62 research outputs found

    Post epidemic giardiasis and gastrointestinal symptoms among preschool children in Bergen, Norway. A cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A surprisingly low number of children became ill with giardiasis during the large waterborne outbreak of <it>Giardia lamblia </it>in Bergen, Norway during autumn 2004. The aim of the present study was to evaluate the prevalence of giardiasis among exposed children one year after an outbreak and compare faecal carriage of <it>Giardia </it>and abdominal symptoms among exposed versus unexposed children one year after the epidemic.</p> <p>Methods</p> <p>Children between 1 and 6 years old were recruited from the local health care centres in Bergen municipality in the period between June 2005 and January 2006. One faecal sample per child was collected and examined for presence of <it>Giardia </it>with a rapid immunoassay antigen test, and parents were asked to answer a questionnaire. A total of 513 children participated, 378 in the group exposed to contaminated water, and 135 in the in the group not exposed.</p> <p>Results</p> <p>In the exposed group eleven children had been treated for giardiasis during the epidemic and none in the unexposed group. <it>Giardia </it>positive faecal tests were found in six children, all in the exposed group, but the difference between the groups did not reach statistical significance. All six <it>Giardia </it>positive children were asymptomatic. No differences were found between the groups regarding demographic data, nausea, vomiting, different odour from stools and eructation. However, the reported scores of abdominal symptoms (diarrhoea, bloating and stomach ache) during the last year were higher in the exposed group than in the unexposed group.</p> <p>Conclusions</p> <p>A low prevalence of asymptomatic <it>Giardia </it>infection (1.7%) was found among exposed children around one year after the epidemic (1.2% overall prevalence in the study). In the present setting, pre-school children were therefore unlikely to be an important reservoir for continued transmission in the general population.</p

    Early Fasting Is Long Lasting: Differences in Early Nutritional Conditions Reappear under Stressful Conditions in Adult Female Zebra Finches

    Get PDF
    Conditions experienced during early life can have profound effects on individual development and condition in adulthood. Differences in nutritional provisioning in birds during the first month of life can lead to differences in growth, reproductive success and survival. Yet, under natural conditions shorter periods of nutritional stress will be more prevalent. Individuals may respond differently, depending on the period of development during which nutritional stress was experienced. Such differences may surface specifically when poor environmental conditions challenge individuals again as adults. Here, we investigated long term consequences of differences in nutritional conditions experienced during different periods of early development by female zebra finches (Taeniopygia guttata) on measures of management and acquisition of body reserves. As nestlings or fledglings, subjects were raised under different nutritional conditions, a low or high quality diet. After subjects reached sexual maturity, we measured their sensitivity to periods of food restriction, their exploration and foraging behaviour as well as adult resting metabolic rate (RMR). During a short period of food restriction, subjects from the poor nutritional conditions had a higher body mass loss than those raised under qualitatively superior nutritional conditions. Moreover, subjects that were raised under poor nutritional conditions were faster to engage in exploratory and foraging behaviour. But RMR did not differ among treatments. These results reveal that early nutritional conditions affect adult exploratory behaviour, a representative personality trait, foraging and adult's physiological condition. As early nutritional conditions are reflected in adult phenotypic plasticity specifically when stressful situations reappear, the results suggest that costs for poor developmental conditions are paid when environmental conditions deteriorate

    Female responses to experimental removal of sexual selection components in Drosophila melanogaster

    Get PDF
    Despite the common assumption that multiple mating should in general be favored in males, but not in females, to date there is no consensus on the general impact of multiple mating on female fitness. Notably, very little is known about the genetic and physiological features underlying the female response to sexual selection pressures. By combining an experimental evolution approach with genomic techniques, we investigated the effects of single and multiple matings on female fecundity and gene expression. We experimentally manipulated the opportunity for mating in replicate populations of Drosophila melanogaster by removing components of sexual selection, with the aim of testing differences in short term post-mating effects of females evolved under different mating strategies

    Sex-specific reproductive behaviours and paternity in free-ranging Barbary macaques (Macaca sylvanus)

    Get PDF
    In a wide variety of species, male reproductive success is determined by contest for access to females. Among multi-male primate groups, however, factors in addition to male competitive ability may also influence paternity outcome, although their exact nature and force is still largely unclear. Here, we have investigated in a group of free-ranging Barbary macaques whether paternity is determined on the pre- or postcopulatory level and how male competitive ability and female direct mate choice during the female fertile phase are related to male reproductive success. Behavioural observations were combined with faecal hormone analysis for timing of the fertile phase (13 cycles, 8 females) and genetic paternity analysis (n = 12). During the fertile phase, complete monopolisation of females did not occur. Females were consorted for only 49% of observation time, and all females had ejaculatory copulations with several males. Thus, in all cases, paternity was determined on the postcopulatory level. More than 80% of infants were sired by high-ranking males, and this reproductive skew was related to both, male competitive ability and female direct mate choice as high-ranking males spent more time in consort with females than low-ranking males, and females solicited copulations mainly from dominant males. As most ejaculatory copulations were female-initiated, female direct mate choice appeared to have the highest impact on male reproductive success. However, female preference was not directly translated into paternity, as fathers were not preferred over non-fathers in terms of solicitation, consortship and mating behaviour. Collectively, our data show that in the Barbary macaque, both sexes significantly influence male mating success, but that sperm of several males generally compete within the female reproductive tract and that therefore paternity is determined by mechanisms operating at the postcopulatory level

    Does Kin Recognition and Sib-Mating Avoidance Limit the Risk of Genetic Incompatibility in a Parasitic Wasp?

    Get PDF
    Background: When some combinations of maternal and paternal alleles have a detrimental effect on offspring fitness, females should be able to choose mates on the basis of their genetic compatibility. In numerous Hymenoptera, the sex of an individual depends of the allelic combination at a specific locus (single-locus Complementary Sex Determination), and in most of these species individuals that are homozygous at this sexual locus develop into diploid males with zero fitness. Methods and Findings: In this paper, we tested the hypothesis of genetic incompatibility avoidance by investigating sibmating avoidance in the solitary wasp parasitoid, Venturia canescens. In the context of mate choice we show, for the first time in a non-social hymenopteran species, that females can avoid mating with their brothers through kin recognition. In ‘‘no-choice’ ’ tests, the probability a female will mate with an unrelated male is twice as high as the chance of her mating with her brothers. In contrast, in choice tests in small test arenas, no kin discrimination effect was observed. Further experiments with male extracts demonstrate that chemical cues emanating from related males influence the acceptance rate of unrelated males. Conclusions: Our results are compatible with the genetic incompatibility hypothesis. They suggest that the female wasps recognize sibs on the basis of a chemical signature carried or emitted by males possibly using a ‘‘self-referent phenotyp

    Polyandry Is a Common Event in Wild Populations of the Tsetse Fly Glossina fuscipes fuscipes and May Impact Population Reduction Measures

    Get PDF
    Glossina fuscipes fuscipes is the most common tsetse species in Uganda where it is responsible for transmitting Trypanosoma brucei rhodensiense and Trypanosoma brucei gambiense parasites causing sleeping sickness in humans in addition to related trypanosomes that cause Nagana in cattle. An understanding of the reproductive biology of this vector is essential for the application of sustainable control/eradication methods such as Sterile Insect Technique (SIT). We have analysed the number of times a female mates in the wild as this aspect of the reproductive behaviour may affect the stability and size of populations. We provide evidence that remating is a common event in the wild and females store sperm from multiple males, which may potentially be used for insemination. In vector eradication programmes, re-infestation of cleared areas and/or in cases of residual populations, the occurrence of remating may unfortunately enhance the reproductive potential of the re-invading propagules. We suggest that population age structure may influence remating frequency. Considering the seasonal demographic changes that this fly undergoes during the dry and wet seasons, control programmes based on SIT should release large numbers of sterile males, even in residual surviving target populations, in the dry season

    An experimental test of host’s life history traits modulation in response to cuckoo parasitism risk

    Get PDF
    Hosts can counteract parasites through defences based on resistance and/or tolerance. The mechanistic basis of tolerance, which involve defensive mechanisms minimizing parasite damage after a successful parasitic attack, remains poorly explored in the study of cuckoo-host interactions. Here, we experimentally explore the possibility that the risk of great spotted cuckoo Clamator glandarius parasitism may induce tolerance defences in magpie Pica pica hosts through plasticity in life-history traits. We predict that magpies exposed to auditory cues indicating high parasitism risk will more likely exhibit resistance and/or modify their life-history traits to minimize parasitism costs (i.e. tolerance) compared to magpies under low parasitism risk. We found that manipulating the perceived parasitism risk did not affect host resistance (i.e. rejection of parasitic eggs) nor host life-history traits. Unexpectedly, host's egg volume increased over the season in nests exposed to auditory cues of control non-harmful hoopoes Upupa epops. Our results do not provide support for inducible defences (either based on resistance or tolerance) in response to risk of parasitism in magpie hosts. Even so, we encourage studying plastic expression of breeding strategies in response to risk of cuckoo parasitism to achieve a better understanding of the mechanistic basis of tolerance defences.This work was supported by the Spanish Ministry of Education and Science/FEDER (Projects CGL2011-27561/BOS and CGL2014-56769-P to D. P. and J.M.A.). D.P. was supported by the Government of Extremadura while writing (contract number TA13002). M.E.G. was supported by the Spanish Ministry of Economy and Competitiveness (grant number BES-2012-051898).

    You Mate, I Mate: Macaque Females Synchronize Sex not Cycles

    Get PDF
    Extended female sexuality in species living in multimale-multifemale groups appears to enhance benefits from multiple males. Mating with many males, however, requires a low female monopolizability, which is affected by the spatiotemporal distribution of receptive females. Ovarian cycle synchrony potentially promotes overlapping receptivity if fertile and receptive periods are tightly linked. In primates, however, mating is often decoupled from hormonal control, hence reducing the need for synchronizing ovarian events. Here, we test the alternative hypothesis that females behaviorally coordinate their receptivity while simultaneously investigating ovarian cycle synchrony in wild, seasonal Assamese macaques (Macaca assamensis), a promiscuous species with extremely extended female sexuality. Using fecal hormone analysis to assess ovarian activity we show that fertile phases are randomly distributed, and that dyadic spatial proximity does not affect their distribution. We present evidence for mating synchrony, i.e., the occurrence of the females' receptivity was significantly associated with the proportion of other females mating on a given day. Our results suggest social facilitation of mating synchrony, which explains (i) the high number of simultaneously receptive females, and (ii) the low male mating skew in this species. Active mating synchronization may serve to enhance the benefits of extended female sexuality, and may proximately explain its patterning and maintenance

    The genetic mating system of a sea spider with male-biased sexual size dimorphism: evidence for paternity skew despite random mating success

    Get PDF
    Male-biased size dimorphism is usually expected to evolve in taxa with intense male–male competition for mates, and it is hence associated with high variances in male mating success. Most species of pycnogonid sea spiders exhibit female-biased size dimorphism, and are notable among arthropods for having exclusive male parental care of embryos. Relatively little, however, is known about their natural history, breeding ecology, and mating systems. Here we first show that Ammothella biunguiculata, a small intertidal sea spider, exhibits male-biased size dimorphism. Moreover, we combine genetic parentage analysis with quantitative measures of sexual selection to show that male body size does not appear to be under directional selection. Simulations of random mating revealed that mate acquisition in this species is largely driven by chance factors, although actual paternity success is likely non-randomly distributed. Finally, the opportunity for sexual selection (Is), an indirect metric for the potential strength of sexual selection, in A. biunguiculata males was less than half of that estimated in a sea spider with female-biased size dimorphism, suggesting the direction of size dimorphism may not be a reliable predictor of the intensity of sexual selection in this group. We highlight the suitability of pycnogonids as model systems for addressing questions relating parental investment and sexual selection, as well as the current lack of basic information on their natural history and breeding ecology
    corecore