79 research outputs found

    Reconstructing Asian faunal introductions to eastern Africa from multi-proxy biomolecular and archaeological datasets

    Get PDF
    Human-mediated biological exchange has had global social and ecological impacts. In subS-aharan Africa, several domestic and commensal animals were introduced from Asia in the pre-modern period; however, the timing and nature of these introductions remain contentious. One model supports introduction to the eastern African coast after the mid-first millennium CE, while another posits introduction dating back to 3000 BCE. These distinct scenarios have implications for understanding the emergence of long-distance maritime connectivity, and the ecological and economic impacts of introduced species. Resolution of this longstanding debate requires new efforts, given the lack of well-dated fauna from high-precision excavations, and ambiguous osteomorphological identifications. We analysed faunal remains from 22 eastern African sites spanning a wide geographic and chronological range, and applied biomolecular techniques to confirm identifications of two Asian taxa: domestic chicken (Gallus gallus) and black rat (Rattus rattus). Our approach included ancient DNA (aDNA) analysis aided by BLAST-based bioinformatics, Zooarchaeology by Mass Spectrometry (ZooMS) collagen fingerprinting, and direct AMS (accelerator mass spectrometry) radiocarbon dating. Our results support a late, mid-first millennium CE introduction of these species. We discuss the implications of our findings for models of biological exchange, and emphasize the applicability of our approach to tropical areas with poor bone preservation

    Sulfatide Recognition by Colonization Factor Antigen CS6 from Enterotoxigenic Escherichia coli

    Get PDF
    The first step in the pathogenesis of enterotoxigenic Escherichia coli (ETEC) infections is adhesion of the bacterium to the small intestinal epithelium. Adhesion of ETEC is mediated by a number of antigenically distinct colonization factors, and among these, one of the most commonly detected is the non-fimbrial adhesin coli surface antigen 6 (CS6). The potential carbohydrate recognition by CS6 was investigated by binding of recombinant CS6-expressing E. coli and purified CS6 protein to a large number of variant glycosphingolipids separated on thin-layer chromatograms. Thereby, a highly specific binding of the CS6-expressing E. coli, and the purified CS6 protein, to sulfatide (SO3-3Galβ1Cer) was obtained. The binding of the CS6 protein and CS6-expressing bacteria to sulfatide was inhibited by dextran sulfate, but not by dextran, heparin, galactose 4-sulfate or galactose 6-sulfate. When using recombinantly expressed and purified CssA and CssB subunits of the CS6 complex, sulfatide binding was obtained with the CssB subunit, demonstrating that the glycosphingolipid binding capacity of CS6 resides within this subunit. CS6-binding sulfatide was present in the small intestine of species susceptible to CS6-mediated infection, e.g. humans and rabbits, but lacking in species not affected by CS6 ETEC, e.g. mice. The ability of CS6-expressing ETEC to adhere to sulfatide in target small intestinal epithelium may thus contribute to virulence

    Basis for treatment of tuberculosis among HIV-infected patients in Tanzania: the role of chest x-ray and sputum culture

    Get PDF
    BACKGROUND: Active tuberculosis (TB) is common among HIV-infected persons living in tuberculosis endemic countries, and screening for tuberculosis (TB) is recommended routinely. We sought to determine the role of chest x-ray and sputum culture in the decision to treat for presumptive TB using active case finding in a large cohort of HIV-infected patients. METHODS: Ambulatory HIV-positive subjects with CD4 counts ≥ 200/mm3 entering a Phase III TB vaccine study in Tanzania were screened for TB with a physical examination, standard interview, CD4 count, chest x-ray (CXR), blood culture for TB, and three sputum samples for acid fast bacillus (AFB) smear and culture. RESULTS: Among 1176 subjects 136 (12%) were treated for presumptive TB. These patients were more frequently male than those without treatment (34% vs. 25%, respectively; p = 0.049) and had lower median CD4 counts (319/μL vs. 425/μL, respectively; p < .0001). Among the 136 patients treated for TB, 38 (28%) had microbiologic confirmation, including 13 (10%) who had a normal CXR and no symptoms. There were 58 (43%) treated patients in whom the only positive finding was an abnormal CXR. Blood cultures were negative in all patients. CONCLUSION: Many ambulatory HIV-infected patients with CD4 counts ≥ 200/mm3 are treated for presumptive TB. Our data suggest that optimal detection requires comprehensive evaluation, including CXR and sputum culture on both symptomatic and asymptomatic subjects.National Institutes of Health (A1 45407); Fogarty International Center (D43-TW006807

    Adventurous Physical Activity Environments: A Mainstream Intervention for Mental Health

    Get PDF
    Adventurous physical activity has traditionally been considered the pastime of a small minority of people with deviant personalities or characteristics that compel them to voluntarily take great risks purely for the sake of thrills and excitement. An unintended consequence of these traditional narratives is the relative absence of adventure activities in mainstream health and well-being discourses and in large-scale governmental health initiatives. However, recent research has demonstrated that even the most extreme adventurous physical activities are linked to enhanced psychological health and well-being outcomes. These benefits go beyond traditional ‘character building’ concepts and emphasize more positive frameworks that rely on the development of effective environmental design. Based on emerging research, this paper demonstrates why adventurous physical activity should be considered a mainstream intervention for positive mental health. Furthermore, the authors argue that understanding how to design environments that effectively encourage appropriate adventure should be considered a serious addition to mainstream health and well-being discourse

    Methicillin Resistance Alters the Biofilm Phenotype and Attenuates Virulence in Staphylococcus aureus Device-Associated Infections

    Get PDF
    Clinical isolates of Staphylococcus aureus can express biofilm phenotypes promoted by the major cell wall autolysin and the fibronectin-binding proteins or the icaADBC-encoded polysaccharide intercellular adhesin/poly-N-acetylglucosamine (PIA/PNAG). Biofilm production in methicillin-susceptible S. aureus (MSSA) strains is typically dependent on PIA/PNAG whereas methicillin-resistant isolates express an Atl/FnBP-mediated biofilm phenotype suggesting a relationship between susceptibility to β-lactam antibiotics and biofilm. By introducing the methicillin resistance gene mecA into the PNAG-producing laboratory strain 8325-4 we generated a heterogeneously resistant (HeR) strain, from which a homogeneous, high-level resistant (HoR) derivative was isolated following exposure to oxacillin. The HoR phenotype was associated with a R602H substitution in the DHHA1 domain of GdpP, a recently identified c-di-AMP phosphodiesterase with roles in resistance/tolerance to β-lactam antibiotics and cell envelope stress. Transcription of icaADBC and PNAG production were impaired in the 8325-4 HoR derivative, which instead produced a proteinaceous biofilm that was significantly inhibited by antibodies against the mecA-encoded penicillin binding protein 2a (PBP2a). Conversely excision of the SCCmec element in the MRSA strain BH1CC resulted in oxacillin susceptibility and reduced biofilm production, both of which were complemented by mecA alone. Transcriptional activity of the accessory gene regulator locus was also repressed in the 8325-4 HoR strain, which in turn was accompanied by reduced protease production and significantly reduced virulence in a mouse model of device infection. Thus, homogeneous methicillin resistance has the potential to affect agr- and icaADBC-mediated phenotypes, including altered biofilm expression and virulence, which together are consistent with the adaptation of healthcare-associated MRSA strains to the antibiotic-rich hospital environment in which they are frequently responsible for device-related infections in immuno-compromised patients

    agr-Mediated Dispersal of Staphylococcus aureus Biofilms

    Get PDF
    The agr quorum-sensing system of Staphylococcus aureus modulates the expression of virulence factors in response to autoinducing peptides (AIPs). Recent studies have suggested a role for the agr system in S. aureus biofilm development, as agr mutants exhibit a high propensity to form biofilms, and cells dispersing from a biofilm have been observed displaying an active agr system. Here, we report that repression of agr is necessary to form a biofilm and that reactivation of agr in established biofilms through AIP addition or glucose depletion triggers detachment. Inhibitory AIP molecules did not induce detachment and an agr mutant was non-responsive, indicating a dependence on a functional, active agr system for dispersal. Biofilm detachment occurred in multiple S. aureus strains possessing divergent agr systems, suggesting it is a general S. aureus phenomenon. Importantly, detachment also restored sensitivity of the dispersed cells to the antibiotic rifampicin. Proteinase K inhibited biofilm formation and dispersed established biofilms, suggesting agr-mediated detachment occurred in an ica-independent manner. Consistent with a protease-mediated mechanism, increased levels of serine proteases were detected in detaching biofilm effluents, and the serine protease inhibitor PMSF reduced the degree of agr-mediated detachment. Through genetic analysis, a double mutant in the agr-regulated Aur metalloprotease and the SplABCDEF serine proteases displayed minimal extracellular protease activity, improved biofilm formation, and a strongly attenuated detachment phenotype. These findings indicate that induction of the agr system in established S. aureus biofilms detaches cells and demonstrate that the dispersal mechanism requires extracellular protease activity

    Inhibition of Toxic Shock by Human Monoclonal Antibodies against Staphylococcal Enterotoxin B

    Get PDF
    BACKGROUND: Staphylococcus aureus is implicated in many opportunistic bacterial infections around the world. Rising antibiotic resistance and few alternative methods of treatment are just two looming problems associated with clinical management of S. aureus. Among numerous virulence factors produced by S. aureus, staphylococcal enterotoxin (SE) B is a secreted protein that binds T-cell receptor and major histocompatibility complex class II, potentially causing toxic shock mediated by pathological activation of T cells. Recombinant monoclonal antibodies that target SEB and block receptor interactions can be of therapeutic value. METHODOLOGY/PRINCIPAL FINDINGS: The inhibitory and biophysical properties of ten human monoclonal antibodies, isolated from a recombinant library by panning against SEB vaccine (STEBVax), were examined as bivalent Fabs and native full-length IgG (Mab). The best performing Fabs had binding affinities equal to polyclonal IgG, low nanomolar IC(50)s against SEB in cell culture assays, and protected mice from SEB-induced toxic shock. The orthologous staphylococcal proteins, SEC1 and SEC2, as well as streptococcal pyrogenic exotoxin C were recognized by several Fabs. Four Fabs against SEB, with the lowest IC(50)s, were converted into native full-length Mabs. Although SEB-binding kinetics were identical between each Fab and respective Mab, a 250-fold greater inhibition of SEB-induced T-cell activation was observed with two Mabs. CONCLUSIONS/SIGNIFICANCE: Results suggest that these human monoclonal antibodies possess high affinity, target specificity, and toxin neutralization qualities essential for any therapeutic agent

    TGF-β-Mediated Sustained ERK1/2 Activity Promotes the Inhibition of Intracellular Growth of Mycobacterium avium in Epithelioid Cells Surrogates

    Get PDF
    Transforming growth factor beta (TGF-β) has been implicated in the pathogenesis of several diseases including infection with intracellular pathogens such as the Mycobacterium avium complex. Infection of macrophages with M. avium induces TGF-β production and neutralization of this cytokine has been associated with decreased intracellular bacterial growth. We have previously demonstrated that epithelioid cell surrogates (ECs) derived from primary murine peritoneal macrophages through a process of differentiation induced by IL-4 overlap several features of epithelioid cells found in granulomas. In contrast to undifferentiated macrophages, ECs produce larger amounts of TGF-β and inhibit the intracellular growth of M. avium. Here we asked whether the levels of TGF-β produced by ECs are sufficient to induce a self-sustaining autocrine TGF-β signaling controlling mycobacterial replication in infected-cells. We showed that while exogenous addition of increased concentration of TGF-β to infected-macrophages counteracted M. avium replication, pharmacological blockage of TGF-β receptor kinase activity with SB-431542 augmented bacterial load in infected-ECs. Moreover, the levels of TGF-β produced by ECs correlated with high and sustained levels of ERK1/2 activity. Inhibition of ERK1/2 activity with U0126 increased M. avium replication in infected-cells, suggesting that modulation of intracellular bacterial growth is dependent on the activation of ERK1/2. Interestingly, blockage of TGF-β receptor kinase activity with SB-431542 in infected-ECs inhibited ERK1/2 activity, enhanced intracellular M. avium burden and these effects were followed by a severe decrease in TGF-β production. In summary, our findings indicate that the amplitude of TGF-β signaling coordinates the strength and duration of ERK1/2 activity that is determinant for the control of intracellular mycobacterial growth
    • …
    corecore