319 research outputs found

    Phases of N=1 supersymmetric chiral gauge theories

    Get PDF
    We analyze the phases of supersymmetric chiral gauge theories with an antisymmetric tensor and (anti)fundamental flavors, in the presence of a classically marginal superpotential deformation. Varying the number of flavors that appear in the superpotential reveals rich infrared chiral dynamics and novel dualities. The dualities are characterized by an infinite family of magnetic duals with arbitrarily large gauge groups describing the same fixed point, correlated with arbitrarily large classical global symmetries that are truncated nonperturbatively. At the origin of moduli space, these theories exhibit a phase with confinement and chiral symmetry breaking, an interacting nonabelian Coulomb phase, and phases where an interacting sector coexists with a sector that either s-confines or is in a free magnetic phase. Properties of these intriguing "mixed phases" are studied in detail using duality and a-maximization, and the presence of superpotential interactions provides further insights into their formation.Comment: 35 pages, 5 figure

    Soft Yukawa couplings in supersymmetric theories

    Get PDF
    The possibility of radiatively generated fermion masses arising from chiral flavor violation in soft supersymmetry-breaking terms is explored. Vacuum stability constraints are considered in various classes of models, and allow in principle all of the first- and second-generation quarks and leptons and the bb-quark to obtain masses radiatively. Radiatively induced Higgs-fermion couplings have non-trivial momentum-dependent form factors, which at low momentum are enhanced with respect to the case of tree-level Yukawa couplings. These form factors may be probed by various sum rules and relations among Higgs boson decay widths and branching ratios to fermion final states. An apparent, large, hard violation of supersymmetry also results for Higgsino couplings. Mixing between left- and right-handed scalar superpartners is enhanced. A radiative muon mass is shown to lead to a relatively large and potentially measurable contribution to the muon anomalous magnetic moment. If the light-quark masses arise radiatively, the neutron electric dipole moment is suppressed by a natural phase alignment between the masses and dipole moment, and is below the current experimental bound. The possibility of neutrino masses arising from softly broken lepton number, and concomitant enhanced sneutrino-antisneutrino oscillations, is briefly discussed.Comment: 66 pages. LaTex + RevTex. 16 figures (included). Published version (minor changes and typos corrected

    Nonabelian Discrete Family Symmetry to Soften the SUSY Flavor Problem and to Suppress Proton Decay

    Full text link
    Family symmetry could explain large mixing of the atmospheric neutrinos. The same symmetry could explain why the flavor changing current processes in supersymmetric standard models can be so suppressed. It also may be able to explain why the proton is so stable. We investigate these questions in a supersymmetric, renormalizable extension of the standard model, which possess a family symmetry based on a binary dihedral group Q_6. We find that the amplitude for \mu \to e+\gamma enjoys a suppression factor proportional to |(V_{MNS})_{e3}| ~ m_e/(\sqrt{2}m_\mu) ~ 3.4\times 10^{-3}, and that B(p \to K^0 \mu^+)/B(p \to K^0 e^+) ~ |(V_{MNS})_{e3}|^2 ~ 10^{-5}, where V_{MNS} is the neutrino mixing matrix.Comment: 35 pages, 26 figure

    A natural little hierarchy for RS from accidental SUSY

    Full text link
    We use supersymmetry to address the little hierarchy problem in Randall-Sundrum models by naturally generating a hierarchy between the IR scale and the electroweak scale. Supersymmetry is broken on the UV brane which triggers the stabilization of the warped extra dimension at an IR scale of order 10 TeV. The Higgs and top quark live near the IR brane whereas light fermion generations are localized towards the UV brane. Supersymmetry breaking causes the first two sparticle generations to decouple, thereby avoiding the supersymmetric flavour and CP problems, while an accidental R-symmetry protects the gaugino mass. The resulting low-energy sparticle spectrum consists of stops, gauginos and Higgsinos which are sufficient to stabilize the little hierarchy between the IR scale and the electroweak scale. Finally, the supersymmetric little hierarchy problem is ameliorated by introducing a singlet Higgs field on the IR brane.Comment: 37 pages, 3 figures; v2: minor corrections, version published in JHE

    Flavor Mediation Delivers Natural SUSY

    Get PDF
    If supersymmetry (SUSY) solves the hierarchy problem, then naturalness considerations coupled with recent LHC bounds require non-trivial superpartner flavor structures. Such "Natural SUSY" models exhibit a large mass hierarchy between scalars of the third and first two generations as well as degeneracy (or alignment) among the first two generations. In this work, we show how this specific beyond the standard model (SM) flavor structure can be tied directly to SM flavor via "Flavor Mediation". The SM contains an anomaly-free SU(3) flavor symmetry, broken only by Yukawa couplings. By gauging this flavor symmetry in addition to SM gauge symmetries, we can mediate SUSY breaking via (Higgsed) gauge mediation. This automatically delivers a natural SUSY spectrum. Third-generation scalar masses are suppressed due to the dominant breaking of the flavor gauge symmetry in the top direction. More subtly, the first-two-generation scalars remain highly degenerate due to a custodial U(2) symmetry, where the SU(2) factor arises because SU(3) is rank two. This custodial symmetry is broken only at order (m_c/m_t)^2. SUSY gauge coupling unification predictions are preserved, since no new charged matter is introduced, the SM gauge structure is unaltered, and the flavor symmetry treats all matter multiplets equally. Moreover, the uniqueness of the anomaly-free SU(3) flavor group makes possible a number of concrete predictions for the superpartner spectrum.Comment: 17 pages, 7 figures, 2 tables. v2 references added, minor changes to flavor constraints and a little discussion adde

    Effect of the intermediate velocity emissions on the quasi-projectile properties for the Ar+Ni system at 95 A.MeV

    Full text link
    The quasi-projectile (QP) properties are investigated in the Ar+Ni collisions at 95 A.MeV taking into account the intermediate velocity emission. Indeed, in this reaction, between 52 and 95 A.MeV bombarding energies, the number of particles emitted in the intermediate velocity region is related to the overlap volume between projectile and target. Mean transverse energies of these particles are found particularly high. In this context, the mass of the QP decreases linearly with the impact parameter from peripheral to central collisions whereas its excitation energy increases up to 8 A.MeV. These results are compared to previous analyses assuming a pure binary scenario

    Pharmacological levels of withaferin A (Withania somnifera) trigger clinically relevant anticancer effects specific to triple negative breast cancer cells

    Get PDF
    Withaferin A (WA) isolated from Withania somnifera (Ashwagandha) has recently become an attractive phytochemical under investigation in various preclinical studies for treatment of different cancer types. In the present study, a comparative pathway-based transcriptome analysis was applied in epithelial-like MCF-7 and triple negative mesenchymal MDA-MB-231 breast cancer cells exposed to different concentrations of WA which can be detected systemically in in vivo experiments. Whereas WA treatment demonstrated attenuation of multiple cancer hallmarks, the withanolide analogue Withanone (WN) did not exert any of the described effects at comparable concentrations. Pathway enrichment analysis revealed that WA targets specific cancer processes related to cell death, cell cycle and proliferation, which could be functionally validated by flow cytometry and real-time cell proliferation assays. WA also strongly decreased MDA-MB-231 invasion as determined by single-cell collagen invasion assay. This was further supported by decreased gene expression of extracellular matrix-degrading proteases (uPA, PLAT, ADAM8), cell adhesion molecules (integrins, laminins), pro-inflammatory mediators of the metastasis-promoting tumor microenvironment (TNFSF12, IL6, ANGPTL2, CSF1R) and concomitant increased expression of the validated breast cancer metastasis suppressor gene (BRMS1). In line with the transcriptional changes, nanomolar concentrations of WA significantly decreased protein levels and corresponding activity of uPA in MDA-MB-231 cell supernatant, further supporting its anti-metastatic properties. Finally, hierarchical clustering analysis of 84 chromatin writer-reader-eraser enzymes revealed that WA treatment of invasive mesenchymal MDA-MB-231 cells reprogrammed their transcription levels more similarly towards the pattern observed in non-invasive MCF-7 cells. In conclusion, taking into account that sub-cytotoxic concentrations of WA target multiple metastatic effectors in therapy-resistant triple negative breast cancer, WA-based therapeutic strategies targeting the uPA pathway hold promise for further (pre)clinical development to defeat aggressive metastatic breast cancer

    Hunting for Dynamical Supersymmetry Breaking in Theories That S-confine

    Full text link
    The s-confining theories are a class of supersymmetric gauge theories with infrared dynamics which are well-understood. Perturbing such theories can give rise to dynamical supersymmetry breaking. We realize simple models of dynamical supersymmetry breaking by perturbing two of the 10 SU(N) s-confining gauge theories by a single trilinear operator. These examples have locally stable vacua with spontaneous supersymmetry breaking. The first is SU(5) with two generations (consisting of an antisymmetric tensor and an antifundamental) plus two flavors. The second is SU(5) with three generations. The properties of the former vacuum are calculable while those of the latter vacuum are not. We briefly discuss the other SU(N) models.Comment: 21 pages, 1 figur

    Ocular Application of the Kinin B1 Receptor Antagonist LF22-0542 Inhibits Retinal Inflammation and Oxidative Stress in Streptozotocin-Diabetic Rats

    Get PDF
    Purpose: Kinin B1 receptor (B1R) is upregulated in retina of Streptozotocin (STZ)-diabetic rats and contributes to vasodilation of retinal microvessels and breakdown of the blood-retinal barrier. Systemic treatment with B 1R antagonists reversed the increased retinal plasma extravasation in STZ rats. The present study aims at determining whether ocular application of a water soluble B1R antagonist could reverse diabetes-induced retinal inflammation and oxidative stress. Methods: Wistar rats were made diabetic with STZ (65 mg/kg, i.p.) and 7 days later, they received one eye drop application of LF22-0542 (1 % in saline) twice a day for a 7 day-period. The impact was determined on retinal vascular permeability (Evans blue exudation), leukostasis (leukocyte infiltration using Fluorescein-isothiocyanate (FITC)-coupled Concanavalin A lectin), retinal mRNA levels (by qRT-PCR) of inflammatory (B1R, iNOS, COX-2, ICAM-1, VEGF-A, VEGF receptor type 2, IL-1b and HIF-1a) and anti-inflammatory (B2R, eNOS) markers and retinal level of superoxide anion (dihydroethidium staining). Results: Retinal plasma extravasation, leukostasis and mRNA levels of B 1R, iNOS, COX-2, VEGF receptor type 2, IL-1b and HIF-1a were significantly increased in diabetic retinae compared to control rats. All these abnormalities were reversed to control values in diabetic rats treated with LF22-0542. B1R antagonist also significantly inhibited the increased production of superoxide anion in diabetic retinae. Conclusion: B1R displays a pathological role in the early stage of diabetes by increasing oxidative stress and proinflammator
    • …
    corecore