sites, while the mutation in pedigree B 55	
  

is a duplication of 25bp, leading to a frameshift and premature termination (Table S2). 56	
  

Western blot analyses showed an absence of SMARCD2 protein in patient cells (Figure 2d). 57	
  

To confirm that the SMARCD2 mutations lead to a loss of function, we sequenced reverse 58	
  

transcribed mRNA from patient cells (Figure 2e) and determined their putatively encoded 59	
  

proteins. We then cloned 2 isoforms of patient AII.1 (AII.1a: p.Ile362Cysfs*3 and AII1b: 60	
  

p.Ser394Argfs*1), one isoform of patient BII.1. (BII.1: p.Gln147Glufs*5) and one isoform of 61	
  

patient CII.1 (CII.1: p.Arg73Valfs*8). FLAG-tagged expression vectors carrying mutated 62	
  

SMARCD2 versions and a red fluorescence protein gene separated by an Internal Ribosomal 63	
  

Entry Sequence (IRES.RFP) were transfected into 293T cells and were investigated for co-64	
  

immunoprecipitation with native SWI/SNF core members. As shown in Figure 2f, only the 65	
  

wild-type version of SMARCD2 was able to co-precipitate with SMARCA4 (BRG1), 66	
  

SMARCC2 (BAF170), SMARCC1 (BAF155), and SMARCB1 (BAF47); none of the mutant 67	
  

versions were able to co-precipitate with any of these proteins, suggesting that the mutations 68	
  

constitute loss-of-function alleles.  69	
  

 70	
  

Since all SMARCD2-deficient patients had either been subjected to allogeneic HSCT or had 71	
  

died due to their disease, primary SMARCD2-deficient hematopoietic stem cells were not 72	
  

available for further experiments. To further study the role of SMARCD2 in neutrophil 73	
  

differentiation, we established several in vivo and in vitro models. 74	
  

As a first model, we used zebrafish (Danio rerio), in which smarcd2 (XP_692749.2) is the 75	
  

ortholog of human SMARCD2. Using antisense morpholino-oligonucleotides (MOs), we 76	
  

created Smarcd2-deficient zebrafish in two reporter strains with fluorescent neutrophil 77	
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granulocytes: Tg (mpx:EGFP)i114 (Figure S4a,b,c) and Tg (lyz:dsRed)nz50 (Figure  3c)17-19. 78	
  

Smarcd2 MOs were designed to block either translation initiation (label ATG) or splicing 79	
  

(labels SB1 and SB2, for MOs targeting splice donor and acceptor sites respectively) of 80	
  

smarcd2. In both fish strains, there was a significant reduction in the number of neutrophil 81	
  

granulocytes compared to controls at 72 hours post fertilization (hpf) for the ATG and SB1 82	
  

MOs (Figure S4c, 3c). MO SB2, which failed to disrupt smarcd2 splicing (Figure S4a), 83	
  

provided an additional negative control indicating specificity of the on-target smarcd2-MO 84	
  

effect to reduce neutrophil abundance. Using CRISPR/Cas9 genome editing in zebrafish, we 85	
  

created a frameshift mutant smarcd2 allele Smarcd21/1 (Figure S4d), which also showed 86	
  

reduced granulocyte abundance at 72 hpf compared to wild-type controls (Figure 3a, b). 87	
  

Collectively, these zebrafish models provide concordant evidence that a requirement for 88	
  

SMARCD2 in neutrophil granulocyte differentiation is evolutionarily conserved. 89	
  

 90	
  

A second in vivo model was generated by injection of Smarcd2+/- murine ES cells (KOMP 91	
  

repository) into blastocysts and transferring them into pseudo-pregnant mice. Chimeric 92	
  

offspring were mated with wild-type mice, resulting in Smarcd2+/- mice, which were 93	
  

intercrossed (Figure S5a, b, f). We found that Smarcd2-/- embryos died late during fetal 94	
  

development (Figure 5c, d) and are characterized by reduced size, pallor, and decreased 95	
  

temporal vascularization (Figure 3d), suggestive of a compromised hematopoietic system. 96	
  

However, we did find Mendelian ratios of Smarcd2-/- embryos at 14.5dpc (Figure S5d, e). 97	
  

Flow cytometry analysis of fetal liver single cell suspensions showed comparable numbers of 98	
  

hematopoietic stem cells (Figure S5e), yet a striking reduction in CD11b+Gr1+ neutrophil 99	
  

granulocytes and CD11b+Ly6c+ monocytes in Smarcd2-/- embryos (Figure 3h,k).  100	
  

To assess the differentiation capacity of hematopoietic stem cells, we next purified 101	
  

CD45.2+Lin-Mac+/low Sca1+cKit+ (LSK) cells from wild-type, heterozygous and homozygous 102	
  

fetal livers and performed colony-forming unit (CFU) assays, in vitro. In comparison to CFU 103	
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colonies derived from wild-type or heterozygous mice, Smarcd2-/- CFU colonies showed a 104	
  

marked reduction in size and numbers (data not shown and Figure S6a) and maturation arrest 105	
  

(Figure 3f). Smarcd2-/- myeloid CFU colonies, generated in the presence of myeloid cytokine 106	
  

cocktail, were deficient in cell surface expression of CD11b, Gr1 and Ly6c (Figure S6b). A 107	
  

block in myeloid differentiation was also seen when LSK cells (native) were exposed to either 108	
  

GM-CSF, M-CSF, or G-CSF, suggesting that none of the corresponding cytokine-receptors 109	
  

were able to induce myeloid cell growth (Figure 3i).  110	
  

 111	
  

Aberrant hematopoiesis was not restricted to the myeloid compartment in Smarcd2-/- 112	
  

embryos, but also affected erythroid differentiation. Fetal/umbilical cord blood cytology at 113	
  

14.5dpc showed marked dysplastic changes in Smarcd2-/- erythropoiesis: In contrast to wild-114	
  

type embryos, characterized by normochromic, orthochromatic erythrocytes and presence of 115	
  

few nucleated erythrocytes, Smarcd2-/- embryos showed extensive anisocytosis of 116	
  

erythrocytes, multinucleated cells, perturbed mitosis and increased apoptosis (Figure 3e). 117	
  

Furthermore, in vitro erythroid differentiation of LSK cells in the presence of rm SCF, rm IL-118	
  

3, rh IL-6, rh EPO hints towards a partial differentiation block or delay at the immature S1 119	
  

stage, as determined by CD71/Ter119 expression20 in Smarcd2-/- GEMM colonies (Figure 120	
  

3j,l). Taken together, murine SMARCD2-deficient hematopoietic cell differentiation is 121	
  

characterized by a maturation arrest in myeloid and erythroid cells in vitro and in vivo, 122	
  

reminiscent of the hematological phenotype in SMARCD2-/- patients.  123	
  

Various previous studies identified that SWI/SNF complex members increase or decrease 124	
  

primitive or definite hematopoiesis6. Here, we hypothesize that A) the functional effects of 125	
  

SMARCD2 deficiency on granulopoiesis are due to its absence from SWI/SNF complexes, B) 126	
  

SWI/SNF complexes that contain SMARCD2 have a specific role in granulopoiesis, and C) 127	
  

mechanistically, SMARCD2 governs granulopoiesis via chromatin accessibility and 128	
  

interaction with CEBPE. 129	
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To identify alterations in transcriptional networks controlling differentiation of fetal liver 130	
  

hematopoietic stem cells, we isolated LSK cells from 5 Smarcd2+/+ and 9 Smarcd2-/- fetal 131	
  

livers and profiled their transcriptome by RNA-sequencing. Among a total of 12,362 detected 132	
  

genes, we found 4,290 to be differentially expressed at a False Discovery Rate (FDR, see 133	
  

Material and Methods) lower than 10%; Smarcd2 showed the largest expression ratio among 134	
  

all genes, as expected (Figure 3g, Table S4). Interestingly, the majority (79%) of the 605 135	
  

genes with a relatively large difference (fold-change > 1.4, FDR<1%) were upregulated and 136	
  

not downregulated. This had also been reported for embryonic fibroblasts deficient for 137	
  

SMARCB1 (Snf5) and SMARCA4 (Brg1), two other members of the SWI/SNF complex11. 138	
  

The upregulated genes were most enriched in categories related to membrane proteins, 139	
  

including MHC complexes, immunoglobulin domains and G-protein coupled receptors that 140	
  

included signalling pathways related to immunodeficiency and host defence (Table S5, Figure 141	
  

S7a). A subset of CEBPE-dependent genes is also deregulated in Smarcd2-/- murine LSK cells 142	
  

(Figure S7 b,c). Consistent with the finding that CpG island (CGI) promoters can facilitate 143	
  

promiscuous induction without a requirement for SWI/SNF21, we found that genes containing 144	
  

CGI promoters are significantly under-represented within the group of differentially 145	
  

expressed genes (Fisher’s exact test, p = 0.00441004, odds ratio=0.71).  146	
  

Thus, a considerable fraction of the genes that are found to be differentially expressed are 147	
  

directly dependent on SWI/SNF and/or transcription factors.  148	
  

 149	
  

Even though these experiments suggest that SMARCD2 orchestrates transcriptional networks 150	
  

in early hematopoietic stem cells, they cannot directly explain the striking absence of 151	
  

neutrophil granules and perturbed differentiation of mature neutrophils seen in SMARCD2-152	
  

deficient patients. To shed light on the mechanisms of SMARCD2 in late neutrophil 153	
  

maturation, we set out to establish a human in vitro system to further study the function of 154	
  

SMARCD2. We chose the promyelocytic cell line NB4 that is responsive to retinoic acid 155	
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signalling and can be differentiated toward mature neutrophil granulocytes in vitro. Since our 156	
  

attempts to generate SMARCD2-deficient NB4 cells using CRISPR/Cas9 tools was 157	
  

unsuccessful, we decided to make use of RNA interference to establish cell lines 158	
  

characterized by lower SMARCD2 protein expression. We designed lentiviral shRNA 159	
  

constructs expressing a SMARCD2-specific shRNA and the marker gene GFP, transduced and 160	
  

flow-sorted NB4 cells for further analysis.  161	
  

 162	
  

NB4 cells express SMARCD1, SMARCD2, SMARCD3 and CEBPE RNA/cDNA at detectable 163	
  

levels (Figure 4a and 22). RNA expression of SMARCD2, but not of the family members 164	
  

SMARCD1 and SMARCD3 was significantly reduced upon lentiviral expression of shRNA 165	
  

directed against SMARCD2 (Figure 4a). The expression of CEBPE was not affected by 166	
  

SMARCD2 knock down and increased after differentiation with all trans retinoic acid (ATRA) 167	
  

(data not shown) as previously described (e.g.23). Next, we systematically analysed RNA 168	
  

expression of genes encoding proteins that are expressed and stored in primary and specific 169	
  

granules in neutrophil granulocytes. Interestingly, during differentiation with ATRA, 170	
  

transcript levels of primary granule proteins cathelicidin (CAMP) and alpha-1-antitrypsin 171	
  

(AAT) as well as specific granule proteins matrix metalloproteinase-8 (MMP8), 172	
  

transcobalamin (TCN1) and lactoferrin (LTF), were all significantly reduced (Figure 4a) in 173	
  

SMARCD2-deficient cells. 174	
  

Mice with targeted mutations in Cebpe24 and human patients with rare mutations in CEBPE25 175	
  

are characterized by specific granule deficiency and susceptibility to bacterial infections. In 176	
  

view of these phenotypic similarities, we asked whether SMARCD2 controls the effects of 177	
  

CEBPE. RNA-expression of CEBPE was not directly affected in SMARCD2-deficient cells. 178	
  

As an alternative, we hypothesized that SMARCD2 may be relevant for recruiting CEBPE to 179	
  

open chromatin and thus facilitating expression of CEBPE-dependent genes. Indeed, co-180	
  

expression and immune precipitation of HA-tagged CEBPE and Flag-tagged SMARCD2 181	
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suggested a direct protein-protein interaction of both proteins in mammalian cells (Figure 4c). 182	
  

A functional link between SMARCD2 and CEBPE is further supported by our finding that 183	
  

documented CEPBE-dependent genes (Table S3) are deregulated in the absence of 184	
  

SMARCD2 in human (Figure 4g, S8c, d) and murine hematopoietic cells (Figure S7b, c). 185	
  

 186	
  

The consequences of defective nucleosome positioning in dysfunctional SWI/SNF molecules 187	
  

may be complex. We attempted to interrogate effects of SMARCD2 deficiency on global 188	
  

chromatin accessibility using ATAC sequencing. We compared all genes that showed 189	
  

differential chromatin accessibility in SMARCD2-knockdown cells with differentially 190	
  

expressed genes determined by RNA-sequencing studies in undifferentiated and ATRA 191	
  

differentiated promyelocytic leukemia cell line NB4. A specific subset of genes was found 192	
  

deregulated in both assays, ATAC-Seq and RNA-Seq (Figure 4c-f), affecting vesicular 193	
  

trafficking, migration and signalling. Differentially expressed genes in both, murine 194	
  

transcriptome (Table S4) and human transcriptome (Table S6,S7), cluster significantly in 195	
  

signalling pathways relevant to immune system functions (Figure S7a and Figure S8a, b, 196	
  

respectively). Taken together, DNA accessibility studies, transcriptome studies and protein-197	
  

protein interaction studies suggest that SMARCD2 has a direct role to remodel the chromatin 198	
  

and to mediate downstream effects partly by interaction with the myeloid transcription factor 199	
  

CEBPE. In contrast to CEBPE deficiency, SMARCD2 deficiency causes not only absence of 200	
  

specific granule expression, but also defects in early hematopoietic cells associated with 201	
  

AML/myelodysplasia (Figure S2) as well as non-hematopoietic syndromic features (Figure 202	
  

S1, Table S1).  203	
  

 204	
  

In summary, our clinical and molecular characterization of a previously unrecognized human 205	
  

disease reveals SMARCD2 as a key factor controlling transcriptional networks governing 206	
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hematopoietic stem cell differentiation and highlights the relevance for chromatin remodelling 207	
  

in lineage specification in the hematopoietic system. 208	
  

  209	
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Patients, Materials, and Methods 210	
  

Patients 211	
  

Patients were referred by AS-P, PDA, and MA for genetic assessment of congenital 212	
  

neutrophil deficiencies. The study was approved by the ethics committee of the University 213	
  

Medical School of Hannover and the Faculty of Medicine at LMU, Munich. Patient 214	
  

recruitment, genetic analysis, and data handling were done in accordance with the tenets of 215	
  

the Declaration of Helsinki. Patients or their parents gave informed consent for the genetic 216	
  

and functional studies and for publication of their pictures. 217	
  

 218	
  

Hematology, biochemistry, and pathological bone marrow studies 219	
  

Clinical laboratory-based assays, such as blood cell counting, were done by referring centers 220	
  

according to good clinical practices. Bone marrow histological studies were performed on 221	
  

paraffin-embedded samples provided by the referring clinical immunology centers.  222	
  

Following standard histopathological procedures, specimens were cut by microtome (Leica) 223	
  

and stained by SAKURA Tissue-Tek Prisma & Film Automated Slide Stainer (hematoxylin-224	
  

eosin) or BenchMark XT fully automated IHC/ISH staining instrument (immune 225	
  

histochemistry). In addition to anti-lactoferrin antibody ab15811 (Abcam), antibodies against 226	
  

myeloperoxidase  #A0398 (Dako) , CD15 #PNIM1921 (Beckman Coulter), glycophorin C 227	
  

#M0820 (Dako) and CD61 #760-4249 (Ventana/Roche) were used according to the 228	
  

manufacturers’ instructions.  229	
  

 230	
  

Homozygosity mapping and next generation sequencing  231	
  

Patient AII.1 served as the index case. Patient BII.1, previously described as clinical case 232	
  

report26 and patient BII.2 (not described) served as reference case for homozygosity mapping 233	
  

using the Affymetrix 6.0 chip as in27.We searched for perfectly segregating intervals in the 234	
  

SNP data using the software findhomoz28. To compute LOD scores, we assumed that the 235	
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parents of the affected individuals are second cousins as in29,30 because they are known not to 236	
  

be first cousins and if they are more distantly related than second cousins, then the LOD 237	
  

scores would be higher. Indeed, in the initial case report, family B was described as "non-238	
  

consanguineous"26. Asymptotic LOD scores, assuming the frequency of the disease-239	
  

associated marker haplotype decreases in the limit towards 0, were computed by hand using 240	
  

the principle that each meiosis after the first contributes log102 to the score. We used 241	
  

FASTLINK v. 4.1P31-33 to check the asymptotic scores and to compute scores with more 242	
  

realistic marker allele frequencies. For LOD score computations, we assumed full penetrance 243	
  

and a very rare disease associated allele. The scores shown here are computed for the two 244	
  

families separately and summed.  245	
  

Genomic DNA of the two parents and two affected children in family B was enriched for all 246	
  

coding exons using Agilent’s SureSelect Human All Exon kit V3-50MB (Agilent 247	
  

Technologies) according to the manufacturer’s protocol and subjected to sequencing on an 248	
  

Illumina Genome Analyzer II. Short sequence reads were mapped to the human reference 249	
  

genome GRCh37 with Novoalign and variants were detected as previously described34-36. For 250	
  

each possible mutation found in family B, we designed a sequencing assay to test the affected 251	
  

individual in family A (our index patient) for that mutation. Since this failed, we performed 252	
  

high-throughput sequencing in family A, and identified a likely pathological variant in 253	
  

SMARCD2: c.1181+1G>A (NM_001098426, ENST00000448276) confirmed by Sanger 254	
  

sequencing. Sanger sequencing of SMARCD2 in family B revealed a large homozygous 255	
  

insertion in patients BII.1 and BII.2 (c.414_438dup), segregating in family B.  256	
  

Within our cohort of SCN patients, in patient CII.1, a homozygous mutation in SMARCD2 257	
  

(c.401+2T>C) was identified by whole exome sequencing	
  with	
  SureSelect	
  XT	
  Human	
  All	
  258	
  

Exon	
  V3	
  +	
  UTRs	
  kit	
  according	
  to	
  the	
  manufacturer’s	
  instructions	
  (Agilent	
  Technologies)	
  259	
  

using	
  SOLiD	
  5500	
  next	
  generation	
  sequencing	
  platform	
  (LifeTechnologies)	
  to	
  an	
  average	
  260	
  

coverage	
  depth	
  of	
  100x	
  (75	
  bp	
  forward	
  and	
  35bp	
  reverse	
  pair-­‐end). Segregation of this 261	
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variant in family C was confirmed by Sanger sequencing. In all three families (A, B, C), 262	
  

CEBPE and several other candidate genes were excluded (i.e., shown not to contain germline 263	
  

biallelic mutations) by Sanger sequencing or whole exome sequencing (26, and new data, not 264	
  

shown). 265	
  

 266	
  

Sanger sequencing of SMARCD2 267	
  

Human SMARCD2 isoform SMARCD2-001 (ENST00000448276) is consistently annotated 268	
  

(CCDS45756) and was used as the reference sequence for specific sequence-based 269	
  

experiments. Targeted sequencing included all 13 exons of ENST00000448276 as well as one 270	
  

potential alternative Exon 1 derived from isoform SMARCD2-003 (ENST00000323347).  271	
  

Throughout the text, mutations are described by their putative effect on transcript 272	
  

SMARCD2-001 only. Effects on other transcripts are shown in Supplementary Table S2.  273	
  

DNA was extracted from adherent cells or suspension cells with QIAamp DNA Blood Mini 274	
  

Kit (Qiagen #51106) and used for further application. RNA was extracted with Qiagen 275	
  

RNeasy Micro Kit #74004, RNase inhibitor ribolock (Thermo) was added, RNA was stored at 276	
  

-80°C or used for cDNA transcription using High-Capacity cDNA Reverse Transcription Kit 277	
  

# 4368813 (Life Technologies). 278	
  

Sanger sequencing was performed on both gDNA and cDNA. The exonic regions of gDNA 279	
  

were amplified by PCR reaction. Per reaction, 2.5µl HiFi buffer, 2.5µl dNTP 2mmol/l, 280	
  

0.125µl HiFi polymerase, DMSO 1.25µl or betaine 5µl, 1.5µl primer forward/ reverse 281	
  

10pmol/l, ≥20ng DNA, up to 25µl nuclease free water. The PCR reaction conditions were 282	
  

95°C melting for 5-10’, followed by 35-40 cycles of loops consisting of 90°C melting for 283	
  

30’’, 56°C annealing for 30’’, 72°C elongation for 30’’ (primer list for exons upon request) or 284	
  

1’30’’ for amplification of full length cDNA exon 1 to exon 13 of ENST00000448276 285	
  

(SMARCD2-FW GAGCGATGTCGGGCCGAG; SMARCD2-REV 286	
  

ATCCCTGAGCAGTTAGGTCAGGCGAAT). The full length SMARCD2 transcript 287	
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amplification was performed with the aim to enrich all potential transcript variants conserved 288	
  

in the N and C termini of SMARCD2-001 ENST00000448276. It includes mutated transcripts 289	
  

of SMARCD2-001 (ENST00000448276) altered by exon skipping, intron retention or 290	
  

insertion/ duplications. Bands were visualized on 1% agarose gel. Clean up of PCR products 291	
  

was performed with ExoSAP-IT (Affimetrix  AF 78202) or with QIAquick Gel Extraction 292	
  

(Qiagen #28706). Sanger sequencing was performed in house on a ABI 3130xl Genetic 293	
  

Analyzer or outsourced to Eurofins Company, Munich, Germany. Results were analyzed by 294	
  

Seqman (DNASTAR) or ApE (M. Wayne Davis, Utah37) software. 295	
  

 296	
  

Cell lines 297	
  

Standard cell lines (NB4, 293T) were purchased from the German Collection of 298	
  

Microorganisms and Cell Cultures (DSMZ). Patient cell lines were cultivated from skin 299	
  

biopsies (fibroblasts) or peripheral blood after infection with Epstein-Barr virus (EBV) (the 300	
  

term we use for the transformed cells lines is EBV-transformed lymphoblastoid cell lines). 301	
  

Adherent cell lines 293T and fibroblasts from healthy donors and patients AII.1 and BII.1 302	
  

were cultured in DMEM, supplemented with 10%FCS, 50U/ml penicillin, 50 µg/ml 303	
  

streptomycin, 2mM L-Glu. Suspension cell lines NB4 and EBV-LCL were cultured in RPMI, 304	
  

supplemented with 10% FCS, 50 U/ml penicillin, 50 µg/ml streptomycin, 2mM L-Glu, 10mM 305	
  

HEPES buffer. 306	
  

 307	
  

 308	
  

Plasmids and molecular cloning 309	
  

SMARCD2 was amplified from a human healthy donor sample or from patients’ cDNA 310	
  

(SMARCD2-FW GACGGGACGGAGCGATGT; SMARCD2-REV 311	
  

GAGCAGTTAGGTCAGGCGAATT). Analysis on agarose gels revealed differences in 312	
  

fragment size and/or number of fragments in patients versus healthy donor. Fragments were 313	
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gel extracted and cloned into an in-house, CMV driven plasmid modified from the 314	
  

pCHGFPW plasmid38 using 5’ prime XhoI primer (with Kozak and FLAG tag: SMARCD2-315	
  

Xho1-FLAG-FW: 316	
  

AAACTCGAGGCCACCATGGACTACAAAGACGATGACGACAAGTCGGGCCGAGGC317	
  

GCG) and 3’ prime SpeI primer (SMARCD2-SpeI-REV: 318	
  

TTTACTAGTTTAGGTCAGGCGAATTCCC). Due to individual truncations at the 3´- 319	
  

terminus of mutated proteins, cloning was restricted to 5´-Flag tags for mutated proteins.  320	
  

SMARCD2-specific pGIPZ. shRNA constructs and pGIPZ non-silencing control were 321	
  

purchased from Thermo Scientific (shRNA 1-3: clone ID V3LHS_300463; V3LHS_300461; 322	
  

V3LHS_400374 and non-silencing control # RHS4531). The shRNA sequences were cloned 323	
  

via Mlu1 and Xho1 restriction sites into pGIPZ.SF.GFP.2 plasmid (kindly provided by Axel 324	
  

Schambach, MHH Hannover). Viral particles were produced in 293T cells with gag-pol, 325	
  

VSVG and rev helper plasmids. NB4 cell lines were stably transduced, GFP sorted and 326	
  

expanded. Knockdown efficiency was determined by expression of protein (Western blot) and 327	
  

mRNA/cDNA (qPCR method, see section: Expression of neutrophil specific granule genes in 328	
  

NB4 cells). 329	
  

 330	
  

Immunoprecipitation experiments and western blotting: 331	
  

Transfection of wild-type and mutant SMARCD2 Flag-tagged proteins or HA-tagged CEBPE 332	
  

with calcium phosphate into semi-confluent 293T with 10µg plasmid/10cm dish was 333	
  

performed. Cells were harvested on day 3, pelleted and lysed in freshly prepared RIPA Buffer 334	
  

(450mM NaCl, 25mM TrisHCl pH7.5, 1mM EDTA, 1%NP40, 5% Glycerol, 25mM Na-335	
  

Pyrophosphate, 50mM Na-Fluoride, EDTA-free protease inhibitor (Roche)). For each 336	
  

immune-precipitation one confluent 10cm dish with 293T cells has been used. Lysates were 337	
  

cleared by centrifugation (21,000g x for 15 min at 4°C). IP with FLAG affinity gel (Sigma) or 338	
  

HA affinity gel (Thermos Scientific) was performed overnight at 4°C on a rotating laboratory 339	
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wheel. Samples were washed 5 times in RIPA buffer. Elution was performed with FLAG 340	
  

peptide 37.5µg (Sigma F3290-4MG) or boiling in 2x Laemmli sample buffer. Lysates were 341	
  

analyzed by Western blot. 342	
  

Similarly, SMARCD2 expression in fibroblasts and EBV-LCLs of healthy donor and patients 343	
  

was analyzed. Cells were lysed with freshly prepared RIPA buffer. Lysates were cleared by 344	
  

centrifugation (21,000 x g, 10 min, 4 °C). Protein quantification was performed with Bradford 345	
  

reagent (Bio-Rad Laboratories) using ELISA plate readers (Synergy H1 Hybrid Reader, 346	
  

BioTek; infinite M200, Tecan). Equal amounts of protein - achieved by Bradford 347	
  

(SMARCD2 expression in healthy donor and patient cells) or counting of input cells (Immune 348	
  

precipitation) were separated by sodium dodecyl sulphate polyacrylamide (SDS-PAGE) gel 349	
  

electrophoresis and blotted onto polyvinyl difluoride (PVDF) membranes. The membranes 350	
  

were blocked in PBS containing 0.1 % Tween-20 (PBS-T) supplemented with 5 % BSA or 351	
  

5% non-fat dry milk for 2 hours, followed by incubation with primary antibodies overnight at 352	
  

4 °C or for 1 h at room temperature in (PBS-T) with 5 % BSA or 5% non-fat dry milk. 353	
  

Antibodies used included anti-Flag, mouse, clone M2, F1804-200ug (Sigma) or anti FLAG-354	
  

HRP, A8592-.2MG (Sigma), SMARCD2, mouse monoclonal antibody clone F-34, SC-355	
  

101162, (SCBT), GAPDH mouse monoclonal antibody clone 6C5, SC-32233 (SCBT), anti-356	
  

HA, rabbit, ab9110 (Abcam), anti BRG1, rabbit, clone EPNCIR111A, ab110641, (Abcam), 357	
  

anti SMARCC2/BAF170, rabbit, #8829S (CST), anti SMARCC1/ BAF 155, rabbit, clone 358	
  

D7F8S, #11956S (CST), anti SNF5/BAF47, rabbit, clone D9C2, #8745S (CST). After 359	
  

washing the PVDF membranes in PBS-T, secondary horse-radish peroxidase conjugated 360	
  

antibodies anti-mouse (BD Pharmingen) and anti-rabbit (CST) were added for 1h at room 361	
  

temperature. After development with chemiluminescent substrate (Pierce ECL western 362	
  

blotting substrate), digital images were acquired on a Chemidoc XRS Imaging System (Bio-363	
  

Rad Laboratories). Blots were stripped between detection of different antibody probes using 364	
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Restore Western Blot Stripping Buffer (Thermo Scientific). Data analysis was performed 365	
  

using Image LabTM software (Bio-Rad Laboratories). 366	
  

 367	
  

Mouse model 368	
  

Generation of SMARCD2-deficient murine model 369	
  

The C57BL/6 embryonic stem cell clone 11930A-F4 carrying a mutant Smarcd2 allele was 370	
  

generated by Regeneron Pharmaceuticals and obtained from the KOMP repository 371	
  

(www.komp.org). To generate Smarcd2-deficient mice, clonal embryonic stem cells were 372	
  

injected into C57BL/6BrdCrHsd-Tyrc (albino) blastocysts and transferred to pseudo-pregnant 373	
  

NMRI foster mothers. The resulting chimeras were crossed to C57BL/6 albino mice to 374	
  

identify germ line transmission of the targeted allele and to produce mice heterozygous for the 375	
  

mutation. F1 intercrosses of heterozygous mice resulted in Smarcd2+/+, Smarcd2+/-, and 376	
  

Smarcd2-/- embryos/ mice, which were genotyped using standard PCR reaction conditions and 377	
  

the primers for the wild-type allele: FW: CCATCTGTAACGAAATCCGATGCCC;  REV: 378	
  

TTATCCCTCAGGTTCCTGACAAGGC, amplicon size 264bp and for the knock-out  allele: 379	
  

FW: GAGTCTAGGGCCTTCTCTTCCTTGC; REV: 380	
  

GCAGCCTCTGTTCCACATACACTTCA, amplicon size 569bp (see Fig S5). 381	
  

Animals were maintained under specific pathogen-free conditions at 23°C, 65% humidity and 382	
  

with 12h light/dark cycle and had free access to a standard rodent diet (V1534, Ssniff, Soest, 383	
  

Germany) and water. All animal experiments were carried out in accordance with the German 384	
  

Animal Welfare Act with permission from the responsible veterinary authority. 385	
  

 386	
  

Flow cytometry (FACS) 387	
  

For FACS analysis of fetal liver hematopoietic cells, single cell suspensions by 388	
  

homogenization of fetal liver tissue with a 1ml Eppendorf pipette and Hank´s buffered salt 389	
  

solution (HBSS) with 3% fetal calf serum (FCS) were prepared. Fetal liver cells were kept on 390	
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ice until the genotyping. For FACS analysis of CFU derived hematopoietic cells, CFU 391	
  

colonies were picked after light microscopic evaluation and washed once in HBSS with 3% 392	
  

FCS.  393	
  

 394	
  

Fetal liver hematopoietic cells and CFU derived cells were stained with the following 395	
  

fluorochrome- or biotin-conjugated monoclonal antibodies for 20 min on ice: anti-B220-396	
  

AlexaFluor®780 (eBioscience), anti-CD3ɛ-FITC(eBioscience), anti-CD19-397	
  

PeCy7(eBioscience), anti-Ter119-PE (BD Pharmigen), anti-Gr1-FITC (BD Pharmigen), anti-398	
  

Ly6c-PerCP-Cy5.5 (eBioscience), anti-Mac2/CD11b-biotin/- eFluor 450 (eBioscience) and 399	
  

anti-CD71-FITC (BD Pharmigen). Cells stained with biotinylated monoclonal antibodies 400	
  

were washed and incubated with Streptavidin-APC (eBioscience). Samples were acquired on 401	
  

either FACSCanto or LSR II flow cytometer (BD), and data were analyzed using FlowJo 402	
  

software (Tree Star). Fluorescence intensity plots are shown in log10 scales. Relative 403	
  

abundances (percentage of parental gate) were analyzed by Prism software (GraphPad); 404	
  

statistical center value: Mean, standard error: SEM, p-values, and two-tailed unpaired t-tests 405	
  

were used. 406	
  

 407	
  

Flow cytometry sorting  408	
  

Murine fetal liver Lin-Sca1+ckit+ (LSK) early progenitor cells, were isolated to perform CFU 409	
  

assays and RNA Sequencing (RNA-Seq). Individual embryos were genotyped, fetal liver 410	
  

tissue was suspended in HBSS with 3% FCS, and LSK cells were defined as follows: 411	
  

CD45.2+, lineage-, Mac1low/+, ckit+ and Sca1+ cells. Cells were then stained with anti-CD45.2-412	
  

FITC (BD Pharmingen), biotinylated lineage antibodies (anti-B220, -CD3, Gr-1, and -Ter-413	
  

119; all BD), anti-Mac1/CD11b-eFluor 450 (eBioscience), anti-CD117/c-kit-Alexa 414	
  

Fluor®780 (eBioscience), and anti-Sca-1-PeCy7 (eBioscience). Biotinylated monoclonal 415	
  

antibodies were labeled by incubation with Streptavidin-PerCP/PerCP-Cy5.5 (eBioscience). 416	
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LSK cells were sorted into Iscove's Modified Dulbecco's Medium (IMDM) with 3% FCS for 417	
  

CFU assays or directly into 1%TritonX supplemented with RNAse Inhibitor (Promega) for 418	
  

RNA-Seq. Cell sorting was performed using a FACS Aria III cell sorter and FACS Diva 419	
  

software.  420	
  

 421	
  

Colony Forming Unit Assays 422	
  

Flow-sorted fetal liver LSK cells were washed and resuspended in 50µl IMDM without FCS. 423	
  

Between 500-1500 LSK cells were plated per 35mm Petri dishes containing 1.3ml 424	
  

MethoCult® (M3231 or M3434, Stem Cell Technologies). M3434 (rm SCF, rm IL-3, rh IL-6, 425	
  

rh EPO) was used to examine erythro-myeloid maturation. M3231 (with addition of murine 426	
  

G-CSF [50 ng/ml], murine GM-CSF [50ng/ml] or murine M-CSF [50ng/ml] (cytokines from 427	
  

Peprotech)) was used to assess myeloid maturation to specific cytokines. CFU colonies were 428	
  

assessed daily from day 3 onwards. Colony forming units (>20 cells) and lineage 429	
  

differentiation potential were assessed using an inverted microscope (Axiovert-II, Zeiss) at 430	
  

day 7 - 12. CFUs were photographed (data not shown), counted and analyzed by FACS. 431	
  

Cytological assessment was performed by May-Grünwald-Giemsa stain after cytospin 432	
  

centrifugation (Shandon Cytofunnel Thermo). CFU counts were normalized to LSK cell input 433	
  

and analyzed by Prism software (GraphPad); statistical center value: Mean, standard error: 434	
  

SEM, p-values, and two-tailed unpaired t-tests were used.  435	
  

 436	
  

Mouse fetal blood cytology 437	
  

Fetal blood was recovered from sacrificed embryos and washed in HBSS with 3% FCS. 438	
  

Cytological assessment of equal numbers or nucleated cells was performed by cytospins 439	
  

(Shandon Cytofunnel Thermo) and May-Grünwald-Giemsa stain. Blood cells were 440	
  

morphologically assessed using an inverted microscope (Axiovert-II, Zeiss) and 441	
  

photographed. 442	
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Zebrafish experiments 443	
  

Zebrafish 444	
  

Tg(mpx:EGFP)i114 19 and Tg(lyz:dsRed)nz50 17 strains were used. Fish were held in the 445	
  

FishCore (Monash University) using standard practices. Embryos were held in egg water 446	
  

(0.06 g/L salt (Red Sea, Sydney, Australia)) or E3 medium (5mM NaCl, 0.17 mM KCl, 0.33 447	
  

mM CaCl2, 0.33 mM MgSO4, equilibrated to pH 7.0); from 12 hpf, 0.003% 1-phenyl-2-448	
  

thiourea (Sigma-Aldrich) was added to inhibit pigmentation. Embryos were held at 28°C in 449	
  

an incubator (Thermoline Scientific) upon collection. Animal experiments followed NHMRC 450	
  

guidelines (“Australian code of the care and use of animals for scientific purposes” 8th edition, 451	
  

NHMRC, 2013) and were approved by the Monash University Animal Ethics Committees. 452	
  

 453	
  

Morpholino knockdown experiments  454	
  

Microinjection of morpholino oligonucleotides was performed as follows: Antisense 455	
  

morpholino oligonucleotides (Gene Tools, LLC (Eugene, OR)) (Table S3) were resuspended 456	
  

as stock in milli-Q water at 1 mM and microinjected at highest non-toxic concentration for 457	
  

each morpholino (700 µM for all MO-smarcd2). 10-20 min post fertilization embryos were 458	
  

collected in egg water and placed on a 4% agarose gel block aligned to grooves on the gel 459	
  

surface. Microinjection of 1-cell embryos was performed using a standard microinjection 460	
  

apparatus and large-bore needle, positioned at the border of cell and yolk sac. 461	
  

Knockdowns of smarcd2 by the splice-blocking morpholino oligonucleotides were examined 462	
  

by RT-PCR as follows: Whole embryo RNA was extracted using TRIzol® Reagent (Life 463	
  

Technologies) and cDNA synthesis was performed using SuperScript™ III Reverse 464	
  

Transcriptase (Invitrogen). Phusion High Fidelity DNA Polymerase (Thermo scientific) was 465	
  

used for cDNA amplification. 50 µl PCR reaction was consisting of 1 µl Phusion DNA 466	
  

Polymerase, 10 µl 5X Phusion HF Buffer, 1 µl dNTP (10 mM), 1 µl forward primer (10 µM), 467	
  

1 µl reverse primer (10 µM), 2 µl RT reaction product (cDNA) and 34 µl of nuclease free 468	
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water. Biorad T100 thermal cycler with following program was used for amplification: 90 469	
  

seconds at 95°C as initial denaturation, followed by 30 cycles of 30 sec at 95°C for 470	
  

denaturation, 30 sec at 56 °C for annealing, 30 sec at 72 °C for extension, and final extension 471	
  

at 72 °C for 5 min. Primer sequences in Table S3. 472	
  

Total numbers of fluorescent neutrophils in digital images of control and morphant embryos 473	
  

were manually counted at 72 hours post fertilization (hpf) using an Olympus MVX10 474	
  

microscope fitted with an Olympus DP72 camera. 475	
  

 476	
  

CRISPR/Cas9 mutagenesis in zebrafish model 477	
  

Single guide RNA (sgRNA) synthesis for CRISPR mutagenesis 478	
  

The zebrafish smarcd2 gene was mutated by CRISPR/Cas9 technology using the method of 479	
  

Gagnon et al.39 . Briefly, the web tool “CHOPCHOP” (https://chopchop.rc.fas.harvard.edu/)39 480	
  

was used to design gene-specific spacer sequences to contribute to two single guide RNAs 481	
  

(sgRNAs) for smarcd2 targeting (named S1 and S2 in Table S3a). All CHOPCHOP results 482	
  

were checked on zebrafish genome database by Ensembl genome browser. DNA templates 483	
  

for sgRNA synthesis resulted from annealing two single-stranded DNA oligonucleotides 484	
  

(Sigma Aldrich) followed by T4 DNA polymerase (NEB) fill-in, to make a full double-485	
  

stranded DNA oligonucleotide. Each for each sgRNA DNA template, one oligonucleotide 486	
  

provides the site specific sequence (incorporating either S1 or S2) and the second “constant” 487	
  

oligonucleotide one supplied the binding site for Cas9 enzyme. sgRNAs were generated by in 488	
  

vitro transcription (mMESSAGE mMACHINE® SP6 or T7 Transcription Kit, Thermo Fisher 489	
  

Scientific).Transcribed sgRNA was cleaned (Sephadex G-50 spin columns, Roche 490	
  

Diagnostics) and its integrity was checked on 1% agarose (Bioline, BIO-41025) gel made in 491	
  

0.5% TBE. 492	
  

  493	
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sgRNA microinjection 494	
  

Individual sgRNAs (50-200 ng/µl) mixed with Cas9 Nuclease 20 µM (NEB) at a 1:1 ratio 495	
  

were microinjected (500–1000 pg) into the cytoplasm of 1-cell stage Tg(mpx:EGFP) 496	
  

embryos. 497	
  

 498	
  

Genotyping of zebrafish 499	
  

Smard2 locus genotyping was performed by DNA sequencing. DNA samples were extracted 500	
  

from single embryos or fin clips of adult fish using the HotSHOT protocol40 and amplified by 501	
  

PCR (primers and PCR conditions, see Table S3a) . Following gel electrophoresis, excised 502	
  

bands (AccuPrep® Gel purification kit, BIONEER) were sequenced in the Micromon 503	
  

sequencing facility (Monash University) using an “Applied Biosystems 3730s Genetic 504	
  

Analyzer”. F0 genotyping documented sgRNA activity. F1 genotyping was used to identify 505	
  

founders carrying mutated alleles. F2 genotyping assisted colony management and confirmed 506	
  

the genotypes of all embryos contributing to the phenotype comparison. 507	
  

 508	
  

Sequencing analysis of zebrafish results 509	
  

Sequencing traces were analyzed in DNASTAR navigator (Version 2.2.1.1) and ApE (A 510	
  

Plasmid Editor v.2.0.47, similar to37). Analysis of complex compound CRISPR/Cas9 511	
  

genotypes required manual curation and interpretation of sequence chromatograms. 512	
  

 513	
  

Phenotype analysis of zebrafish 514	
  

EGFP-positive neutrophils in digital images of control and F2 Tg(mpx:EGFP) embryos of 515	
  

various smarcd2 allelotypes were manually counted at 72 hours post fertilization (hpf) in the 516	
  

tail distal to the tip of the yolk extension, which includes the leukocyte-rich caudal 517	
  

hematopoietic tissue (CHT) using Olympus MVX10 microscope fitted with an Olympus 518	
  

DP72 camera.  519	
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Descriptive and analytical statistics were prepared in Prism 5.0c (GraphPad Software Inc). p-520	
  

values are from two-tailed unpaired t-tests, statistical center value: Mean, error bar: standard 521	
  

deviation. 522	
  

 523	
  

Murine LSK transcriptome – RNA-Seq 524	
  

Murine LSK cell populations were sorted into lysis buffer composed of 0.2 % Triton X-100 525	
  

(Sigma) and 2 U/µl of RNase Inhibitor (Promega). ERCC spike- in controls (Life 526	
  

Technologies) were added to the cell lysis mix at 1:1,000 dilution. RNA was cleaned up from 527	
  

the crude lysate with Agencourt RNAclean XP SPRI beads (Beckman-Coulter). cDNA was 528	
  

synthesized and pre-amplified from 5 µl of lysate as described elsewhere41. 0.7 ng of pre-529	
  

amplified cDNA was used as input for tagmentation by the Nextera XT Sample Preparation 530	
  

Kit (Illumina), where a second amplification round was performed for 12 cycles. For each 531	
  

sample, 5 ng of final library was pooled.10 pmol of the library pool was sequenced 1 x 50 532	
  

bases on an Illumina HiSeq1500.  533	
  

 534	
  

RNA-Seq data analysis  535	
  

We chose a minimum sample size of n=5 according to recommendations of power in RNA-536	
  

Seq42. All sorted murine LSK samples were processed, none was excluded. The murine fetal 537	
  

LSK samples/cell lysates were randomized for RNA-Seq library preparation by assigning a 538	
  

random sample number. During analysis, samples had to be unblinded. Sequencing reads 539	
  

were demultiplexed from the Nextera (i5 and i7) indices. Demultiplexed reads were aligned to 540	
  

the mouse genome (mm10) and ERCC reference using NextGenMap43. Count data were 541	
  

generated from mapped reads using feature Counts44 on Ensembl gene models (GRCm38.74). 542	
  

To remove noise from genes with low expression levels, count data sets were subjected to 543	
  

data-driven gene filtering using the HTSFilter R package45. 544	
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Differential expression (DE) analysis was done in the DESeq2 R package46. The full set of the 545	
  

12362 detected genes, their estimated log2 fold-change and the adjusted p-value of the Wald 546	
  

test is given in Table S4. For Figure 3g, we used the 50 genes showing the largest difference 547	
  

between the two groups and applied hierarchical clustering gene-wise and sample-wise with 548	
  

complete linkage based on Euclidian distances of variance stabilized counts of DE genes. We 549	
  

displayed the two-dimensional hierarchical cluster results as a heatmap. The reference 550	
  

expression value is the expression average of wild-type LSK cells. For testing enrichment of 551	
  

functional categories we used upregulated (log2 fold change>0.5) and downregulated genes 552	
  

(<-0.5) as the input list and all 12,362 detected genes as background list for functional 553	
  

annotation clustering using DAVID47 . Results obtained using default parameters and a cutoff 554	
  

of a 2-fold enrichment are shown in Table S5. Data deposition: GSE84703 555	
  

 556	
  

Expression of neutrophil specific granule genes in NB4 cells 557	
  

NB4 AML cells transduced with specific shRNA against SMARCD2 clone 1 V3LHS_300463 558	
  

and clone 2 V3LHS_400374 or non-silencing control # RHS4531 were cultivate in complete 559	
  

RPMI medium with ATRA 1µM (dissolved in DMSO), after 3 days RPMI medium 560	
  

supplemented with ATRA was exchanged. Cells were analyzed on day 3 and 6. RNA was 561	
  

extracted, cDNA was transcribed and expression levels of SMARCD1 (FW: 562	
  

GTCAGATGCCGAGGATGGGGA; REV: GTGGCATCATATTTGGACAAGGCTG), 563	
  

SMARCD2 (FW: ATCTCTTGGCTTTTGAGCGGAAGCTG; REV: 564	
  

CTTGCTGGGACTGAACGTATTGGA), SMARCD3 (FW: GGAGCCGCAGTGCCAAGA; 565	
  

REV: TAAGCCTGGGACTCGGGGAC), as well as granule genes LFT (FW: 566	
  

GCTGGAGACGTGGCTTTTATCAGA; REV GTAACTCATACTCGTCCCTTTCAGC), 567	
  

MMP8 (FW: CCGAAGAAACATGGACCAACACCTC; REV: 568	
  

TGAGCGAGCCCCAAAGAATG), TCN1 (FW: CACATTTAGCACAGGAGAAGC; REV: 569	
  

TGTTGGCAATTCCAGTCAT), CALM (FW: AGAAATCACCCAGCAGGGCAAA; REV: 570	
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GTATGGGGACAGTGACCCTCAACC), AAT (FW: 571	
  

GAACTCACCCACGATATCATCACC; REV: TGGACAGTTTGGGTAAATGTAAGC) 572	
  

normalized to GAPDH (FW: TGATGACATCAAGAAGGTGGTGAAG; REV: 573	
  

TCCTTGGAGGCCATGTGGGCCAT) were detected by SYBR green based qPCR on an 574	
  

ABI Step one plus cycler. Differential expression of genes was calculated by the ΔΔ Ct 575	
  

method. Data points represent the relative fold change of shRNA clone 1 or 2 vs non-576	
  

silencing control and individual repeat differentiation experiments. Descriptive and analytical 577	
  

statistics were prepared in Prism 5.0 (GraphPad Software Inc) and p-values are from two-578	
  

tailed unpaired t-tests, statistical center value: Mean, error bar: standard deviation. 579	
  

 580	
  

RNA-Seq in differentiated NB4 AML cells  581	
  

NB4 AML cells transduced with specific shRNA against SMARCD2 clone 1 V3LHS_300463 582	
  

and clone 2 V3LHS_400374 or non-silencing control # RHS4531 were cultivate in complete 583	
  

RPMI medium with ATRA 1µM (dissolved in DMSO) or DMSO-only control or 3 days. 584	
  

RNA was extracted from 1,000,000 NB4 cells (shRNA treated cells (clone 1 V3LHS 300463 585	
  

and clone 2 V3LHS 400374) and the control cells (RHS4531)) with or without ATRA 586	
  

differentiation. Cells were extracted by GeneJET RNA Purification Kit (Thermo Fisher 587	
  

Scientific) and RNA-Seq library preparation was performed with NEBNext® Ultra RNA 588	
  

Library Prep Kit from Illumina®  (#E7530 S) according to the manufacturer´s instructions and 589	
  

sequenced on an Illumina NextSeq 500 at the Dr. von Hauner Children´s Hospital NGS 590	
  

facility. 6 libraries were sequenced together using a Mid output cartridge (FC-404-2001, 150 591	
  

cycles, paired-end sequencing) reaching approximately 2x 5 Gb per sample. 592	
  

  593	
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ATAC-Seq in differentiated NB4 AML cells 594	
  

Assay for Transposase-Accessible Chromatin with high throughput sequencing was 595	
  

performed as described previously48 . 596	
  

NB4 cells (ACC207) were cultured as described above. DMSO (Sigma-Aldrich) was used as 597	
  

a carrier for ATRA. Cells were kept in logarithmic growth and stimulated with 1µM ATRA 598	
  

or DMSO as a control. After 72 hours, 50,000 cells per condition were harvested and nuclei 599	
  

preparation was done as described48 . Isolated nuclei were treated with Tn5 transposase from 600	
  

the Nextera DNA Library Preparation Kit (Illumina, Catalog # FC-140-1089) for 30 minutes, 601	
  

300 rpm in a Thermomixer. Transposed DNA was purified with the Qiagen MinElute 602	
  

Reaction Cleanup Kit (Qiagen, Catalog # 28204) and amplified with Illumina Tn5 compatible 603	
  

barcoding primers (NEBNext Multiplex Oligos for Illumina,NEB). We ran a qPCR side-604	
  

reaction with 5µl of the previously amplified library to determine the minimum number of 605	
  

additional PCR cycles needed (Primers: FW 5ʹ AATGATACGGCGACCACCGAGAT 3ʹ and 606	
  

REV 5ʹ CAAGCAGAAGACGGCATACGA 3ʹ). Minimally PCR-amplified libraries were 607	
  

again purified with the Qiagen MinElute Reaction Cleanup Kit. Libraries were analyzed on an 608	
  

Agilent Bioanalyzer 2100 (High Sensitivity DNA Chip) and size selection for the fragments 609	
  

was performed using AMPure beads.16 ATAC libraries were pooled and sequenced using a 610	
  

Mid output cartridge (FC-404-2001, 150 cycles, paired-end sequencing) on a Illumina 611	
  

NextSeq 500 reaching approximately 2x1.8 Gb per sample.	
  	
  612	
  

 613	
  

Human RNA-Seq and ATAC-Seq data analysis 614	
  

Demultiplexed FASTQ files were generated using bcl2fastq v2.17 (BCL2FASTQ Conversion 615	
  

Software 2.17, Illumina). The ATAC-Seq reads were mapped with BWA-MEM49 with default 616	
  

parameters to the human genome (GRCh37.p13). The RNA-Seq reads were mapped with 617	
  

STAR (v2.5.0a) to the same genome in combination with the gene model annotation of 618	
  

GENCODE 1950.  619	
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The R/Bioconductor51 package GenomicAlignments was utilized to generate count data for 620	
  

the RNA-Seq data based on the gene level. The same gene model as in the alignment step was 621	
  

used. Only reads mapping uniquely to one feature were counted by setting the 622	
  

summarizeOverlaps function option to mode=‘Union’. Furthermore all other options were set 623	
  

to FALSE (ignore.strand=FALSE, inter.feature=FALSE, fragments=FALSE). To reduce 624	
  

noise from lowly expressed genes, only genes were kept, if the 95 % quantile of the coverage 625	
  

across all samples was below 10 reads as suggested by DESeq246 package. DESeq2 was 626	
  

utilized to carry out a differential expression analysis between shRNA treated cells (clone 1 627	
  

V3LHS 300463 and clone 2 V3LHS 400374) and the control cells (RHS4531) of the 628	
  

remaining 13,244 genes. Furthermore, a differential expression analysis was performed 629	
  

between ATRA treated cells and DMSO treated cells as control. A significance cutoff of FDR 630	
  

< 0.1 was applied to the results before further downstream analysis. The DESeq2 results of 631	
  

the significantly differentially expressed genes are listed in Table S6 and S7 with their raw 632	
  

counts and their normalized counts. 633	
  

For the ATAC-Seq analysis we followed the proposed workflow by Lun and Smyth52. Hence 634	
  

the reads were first pulled together from all samples. On all reads MACS253 was used with 635	
  

default parameters to call peaks. The resulting peaks were used as genomic features to 636	
  

generate count data for each sample with the R/Bioconductor package GenomicAlignment53. 637	
  

The count data was again subjected to filtering steps to reduce the noise. To call significantly 638	
  

differentially occupied genomic regions the R/ Bioconductor package EdgeR54 was utilized. 639	
  

A significance cutoff of p value < 0.005 was applied to the results before further downstream 640	
  

analysis. The EdgeR results of the significantly differentially occupied peaks are listed in 641	
  

Table S6 and S7 with their raw counts and their normalized counts. 642	
  

Heatmaps were plotted based on the log2-fold-changes. The dendrogram was obtained by 643	
  

gene-wise and sample-wise hierarchical clustering with complete linkage. Fold changes and 644	
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p-values per gene are given in Table S6 (DMSO/undifferentiated) and Table S7 645	
  

(ATRA/differentiated). 646	
  

 647	
  

Pathway analysis  648	
  

Pathway analysis of human and murine transcriptomes was carried out by Cytoscape 3.3.055 649	
  

together with Reactome Functional Interaction plugin56,57. In brief, for pathway analysis, 650	
  

differentially expressed murine genes (log2 FC -0.5<x>0.5, padj<0.1) or differentially 651	
  

expressed human genes (padj<0.1) or intersections thereof with CEBPE target genes were 652	
  

loaded into the Gene set / Mutation Analysis interface. Networks were generated with or 653	
  

without linker genes as indicated. Spectral partition based network clustering according to58 654	
  

was performed and individual spectral clusters where analyzed by Reactome Pathway 655	
  

Enrichment5959. Abstraction of spectral clusters (Figure S7, S8) and lists of significantly 656	
  

enriched pathways are shown (Table S3). For intersection of gene lists the Venny Venn online 657	
  

tool60 was used. 658	
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Figure Legends 869	
  

Figure 1: Bone marrow and peripheral blood cell analysis 870	
  

(a-c) Bone marrow and peripheral blood cells from healthy donor. (a) Hematoxylin eosin 871	
  

(HE) stained normal cellular bone marrow biopsy showing regular maturation of all 872	
  

hematopoietic cell lineages and no infiltration by blast cells. Insert shows magnification of 873	
  

normal hematopoiesis. (b) Giemsa stained healthy donor peripheral blood cells showing 874	
  

mature, segmented neutrophil granulocytes (c) Giemsa stained healthy donor bone marrow 875	
  

cells showing maturation of red and white blood cell lineages. 876	
  

(d-f) Bone marrow and peripheral blood cells from patient AII.1. (d)  HE stained bone 877	
  

marrow biopsy with diffuse and compact infiltration by blast cells, absence of 878	
  

megakaryocytes and erythroid islands. Insert shows immature neutrophilic cells. (e) Giemsa 879	
  

stained bone marrow cells showing atypical mature neutrophilic cells with hypogranulated 880	
  

cytoplasm, hyposegmented nuclei and Pseudo Pelger-Huët anomaly (PPHA) (black arrow 881	
  

head). (f) Giemsa stained bone marrow cells showing left shifted neutrophilic granulopoiesis, 882	
  

blast cells and PPHA (black arrow head) 883	
  

(g-i) Bone marrow and peripheral blood cells from family B (g) HE stained bone marrow 884	
  

biopsy from patient BII.2 (boy) showing a marked hypercellularity with subtotal depletion of 885	
  

adipocytes and normal erythroid precursors. Diffuse infiltration by blast cells and starry sky 886	
  

pattern with disseminated activated macrophages (empty arrow heads). Insert shows 887	
  

immature neutrophilic cells. (h) Giemsa stained peripheral blood cells from patient BII.1 (girl) 888	
  

showing blood smear with circulating atypical neutrophil cells and PPHA (black arrow head). 889	
  

(i) Giemsa stained bone marrow cells from patient BII.1 (girl) showing left shifted atypical 890	
  

neutrophilic granulocytopoiesis with increase of blast cells. PPHA (black arrow head) and 891	
  

atypical mature neutrophils (empty arrow head). 892	
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(j-l) Bone marrow cells from patient CII.1. (j) HE stained bone marrow biopsy from patient 893	
  

CII.1 showing marked hypercellularity with subtotal depletion of adipocytes and depletion of 894	
  

normal erythrocytes. Diffuse and compact infiltration by blast cells, scattered activated 895	
  

macrophages (empty arrow heads). Insert showing pleomorphic blast cells with round nuclei 896	
  

and small but distinguishable nucleoli (black arrow heads). (k) Bone marrow anti GlycoC 897	
  

staining demonstrates superseding of erythropoiesis (empty arrow heads) by blast invasion 898	
  

(asterisks). (l) immunohistochemical anti CD-61 staining shows loosely scattered, small and 899	
  

immature megakaryocytes (micro-megakaryocytes). 900	
  

 901	
  

 902	
  

 903	
  

 904	
  

  905	
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Figure 2: Identification of biallelic loss-of-function mutations in SMARCD2  906	
  

(a, b, c.) Pedigrees and Sanger sequencing chromatogram of patient (Pat) compared to 907	
  

reference sequence (Ref), and specification of homozygous mutations (Mut). 908	
  

(d) Western blot revealing absence of SMARCD2 protein expression (molecular weight 909	
  

58.9kDa, filled arrow head) in fibroblasts (healthy donors 1 (HD1) and healthy donor 2 910	
  

(HD2), patients AII.1, patients BII.1) and in EBV-transformed B cell lines (Healthy donor 911	
  

(HD), patient CII.1) 912	
  

(e) SMARCD2 mRNA transcripts detected in patients cells, open reading frames are shown in 913	
  

black. Healthy donor (HD) transcript ENST00000448276, CCDS45756, in comparison to 914	
  

patients AII.1 (a: p.I362CfsX2, b: p.S394RfsX1, c: p.I362VfsX85), BII.1 (p.Q147EfsX4) and 915	
  

CII.1 (p.R73VfsX8). See also Table S2. 916	
  

(f) Immunoprecipitation showing defective binding of patient-specific SMARCD2-mutated 917	
  

proteins to SWI/SNF core complex members BRG1, BAF170, BAF155, and BAF47. FLAG-918	
  

tagged SMARCD2 proteins (wildtype and mutants), expressed in 293T cells, were 919	
  

immunoprecipitation using anti-FLAG tag. Native co-immunoprecipitation of SWI/SNF 920	
  

complex members was visualized using Western blotting of input and immunoprecipitated 921	
  

samples. Short exposure of FLAG stained membrane shows similar amounts of FLAG-922	
  

precipitated SMARCD2-WT and SMARCD2-AII1.a and SMARCD2-AII.1b proteins (no 923	
  

shown); long exposure of FLAG stained membrane reveals presence of FLAG-IP precipitated 924	
  

SMARCD2-WT, SMARCD2-AII1.a, SMARCD2-AII.1b, SMARCD2-BII.1 and SMARCD2-925	
  

CII.1 proteins.  926	
  

 927	
  

 928	
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Figure 3: Smarcd2 deficiency in genetic model organisms 929	
  

(a-c) Defective neutrophil differentiation in zebrafish models 930	
  

(a) Fluorescence image of Danio rerio strain Tg(mpx:EGFP)i114, smarcd2wt/wt  and 931	
  

smarcd21/1 (knock out). Reduced numbers of GFP expressing neutrophils are observed in the 932	
  

smarcd21/1 mutant fish embryo. Numbers of fluorescence labled neutrophils were evaluated in 933	
  

the caudal hematopoietic tissue per individual fish embryos. 934	
  

(b) Statistics of neutrophil numbers in wildtype smarcd2wt/wt vs. knock out smarcd21/1 935	
  

zebrafish. Numbers of fluorescence labled neutrophils were evaluated in the caudal 936	
  

hematopoietic tissue per individual fish embryos. (Center value: mean and error bar: SD,  p-937	
  

values: two-tailed unpaired t-tests.)  938	
  

(c) Statistics of neutrophil numbers in Tg(lyz:dsRed)nz50 zebrafish at 72 hours post 939	
  

fertilization after injection of morpholino oligonucleotides (unspecific control versus 940	
  

translation start site blocker (ATG) and splice site blocker (SB1 and SB2) against smarcd2. 941	
  

Data points represent numbers of fluorescence labeled neutrophils per individual fish 942	
  

embryos. (Center value: mean and error bar: SD, p-values: two-tailed unpaired t-tests).  943	
  

(d-l) Defective hematopoiesis in murine Smarcd2-deficient embryos 944	
  

(d) Gross morphology of murine litter mate embryos Smarcd2+/+, Smarcd2 +/- and Smarcd2-/- 945	
  

at 14.5dpc, (representative pictures chose out of 4 litters (Wt n=4, Ht n=10, Ko n=9)), (e) 946	
  

Smarcd2+/+ and Smarcd2-/- blood cytology at 14.5dpc, May-Grünwald/Eosin 20x and 63x 947	
  

showing an increase of dysplastic red cell precursors in Smarcd2-/- blood e.g. anisocytosis 948	
  

(empty arrow head, 23x), increased mitosis (black arrow heads, 63x) and multinucleated cells 949	
  

(empty arrow heads, 63x), 2 independent experiments in 2 litter, (f) May-Grünwald/Eosin 950	
  

stained CFU cells derived from Smarcd2+/+, Smarcd2+/- and Smarcd2-/- hematopoietic stem 951	
  

cells upon differentiation with SCF, Il3, Il6 show promyelocytic arrest. Murine neutrophils 952	
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(anular shaped nucleus) are absent in Smarcd2-/- colonies. (g) RNA-Seq analysis of 953	
  

Smarcd2+/+ (n=5) and Smarcd-/- (n=9) 14-15dpc fetal liver LSK cell samples. Shown is a 954	
  

heatmap of 50 significantly (padj < 0.1) differentially expressed genes with highest absolute 955	
  

fold change. Each column represents a LSK sample of one embryo. Smarcd2+/+ is depleted in 956	
  

all Smarcd2-/- samples (black arrow). Color key below heat map indicates range of log2 fold 957	
  

changes. For detailed statistic methodology please refer to material/ method section.  958	
  

(h, k) Representative FACS scatter blots of fetal liver cells stained for CD11b+Gr1+ neutrophil 959	
  

granulocytes and CD11b+Ly6c+ monocytes and statistical analysis. (h) Here, Smarcd2+/+ fetal 960	
  

liver blood cells express CD11b+ (21.3%) vs CD11b+Gr1+ (12.1%) and CD11b+Ly6c+ (10%), 961	
  

Smarcd2+/- fetal liver blood cells express CD11b+ (33.1%) vs CD11b+Gr1+ (8.27%) and 962	
  

CD11b+Ly6c+ (7.51%) and Smarcd2-/- fetal liver blood cells express CD11b+ (13.9%) vs 963	
  

CD11b+Gr1+ (0.47%) and CD11b+Ly6c+ (1.1%). (k) statistical analysis of (h), CD11b+Gr1+ 964	
  

and CD11b+Ly6c+ cells are significantly reduced in Smarcd2-/- vs Smarcd2+/+ . Representation 965	
  

of 2 experiments with 6 litters (Wt n=10, Ht n=14, Ko n=9) with center value: Mean, Error 966	
  

bar: SEM p-values: two-tailed unpaired t-tests. Experiment was repeated 3 times with a total 967	
  

of 8 litters. 968	
  

(i) Count of myeloid colonies derived from Smarcd2+/+, Smarcd2+/- and Smarcd2-/- LSK cells 969	
  

upon differentiation with myeloid cocktail M3434, GM-CSF, M-CSF or G-CSF, respectively.  970	
  

CFU from LSK of Wt n=4, Ht n=5, Ko n= 5, derived from 5 litter, 3 independent 971	
  

experiments, center value: Mean, Error bar: SD, p-values: two-tailed unpaired t-tests). 972	
  

(j,l) FACS analysis of erythropoietic progenitors derived from Smarcd2+/+, Smarcd2+/- and 973	
  

Smarcd2-/-  CFU  GEMM colonies after differentiation with M3434 (myeloid cocktail). (j) 974	
  

FACS scatter blots show representative CD71/Ter119 distribution of erythropoietic cells from 975	
  

GEMM colonies  (l) Display shows distribution of of erythroid stages S0-S5 in 8 GEMM 976	
  

colonies derived per each of  3 WT (i.e. 3 x 8 GEMM colonies), 2 HT (i.e. 2x 8 GEMM 977	
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colonies) and 3 KO (i.e. 3x8 GEMM colonies) from fetal liver LSKs (i.e. 64 data points). 978	
  

Statistical analysis by 2-way ANOVA, center value: Mean, Error bar: SEM)  979	
  

 980	
  

  981	
  



	
   45	
  

Figure 4:  SMARCD2, granule formation and transcriptional regulation 982	
  

(a) Relative mRNA expression of SMARCD1 (dots), SMARCD2 (dots), SMARCD3 (dots) and 983	
  

primary granule genes (empty squares) LL37, AAT and secondary granule genes (filled 984	
  

squares) MMP8, TCN1, LTF is shown. The human AML-NB4 cell line was lentivirally 985	
  

transduced with either an unspecific control (CTRL) or 1 of  2 specific shRNAs against 986	
  

SMARCD2. Data points show the relative expression of  shRNA vs CTRL in 3 independent 987	
  

experiments with 2 shRNAs (i.e. 6 data points) for SMARCD1 , SMARCD3, LL37, AAT, 988	
  

MMP8,  or in 4 independent  experiments with 2 shRNAs (i.e. 8 data points) for SMARCD2 989	
  

and LTF. SMARCD1, SMARCD2 and SMARCD3 expression levels were determined in 990	
  

undifferentiated cells; granule gene expression was measured after differentiation with ATRA 991	
  

1µM for 6 days. To describe the effects of SMARCD2 knock down, the relative expression 992	
  

levels in all samples were compared to the relative expression of SMARCD1. Statistics: center 993	
  

value: Mean, p-values: two-tailed unpaired t-tests. Relative expression of granule genes after 994	
  

knock down and differentiation with ATRA 1µM for 3 days show similar results (data not 995	
  

shown). 996	
  

(b) Co- overexpression of CEBPE-N-HA and SMARCD2-N-FLAG shows protein-protein 997	
  

interaction in vitro in 293T cells. SMARCD2-N-FLAG co-precipitates with HA-immune 998	
  

precipitated CEBPE-N-HA and vice versa.  999	
  

(c-f) The intersection of differentially enriched genes (ATAC-Seq and RNA-Seq) in NB4 1000	
  

knock down SMARCD2 vs. control is shown. 1001	
  

(c) In undifferentiated NB4 cells (UD) a distinct subset of genes shows both, changes of 1002	
  

chromatin compaction measured by ATAC-Seq and gene expression measured by RNA-Seq.  1003	
  

(d) Fold change of transcription (FC RNA) and chromatin accessibility (FC ATAC) are 1004	
  

indicated for genes, affected in both assays in undifferentiated NB4 cells. Color key (same for 1005	
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(d) and (f)) below heat map indicates range of log2 fold changes. For detailed statistic 1006	
  

methodology please refer to material/ method section. 1007	
  

(e) In differentiated NB4 cells (ATRA 1µM for 3 days), a distinct subset of genes shows both, 1008	
  

changes of chromatin compaction measured by ATAC-Seq and gene expression measured by 1009	
  

RNA-Seq. 1010	
  

(f) Fold change of transcription (FC RNA) and chromatin accessibility (FC ATAC) are 1011	
  

indicated for genes, affected in both assays in differentiated NB4 cells. Color key below heat 1012	
  

map (d) indicates range of log2 fold changes (for (d) and (f)). For detailed statistic 1013	
  

methodology please refer to material/ method section. 1014	
  

(g) SMARCD2 regulates expression of CEBPE dependent genes. Intersection of differentially 1015	
  

expressed genes in undifferentiated vs differentiated SMARCD2 knock down cells vs CEBPE 1016	
  

targets is shown, for intersections see Table S3. 1017	
  

For detailed statistical methodology of ATAC-Seq and RNA-Seq data analysis please refer to 1018	
  

Materials and Methods section. 1019	
  

 1020	
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Smarcd2 deficiency in genetic model organisms  
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SMARCD2, granule formation and transcriptional regulation  
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