1,516 research outputs found

    Increased Matrix Metalloproteinase (MMPs) Levels Do Not Predict Disease Severity or Progression in Emphysema

    Get PDF
    Rationale: Though matrix metalloproteinases (MMPs) are critical in the pathogenesis of COPD, their utility as a disease biomarker remains uncertain. This study aimed to determine whether bronchoalveolar lavage (BALF) or plasma MMP measurements correlated with disease severity or functional decline in emphysema. Methods: Enzyme-linked immunosorbent assay and luminex assays measured MMP-1, -9, -12 and tissue inhibitor of matrix metalloproteinase-1 in the BALF and plasma of non-smokers, smokers with normal lung function and moderate-to-severe emphysema subjects. In the cohort of 101 emphysema subjects correlative analyses were done to determine if MMP or TIMP-1 levels were associated with key disease parameters or change in lung function over an 18-month time period. Main Results: Compared to non-smoking controls, MMP and TIMP-1 BALF levels were significantly elevated in the emphysema cohort. Though MMP-1 was elevated in both the normal smoker and emphysema groups, collagenase activity was only increased in the emphysema subjects. In contrast to BALF, plasma MMP-9 and TIMP-1 levels were actually decreased in the emphysema cohort compared to the control groups. Both in the BALF and plasma, MMP and TIMP-1 measurements in the emphysema subjects did not correlate with important disease parameters and were not predictive of subsequent functional decline. Conclusions: MMPs are altered in the BALF and plasma of emphysema; however, the changes in MMPs correlate poorly with parameters of disease intensity or progression. Though MMPs are pivotal in the pathogenesis of COPD, these findings suggest that measuring MMPs will have limited utility as a prognostic marker in this disease. © 2013 D'Armiento et al

    Taxonomic and Environmental Variability in the Elemental Composition and Stoichiometry of Individual Dinoflagellate and Diatom Cells from the NW Mediterranean Sea

    Get PDF
    Here we present, for the first time, the elemental concentration, including C, N and O, of single phytoplankton cells collected from the sea. Plankton elemental concentration and stoichiometry are key variables in phytoplankton ecophysiology and ocean biogeochemistry, and are used to link cells and ecosystems. However, most field studies rely on bulk techniques that overestimate carbon and nitrogen because the samples include organic matter other than plankton organisms. Here we used X-ray microanalysis (XRMA), a technique that, unlike bulk analyses, gives simultaneous quotas of C, N, O, Mg, Si, P, and S, in single-cell organisms that can be collected directly from the sea. We analysed the elemental composition of dinoflagellates and diatoms (largely Chaetoceros spp.) collected from different sites of the Catalan coast (NW Mediterranean Sea). As expected, a lower C content is found in our cells compared to historical values of cultured cells. Our results indicate that, except for Si and O in diatoms, the mass of all elements is not a constant fraction of cell volume but rather decreases with increasing cell volume. Also, diatoms are significantly less dense in all the measured elements, except Si, compared to dinoflagellates. The N:P ratio of both groups is higher than the Redfield ratio, as it is the N:P nutrient ratio in deep NW Mediterranean Sea waters (N:P = 20–23). The results suggest that the P requirement is highest for bacterioplankton, followed by dinoflagellates, and lowest for diatoms, giving them a clear ecological advantage in P-limited environments like the Mediterranean Sea. Finally, the P concentration of cells of the same genera but growing under different nutrient conditions was the same, suggesting that the P quota of these cells is at a critical level. Our results indicate that XRMA is an accurate technique to determine single cell elemental quotas and derived conversion factors used to understand and model ocean biogeochemical cycles

    CoVITEST: A Fast and Reliable Method to Monitor Anti-SARS-CoV-2 Specific T Cells From Whole Blood

    Full text link
    Cellular and humoral immune responses are essential for COVID-19 recovery and protection against SARS-CoV-2 reinfection. To date, the evaluation of SARS-CoV-2 immune protection has mainly focused on antibody detection, generally disregarding the cellular response, or placing it in a secondary position. This phenomenon may be explained by the complex nature of the assays needed to analyze cellular immunity compared with the technically simple and automated detection of antibodies. Nevertheless, a large body of evidence supports the relevance of the T cell's role in protection against SARS-CoV-2, especially in vulnerable individuals with a weakened immune system (such as the population over 65 and patients with immunodeficiencies). Here we propose to use CoVITEST (Covid19 anti-Viral Immunity based on T cells for Evaluation in a Simple Test), a fast, affordable and accessible in-house assay that, together with a diagnostic matrix, allows us to determine those patients who might be protected with SARS-CoV-2-reactive T cells. The method was established using healthy SARS-CoV-2-naĂŻve donors pre- and post-vaccination (n=30), and further validated with convalescent COVID-19 donors (n=51) in a side-by-side comparison with the gold standard IFN-? ELISpot. We demonstrated that our CoVITEST presented reliable and comparable results to those obtained with the ELISpot technique in a considerably shorter time (less than 8 hours). In conclusion, we present a simple but reliable assay to determine cellular immunity against SARS-CoV-2 that can be used routinely during this pandemic to monitor the immune status in vulnerable patients and thereby adjust their therapeutic approaches. This method might indeed help to optimize and improve decision-making protocols for re-vaccination against SARS-CoV-2, at least for some population subsets.Copyright © 2022 Egri, OlivĂ©, HernĂĄndez-RodrĂ­guez, Castro, De Guzman, Heredia, Segura, Fernandez, de Moner, Torradeflot, BallĂșs, Martinez, Vazquez, Costa, Dobaño, Mazza, Mazzotti, Pascal, Juan, GonzĂĄlez-Navarro and CalderĂłn

    Marked alveolar apoptosis/proliferation imbalance in end-stage emphysema

    Get PDF
    BACKGROUND: Apoptosis has recently been proposed to contribute to the pathogenesis of emphysema. METHODS: In order to establish if cell fate plays a role even in end-stage disease we studied 16 lungs (9 smoking-associated and 7 α1antitrypsin (AAT)-deficiency emphysema) from patients who had undergone lung transplantations. Six unused donor lungs served as controls. Apoptosis was evaluated by TUNEL analysis, single-stranded DNA laddering, electron microscopy and cell proliferation by an immunohistochemical method (MIB1). The role of the transforming growth factor (TGF)-ÎČ1 pathway was also investigated and correlated with epithelial cell turnover and with the severity of inflammatory cell infiltrate. RESULTS: The apoptotic index (AI) was significantly higher in emphysematous lungs compared to the control group (p ≀ 0.01), particularly if only lungs with AAT-deficiency emphysema were considered (p ≀ 0.01 vs p = 0.09). The proliferation index was similar in patients and controls (1.9 ± 2.2 vs 1.7 ± 1.1). An increased number of T lymphocytes was observed in AAT-deficiency lungs than smoking-related cases (p ≀ 0.05). TGF-ÎČ1 expression in the alveolar wall was higher in patients with smoking-associated emphysema than in cases with AAT-deficiency emphysema (p ≀ 0.05). A positive correlation between TGF-ÎČRII and AI was observed only in the control group (p ≀ 0.005, r(2 )= 0.8). A negative correlation was found between the TGF-ÎČ pathway (particularly TGF-ÎČRII) and T lymphocytes infiltrate in smoking-related cases (p ≀ 0.05, r(2 )= 0.99) CONCLUSION: Our findings suggest that apoptosis of alveolar epithelial cells plays an important role even in end-stage emphysema particularly in AAT-deficiency disease. The TGFÎČ-1 pathway does not seem to directly influence epithelial turnover in end-stage disease. Inflammatory cytokine different from TGF-ÎČ1 may differently orchestrate cell fate in AAT and smoking-related emphysema types

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Regulation of Cancer Aggressive Features in Melanoma Cells by MicroRNAs

    Get PDF
    MicroRNAs (miRNAs) are small non-coding RNAs with regulatory roles, which are involved in a broad spectrum of physiological and pathological processes, including cancer. A common strategy for identification of miRNAs involved in cell transformation is to compare malignant cells to normal cells. Here we focus on identification of miRNAs that regulate the aggressive phenotype of melanoma cells. To avoid differences due to genetic background, a comparative high-throughput miRNA profiling was performed on two isogenic human melanoma cell lines that display major differences in their net proliferation, invasion and tube formation activities. This screening revealed two major cohorts of differentially expressed miRNAs. We speculated that miRNAs up-regulated in the more-aggressive cell line contribute oncogenic features, while the down-regulated miRNAs are tumor suppressive. This assumption was further tested experimentally on five candidate tumor suppressive miRNAs (miR-31, -34a, -184, -185 and -204) and on one candidate oncogenic miRNA (miR-17-5p), all of which have never been reported before in cutaneous melanoma. Remarkably, all candidate Suppressive-miRNAs inhibited net proliferation, invasion or tube formation, while miR-17-5p enhanced cell proliferation. miR-34a and miR-185 were further shown to inhibit the growth of melanoma xenografts when implanted in SCID-NOD mice. Finally, all six candidate miRNAs were detected in 15 different metastatic melanoma specimens, attesting for the physiological relevance of our findings. Collectively, these findings may prove instrumental for understanding mechanisms of disease and for development of novel therapeutic and staging technologies for melanoma
    • 

    corecore