363 research outputs found

    Exploring the atmosphere of Neoproterozoic Earth: The effect of O2 on haze formation and composition

    Get PDF
    Previous studies of haze formation in the atmosphere of the early Earth have focused on N2/CO2/CH4 atmospheres. Here, we experimentally investigate the effect of O2 on the formation and composition of aerosols to improve our understanding of haze formation on the Neoproterozoic Earth. We obtained in situ size, particle density, and composition measurements of aerosol particles produced from N2/CO2/CH4/O2 gas mixtures subjected to FUV radiation (115–400 nm) for a range of initial CO2/CH4/O2 mixing ratios (O2 ranging from 2 ppm to 0.2%). At the lowest O2 concentration (2 ppm), the addition increased particle production for all but one gas mixture. At higher oxygen concentrations (20 ppm and greater), particles are still produced, but the addition of O2 decreases the production rate. Both the particle size and number density decrease with increasing O2, indicating that O2 affects particle nucleation and growth. The particle density increases with increasing O2. The addition of CO2 and O2 not only increases the amount of oxygen in the aerosol, but it also increases the degree of nitrogen incorporation. In particular, the addition of O2 results in the formation of nitrate-bearing molecules. The fact that the presence of oxygen-bearing molecules increases the efficiency of nitrogen fixation has implications for the role of haze as a source of molecules required for the origin and evolution of life. The composition changes also likely affect the absorption and scattering behavior of these particles but optical property measurements are required to fully understand the implications for the effect on the planetary radiative energy balance and climate

    Firm productivity differences from factor markets

    Get PDF
    We model firm adaptation to local factor markets in which firms care about both the price and availability of inputs. The model is estimated by combining firm and population census data, and quantifies the role of factor markets in input use, productivity and welfare. Considering China’s diverse factor markets, we find within industry interquartile labor costs vary by 30-80%, leading to 3-12% interquartile differences in TFP. In general equilibrium, homogenization of labor markets would increase real income by 1.33%. Favorably endowed regions attract more economic activity, providing new insights into within-country comparative advantage and specialization

    A New Twist in the Photophysics of the GFP Chromophore: A Volume-Conserving Molecular Torsion Couple

    Get PDF
    The simple structure of the chromophore of the green fluorescent protein (GFP), a phenol and an imidazolone ring linked by a methyne bridge, supports an exceptionally diverse range of excited state phenomena. Here we describe experimentally and theoretically the photochemistry of a novel sterically crowded nonplanar derivative of the GFP chromophore. It undergoes an excited state isomerization reaction accompanied by an exceptionally fast (sub 100 fs) excited state decay. The decay dynamics are essentially independent of solvent polarity and viscosity. Excited state structural dynamics are probed by high level quantum chemical calculations revealing that the fast decay is due to a conical intersection characterized by a twist of the rings and pyramidalization of the methyne bridge carbon. The intersection can be accessed without a barrier from the pre-twisted Franck-Condon structure, and the lack of viscosity dependence is due to the fact that the rings twist in the same direction, giving rise to a volume-conserving decay coordinate. Moreover, the rotation of the phenyl, methyl and imidazolone groups are coupled in the sterically crowded structure, with the methyl group translating the rotation of one ring to the next. As a consequence, the excited state dynamics can be viewed as a torsional couple, where the absorbed photon energy leads to conversion of the out-of-plane orientation from one ring to the other in a volume conserving fashion. A similar modification of the range of methyne dyes may provide a new family of devices for molecular machines, specifically torsional couples

    More rapid polar ozone depletion through the reaction of HOCI with HCI on polar stratospheric clouds

    Full text link
    THE direct reaction of HOC1 with HC1, known to occur in liquid water1 and on glass surfaces2, has now been measured on surfaces similar to polar stratospheric clouds3,4 and is shown here to play a critical part in polar ozone loss. Two keys to understanding the chemistry of the Antarctic ozone hole5-7 are, one, the recognition that reactions on polar stratospheric clouds transform HC1 into more reactive species denoted by ClOx(refs 812) and, two, the discovery of the ClO-dimer (C12O2) mechanism that rapidly catalyses destruction of O3(refs 1315). Observations of high levels of OClO and ClO in the springtime Antarctic stratosphere1619 confirm that most of the available chlorine is in the form of ClOx (refs 20, 21). But current photochemical models22,23 have difficulty converting HC1 to ClOx rapidly enough in early spring to account fully for the observations5-7,20,21. Here I show, using a chemical model, that the direct reaction of HOC1 with HC1 provides the missing mechanism. As alternative sources of nitrogen-containing oxidants, such as N2O5 and ClONO2, have been converted in the late autumn to inactive HNO3 by known reactions on the sulphate-layer aerosols24-27, the reaction of HOC1 with HC1 on polar stratospheric clouds becomes the most important pathway for releasing that stratospheric chlorine which goes into polar night as HC1. © 1992 Nature Publishing Group

    Occupation and skin cancer: the results of the HELIOS-I multicenter case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-melanoma skin cancer (NMSC) is the most frequent tumour among Caucasian populations worldwide. Among the risk factors associated with this tumour, there are host-related factors and several environmental agents. A greater likelihood of high exposure to physical agents (with the exception of solar radiation) and chemical agents depends on the work setting. Our objective is to evaluate the role of occupational exposures in NMSC, with special emphasis on risk factors other than solar radiation and skin type.</p> <p>Methods</p> <p>We analysed 1585 cases (1333 basal cell carcinoma (BCC) and 183 squamous cell carcinoma (SCC)) and 1507 controls drawn from the Helios-I multicenter study. Odds ratios (OR) and 95% confidence intervals (CI) were estimated using logistic regression mixed models.</p> <p>Results</p> <p>For NMSC as a whole (both <it>histological types</it>), miners and quarrymen, secondary education teachers, and masons registered excess risk, regardless of exposure to solar radiation and skin type (OR 7.04, 95% CI 2.44–20.31; OR 1.75, 95% CI 1.05–2.89 and OR 1.54, 95% CI 1.04–2.27, respectively). Frequency of BCC proved higher among railway engine drivers and firemen (OR 4.55; 95% CI 0.96–21.57), specialised farmers (OR 1.65; 95% CI 1.05–2.59) and salesmen (OR 3.02; 95% CI 1.05–2.86), in addition to miners and quarrymen and secondary education teachers (OR 7.96; 95% CI 2.72–23.23 and OR 1.76; 95% CI 1.05–2.94 respectively). The occupations that registered a higher risk of <it>SCC (though not of BCC</it>) were those involving direct contact with livestock, construction workers not elsewhere classified (OR 2.95, 95% CI 1.12–7.74), stationary engine and related equipment operators not elsewhere classified (OR 5.31, 95% CI 1.13–21.04) and masons (OR 2.55, 95% CI 1.36–4.78).</p> <p>Conclusion</p> <p>Exposure to hazardous air pollutants, arsenic, ionizing radiations and burns may explain a good part of the associations observed in this study. The Helios study affords an excellent opportunity for further in-depth study of physical and chemical agents and NMSC based on matrices of occupational exposure.</p

    Perennial Forages as Second Generation Bioenergy Crops

    Get PDF
    The lignocellulose in forage crops represents a second generation of biomass feedstock for conversion into energy-related end products. Some of the most extensively studied species for cellulosic feedstock production include forages such as switchgrass (Panicum virgatum L.), reed canarygrass (Phalaris arundinacea L.), and alfalfa (Medicago sativa L.). An advantage of using forages as bioenergy crops is that farmers are familiar with their management and already have the capacity to grow, harvest, store, and transport them. Forage crops offer additional flexibility in management because they can be used for biomass or forage and the land can be returned to other uses or put into crop rotation. Estimates indicate about 22.3 million ha of cropland, idle cropland, and cropland pasture will be needed for biomass production in 2030. Converting these lands to large scale cellulosic energy farming could push the traditional forage-livestock industry to ever more marginal lands. Furthermore, encouraging bioenergy production from marginal lands could directly compete with forage-livestock production

    The undebated issue of justice: silent discourses in Dutch flood risk management

    Get PDF
    Flood risk for all types of flooding is projected to increase based on climate change projections and increases in damage potential. These challenges are likely to aggravate issues of justice in flood risk management (henceforth FRM). Based on a discursive-institutionalist perspective, this paper explores justice in Dutch FRM: how do institutions allocate the responsibilities and costs for FRM for different types of flooding? What are the underlying conceptions of justice? What are the future challenges with regard to climate change? The research revealed that a dichotomy is visible in the Dutch approach to FRM: despite an abundance of rules, regulations and resources spent, flood risk or its management, are only marginally discussed in terms of justice. Despite that the current institutional arrangement has material outcomes that treat particular groups of citizens differently, depending on the type of flooding they are prone to, area they live in (unembanked/embanked) or category of user (e.g. household, industry, farmer). The paper argues that the debate on justice will (re)emerge, since the differences in distributional outcomes are likely to become increasingly uneven as a result of increasing flood risk. The Netherlands should be prepared for this debate by generating the relevant facts and figures. An inclusive debate on the distribution of burdens of FRM could contribute to more effective and legitimate FRM

    Peroxisome biogenesis, protein targeting mechanisms and PEX gene functions in plants

    Get PDF
    Peroxisomes play diverse and important roles in plants. The functions of peroxisomes are dependent upon their steady state protein composition which in turn reflects the balance of formation and turnover of the organelle. Protein import and turnover of constituent peroxisomal proteins is controlled by the state of cell growth and environment. The evolutionary origin of the peroxisome and the role of the endoplasmic reticulum in peroxisome biogenesis is discussed, as informed by studies of the trafficking of peroxisome membrane proteins. The process of matrix protein import in plants and its similarities and differences with peroxisomes in other organisms is presented and discussed in the context of peroxin distribution across the green plants
    corecore