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Abstract

The possibility of radiatively generated fermion masses arising from chiral
flavor violation in soft supersymmetry-breaking terms is explored. Vacuum
stability constraints are considered in various classes of models, and allow
in principle all of the first- and second-generation quarks and leptons and
the b-quark to obtain masses radiatively. Radiatively induced Higgs–fermion
couplings have non-trivial momentum-dependent form factors, which at low
momentum are enhanced with respect to the case of tree-level Yukawa cou-
plings. These form factors may be probed by various sum rules and relations
among Higgs boson decay widths and branching ratios to fermion final states.
An apparent, large, hard violation of supersymmetry also results for Higgsino
couplings. Mixing between left- and right-handed scalar superpartners is en-
hanced. A radiative muon mass is shown to lead to a relatively large and
potentially measurable contribution to the muon anomalous magnetic mo-
ment. If the light-quark masses arise radiatively, the neutron electric dipole
moment is suppressed by a natural phase alignment between the masses and
dipole moment, and is below the current experimental bound. The possibility
of neutrino masses arising from softly broken lepton number, and concomitant
enhanced sneutrino–antisneutrino oscillations, is briefly discussed.
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I. INTRODUCTION

Fermion masses are signals of broken chiral flavor symmetries. In the standard model of
electroweak and strong interactions, this flavor violation arises from tree-level Yukawa inter-
actions between the Higgs boson and fermions of opposite chirality. With these interactions,
the Higgs boson vacuum expectation value, which breaks electroweak symmetry, then gives
rise to the fermion masses. However, the Yukawa couplings are arbitrary parameters, and
it is widely accepted that they represent an effective low-energy description of a full theory
of flavor. In this paper we explore the possibility, which presents itself in supersymmetric
theories, that chiral flavor symmetries are broken predominantly by soft, dimension-three
supersymmetry-breaking terms rather than hard dimension-four superpotential Yukawa cou-
plings. This scenario has a number of interesting phenomenological consequences, including
enhanced Higgs couplings; apparent, large, hard violations of supersymmetry in Higgsino
couplings; relatively large contributions to anomalous magnetic moments; suppression of
electric dipole moments; and enhanced mixing between left- and right-handed scalar part-
ners.

In many extended frameworks for flavor, the standard model Yukawa couplings are un-
derstood as spurious degrees of freedom in the low energy theory, which parametrize flavor
symmetry breaking. In the Froggatt–Nielsen mechanism these spurions are related to pow-
ers of scalar expectation values which spontaneously break the flavor symmetries in the
underlying fundamental theory [1]. In this case the texture of hierarchies that appear in
the Yukawa coupling matrices can then be related to “horizontal” flavor symmetries, which
restrict the powers of the flavor-breaking expectation values. In supersymmetric theories,
such flavor-breaking scalar expectation values preserve supersymmetry and therefore induce
superpotential couplings, which give tree-level fermion Yukawa couplings directly. Enforc-
ing particular flavor textures in the Yukawa matrix via continuous or discrete horizontal
symmetries [2,3] is natural because of the holomorphy of the superpotential.

Supersymmetric theories also allow the interesting possibility that chiral flavor sym-
metries are broken by auxiliary rather than scalar expectation values. Such expectation
values break supersymmetry and cannot induce superpotential couplings directly. In the
low-energy theory these breakings appear as either holomorphic or non-holomorphic scalar
tri-linear terms involving a Higgs field and the scalar partners of the left- and right-handed
fermions. These soft tri-linear terms differ in U(1)R charge from fermion Yukawa couplings.
Contributions to Yukawa couplings from these terms therefore also require breaking of U(1)R

symmetry. With a non-vanishing gaugino mass providing the U(1)R breaking, soft chiral
flavor breaking leads to radiative fermion masses at one loop. In this mechanism the viola-
tion of fermionic chirality required for a fermion mass is provided by the massive gaugino,
while the violation of chiral flavor symmetry originates in the scalar tri-linear terms. These
quantum contributions to the fermion masses are finite and in principle calculable in terms
of the parameters of the low-energy theory. The necessity of both U(1)R and chiral flavor
breaking, along with non-renormalization of the superpotential, give a natural context in
which a fermion mass can be purely radiative. The tree-level Yukawa coupling can van-
ish, and yet receive a finite radiative contribution. This may be enforced by continuous
or discrete horizontal flavor R-symmetries. In this scenario some of the flavor symmetries
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are broken in the supersymmetry-breaking sector, either spontaneously or explicitly by in-
teractions with a messenger sector. Since supersymmetry breaking requires non-vanishing
auxiliary expectation values, this mechanism for fermion masses amounts to an auxiliary
field version of the Froggatt–Nielsen mechanism.

It is well known that in supersymmetric theories there can be significant quantum con-
tributions to fermion masses in certain regions of parameter space [4,5]. However, these
contributions are usually assumed to be proportional to the tree-level Yukawa coupling.
Various versions of radiative fermion masses arising predominantly from soft terms have
been considered in the following scenarios: softly broken N = 2 theories as a solution of
the fermion mass problem in these models [6], for the first two generations of quarks and
leptons in the softly broken supersymmetric standard model [7], including radiative contri-
butions from an exotic sector near the electroweak scale [8], and for the first generation of
quarks and leptons within the context of a grand unified theory [9]. The relatively large soft
tri-linear scalar terms required, in particular to obtain radiative second-generation fermion
masses, can lead to charge or color breaking vacua along certain directions in field space [10].
However, as discussed below, metastability of the charge and color preserving vacuum on
cosmological time scales is in general possible. In addition, we identify several classes of
theories in which the global minimum preserves color and charge.

The magnitude of masses and mixings that emerges in such models depend on the specific
textures for both soft and hard chiral flavor breaking, and on details of the supersymmetric
particle spectrum. While these are model-dependent, some general features are character-
istic. Since radiative masses are intrinsically suppressed by a loop factor, purely radiative
generation of masses for the first and second generations leads to quarks and leptons in
general much lighter than the third-generation fermions, and with suppressed mixings. In
addition, since flavor and supersymmetry breaking are intimately linked in this scenario for
radiative masses, interesting levels of supersymmetric contributions to low-energy flavor-
changing processes can occur. These however depend on specific model-dependent textures
and the over-all scale of the superpartner masses, and may be avoided in some models. In
this paper we concentrate on model-independent consequences and signatures of radiative
fermion masses from soft chiral flavor violation, and leave the study of specific textures and
flavor violating processes to future work.

Radiative fermion masses have a number of striking phenomenological consequences,
many related either directly or indirectly to the softness of the fermion mass. Chief among
these is that the chirality violating fermion mass and Yukawa couplings are momentum-
dependent, with non-trivial form factors. The Higgs–fermion coupling turns out to be en-
hanced at low momentum wth respect to a tree-level Yukawa coupling. In addition, if the
soft chirality violation arises in non-holomorphic scalar tri-linear terms, the corresponding
fermions receive mass from the “wrong Higgs” field. The dependence of the physical Higgs
boson couplings on the Higgs vacuum expectation values then differs drastically from the
minimal case. For fermions with radiative masses, the corresponding Higgsino couplings also
arise radiatively with non-trivial form factors, but with different parametric dependences on
gauge couplings. This leads to an apparent, large, hard violation of supersymmetry in the
low-energy theory. The leading low-energy momentum dependence of these radiatively gen-
erated couplings can be represented as effective radii for the appropriate couplings. All these
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deviations from the minimal expectations for these couplings are potentially measurable with
high-precision collider measurements of Higgs couplings, as well as from Higgsino branching
ratios. Another important feature of this scenario for soft Yukawa couplings is that both the
mass and anomalous magnetic moments arise at one loop. This has the consequence that
supersymmetric contributions to magnetic moments are effectively a loop factor larger than
with tree-level Yukawa couplings. The current experimental bound on the muon anoma-
lous magnetic moment represents the best probe for a radiative muon mass, and already
constrains part of the parameter space. CP-violating electric dipole moments (EDMs) are
suppressed by a natural phase alignement between the masses and dipole moment in inter-
esting regions of parameter space. With radiative light-quark masses, the neutron EDM is
easily below the current experimental bound, but could be measurable in future experiments.
For a radiative electron mass, the electron EDM is more model-dependent. The current ex-
perimental bound may already be used to infer preferred regions of neutralino/selectron
parameter space if the electron mass is radiative. Finally, radiative fermion masses imply
enhanced mixing between the associated left- and right-handed scalar partners, resepct to
a tree-level Yukawa. These mixings can significantly modify the production cross sections
and branching ratios of scalar superpartners.

In the next section, the radiative contributions to fermion masses in softly-broken su-
persymmetric models are discussed. Non-trivial momentum dependence of the Higgs cou-
pling, the Higgs Yukawa radius, and enhancement of the Higgs coupling at zero momentum
transfer are introduced and calculated. The apparent violation of supersymmetry in the
relatively large difference between Higgs and Higgsino couplings is introduced. In section III
the magnitude of the soft tri-linear terms required to obtain particular fermion masses are
presented. Enhanced left–right mixing of scalar superpartners, the origin of the Cabibbo–
Kobayashi–Maskawa (CKM) quark mixing terms, and various scenarios for supersymmetric
contributions to flavor-changing processes are also discussed. A stability analysis of the
scalar potential is presented in section IV. A number of classes of models for introducing
stabilizing quartic scalar couplings are discussed. These can lead to either a globally sta-
ble charge- and color-preserving vacuum, or metastability on cosmological time scales. The
(meta)stability bounds allow in principle all of the first-two-generation quarks and leptons,
as well as the b-quark, to obtain masses radiatively. A classification of the effective opera-
tors that give rise to the auxiliary spurion version of the Froggatt–Nielson mechanism for
either holomorphic or non-holomorphic scalar tri-linear terms is presented in section V. It is
pointed out that non-holomorphic soft tri-linear terms require a low scale of supersymmetry
breaking. In section VI the relatively large contribution to the muon anomalous magnetic
moment in this scenario is compared with current experimental bounds. This already con-
strains some of the parameter space in this scenario, and is shown to place an upper limit
on the enhancement of the Higgs–muon coupling compared to the tree-level case. If both
muon and b-quark masses are radiative, an analogous upper limit on the Higgs–b-quark
coupling can be extracted from the muon anomalous magnetic moment bound, assuming
gaugino universality. CP-violating Higgs–fermion couplings and fermion EDMs are inves-
tigated in section VII. With radiative masses for the light quarks, the neutron EDM is
shown to be comfortably below the current experimental bound due to a natural high de-
gree of phase alignment between the quark masses and dipole moment. The electron EDM is
shown to be more model-dependent, but sufficiently suppressed in certain regions of the neu-
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tralino/selectron parameter space. In section VIII a number of sum rules, relations among
Higgs-boson dec ay widths and branching ratios to fermion final states are presented. These
hold in large classes of supersymmetric theories including the minimal supersymmetric stan-
dard model. For radiative masses, deviations from minimal expectations for these sum rules
and relations due to non-trivial form factors and possible non-holomorphic Higgs couplings
may be measurable at future colliders. The possibility of softly broken lepton number as
a source of neutrino mass and concomitant enhanced sneutrino–antisneutrino oscillation
is discussed in section IX. Conventions and one-loop integrals for fermion masses, Higgs
and Higgsino couplings, and anomalous moments are given in the appendices. Preliminary
results were presented previously in ref. [11].

II. SOFT YUKAWA COUPLINGS

In a supersymmetric theory the scalar superpartners of the quarks and leptons carry
the same flavor symmetries as the associated quarks and leptons. Flavor symmetries may
therefore be broken by terms that involve only scalar fields. Quark and lepton masses require
terms that break flavor symmetries for both left- and right-handed fields. The most general
softly broken supersymmetric Lagrangian contains holomorphic scalar tri-linear operators
of the form

L ⊃ AHαφLφR + h.c. (1)

as well as non-holomorphic operators [12] of the form

L ⊃ A′H∗
αφLφR + h.c. , (2)

where flavor indices on the scalar fields and the complex A- and A′-parameters are sup-
pressed. For leptons and down-type quarks, the holomorphic (non-holomorphic) operator
contains the Higgs doublet Hα = H1 (H2) with U(1)Y hypercharge Y = −1 (1). For up-type
quarks the holomorphic(non-holomorphic) operators contain Hα = H2 (H1). The A- and
A′-parameters break the chiral flavor symmetries carried by the scalars. Even though the
scalar superpartners carry the same flavor symmetries as the associated fermion, they differ
by one unit of R-charge under U(1)R symmetry. Inducing a fermion mass at the quantum
level from the flavor-violating A- or A′-parameters therefore requires additional terms that
violate U(1)R symmetry. At lowest order this U(1)R breaking can be provided by a gaugino
mass, which along with the flavor-violating A-parameters give rise to fermion masses at one
loop, as given explicitly below. The insertion of a gaugino mass can also be understood
in terms of the necessity of fermionic chirality violation for a quark or lepton mass. Since
the dimensionless fermion Yukawa coupling arises quantum mechanically from dimensionful
parameters, the radiative contributions are finite and calculable. The fermion mass and the
Higgs and Higgsino Yukawa couplings discussed below are therefore soft in the technical
sense that no counter-terms are required in the high energy theory. The couplings are also
soft in the more colloquial sense that the quantum contributions arise at the superpartner
scale from soft supersymmetry-breaking terms (which do require counter-terms but do not
introduce quadratic divergences into the low-energy theory).

5



For a quark or lepton that receives a radiative mass, Higgs and Higgsino couplings also
arise radiatively. However, since the chiral flavor breaking arises in supersymmetry-breaking
terms, there is no symmetry that enforces the equality of the effective Higgs and Higgsino
couplings. This is unlike the case of a tree-level superpotential Yukawa coupling, where
equality of these couplings is enforced by supersymmetry. In fact, as discussed below, even
the parametric dependence on gauge coupling constants of the effective Higgsino coupling
differs from that of the fermion mass and effective Higgs coupling. This leading order
difference between Higgs and Higgsino Yukawa couplings amounts to a large violation of
supersymmetry in a dimensionless coupling at low energy, i.e. an apparent hard violation
of supersymmetry.

The over-all magnitude and parametric dependence of radiative fermion masses and Higgs
and Higgsino couplings are discussed in the following subsections. In this section flavor-
changing effects are suppressed and scalar masses generally taken to be flavor-independent
for simplicity.

A. The fermion mass

The one-loop scalar partner–gaugino diagram that dresses the fermion propagator
generates a finite contribution to the fermion mass, as shown in fig. 1. The A- or A′-

x

x

fL fRλ

f̃L f̃R

FIG. 1. One-loop contribution to fermion mass from soft chiral flavor breaking and gaugino
mass.

parameter breaks both left and right flavor symmetries, while the gaugino mass insertion
connects left and right chiral fermions. For m2

f � m2
f̃
, m2

λ, with mf̃ the physical scalar mass

eigenvalues, the one-loop radiative fermion mass may be evaluated at p2 = 0, and is given
by

mf = −m2
LR

αs

2π
Cf mg̃ I(m2

f̃1
, m2

f̃2
, m2

g̃) +
α′

2π

∑
j

Kj
f mχ̃0

j
I(m2

f̃1
, m2

f̃2
, m2

χ̃0
j
)

 , (3)

where Cf = 4/3, 0 for quarks and leptons, respectively. The sum is over neutralino eigen-
states with coupling coefficients Kj

f to the fermions, and I(m2
f̃1

, m2
f̃2

, m2) is a loop function

discussed below. The dependence on the left–right squark or slepton mixing, m2
LR = A〈Hα〉

or A′〈Hα〉, and on the chiral violation arising from the gaugino masses, mg̃, and/or mχ̃0
j
,
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is displayed explicitly in (3). Note that without hard tree-level Yukawa couplings in the
superpotential, there are no left–right mixing terms arising from interference with the su-
perpotential Higgsino mass, W ⊃ µH1H2. The first and second terms in (3) correspond to
the strong (gluino) and hypercharge/weak (neutralino) contributions, respectively. The neu-
tralino contributions include both a pure B̃–B̃ and mixed B̃–W̃3 propagators. The coupling
coefficients Kj

f are

Kj
f =

YfL

2
NjB

[
YfR

2
NjB + cot θW NjW

]
, (4)

where Nij is the neutralino eigenvector mixing matrix, and the hypercharge is normalized
as Q = T3 + 1

2
Y . In the mostly gaugino or mostly Higgsino region of parameter space, the

neutralino propagator is well approximated by pure B̃–B̃ exchange, since the B̃–W̃3 contribu-
tions are suppressed by gaugino–Higgsino mixing; NjBNjW ∼ O(m2

Zµ/(µ2−m2
W̃

)(m
W̃
−m

B̃
))

for a given mass eigenstate. Chargino contributions to the mass are forbidden by gauge in-
variance in the absence of hard tree-level Yukawa couplings. Hereafter only the strong
contribution to the quark masses will be retained, except in the discussion of CP-violating
effects given in section VII. In general the parameters m2

LR, mg̃, mχ̃0
j
, and the coupling

coefficients Kj
f appearing in (3) may be complex, but the masses appearing in the loop func-

tions are understood to be the real positive mass eigenvalues. In the absence of a tree-level
Yukawa coupling, it is always possible to work in a basis in which the radiative fermion mass
is real. Note that throughout, all calculations are performed using mass eigenstates. Inser-
tion approximation is not employed; the over-all factors of m2

LRmg̃ and m2
LRKj

fmB̃ in (3)
appear as a consequence of algebraic relationships between the factors in mixing coefficients.

The loop function I(m2
f̃1

, m2
f̃2

, m2
λ), with λ denoting generically a gaugino, is given ex-

plicitly in appendix A2, along with definitions of the scalar mass eigenstates and mix-
ing matrices. The dominant momentum in the loop is controlled by the largest mass
scale. The loop function is then typically bounded by m̃ 2I(m2

f̃1
, m2

f̃2
, m2

λ)
<∼ O(1), where

m̃ = max(mf̃1
, mf̃2

, mλ) (see, e.g., ref. [13]). This bound is typically saturated for mf̃ ' mλ

(but is evaded in certain limits – see appendix A2). The radiative fermion masses then scale
as mf ∼ (α/2π) m2

LRmλ/m̃
2, where α = (4/3)αs or α′, for quarks or leptons respectively.

With this scaling and the form of the left–right mixing given above, it is apparent that,
if the superpartners are decoupled, by taking all soft supersymmetry-breaking parameters
simultaneously large, including the flavor-breaking A-parameters, the resulting radiative
fermion mass becomes independent of the supersymmetry-breaking scale. This can be seen
directly by considering the effective mass Yukawa coupling, mf/|〈Hα〉|. This dimensionless
one-loop finite coupling must approach a constant as the superpartners are decoupled, since
the fermion mass must be proportional to the electroweak symmetry-breaking scale in this
limit.

In order to present the numerical results for the one-loop radiative mass and associated
couplings, it is convenient to trade the three parameters that describe the scalar partner
sector, m2

LL, m2
RR, and m2

LR used in appendix A1, for

φf ≡
m2

f̃2
−m2

f̃1

m2
f̃2

+m2
f̃1

; ρλ
f ≡

m2
f̃1

+m2
f̃2

2m2
λ

; sin 2θf =− 2m2
LR

m2
f̃2
−m2

f̃1

, (5)
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FIG. 2. Radiative quark mass, mq, in units of the squark mixing angle times the gluino mass,
sin 2θq mg̃, as a function of the fractional squark mass splitting φq, where m2

i here indicates m2
q̃i

.
The mass is shown for various values of the ratio ρg̃

q . For a radiative lepton mass, the squark
parameters are replaced by slepton parameters, the gluino mass by the Bino mass, and the over-all
result is scaled by a factor of (3/8)(α′/αs) ' 0.03 for the hypercharge coupling and charges.

which are respectively the fractional scalar partner mass-squared splitting, the average scalar
partner mass squared, normalized to the relevant gaugino mass squared, m2

g̃, m2
B̃
, or m2

χ̃0
j

generically indicated as m2
λ, and the scalar partner mixing angle. In terms of these pa-

rameters, and in the pure gaugino limit for which B̃–W̃3 vanishes, the radiative mass (3)
is

mf = − sin 2θf φf

{
αs

2π
Cf ρg̃

f m3
g̃ I(m2

f̃1
, m2

f̃2
, m2

g̃) +
α′

2π
ρB̃

f m3
B̃

I(m2
f̃1

, m2
f̃2

, m2
B̃
)

}
. (6)

The on-shell quark mass radiatively generated at one loop through gluino exchange, is plotted
in fig. 2 as a function of φq. The mass is displayed in units of the squark mixing angle times
the gluino mass, sin 2θq mg̃, for various values of ρg̃

q . The lepton mass, radiatively generated
in the pure gaugino limit, can be obtained from the same figure, by replacing the squark
parameters by slepton parameters, the gluino mass by the Bino mass, and by rescaling the
over-all result by a factor of 3

8
(α′/αs) ' 0.03 for the hypercharge coupling.
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B. The Higgs coupling

The momentum-dependent coupling of the physical Higgs bosons to fermions arises ra-
diatively in a manner similar to the fermion masses, as shown in fig. 3. For simplicity, the
discussion here is restricted to the neutral Higgs bosons, h0, H0, and A0, which accompany
a single pair of Higgs doublets.

The generic neutral Higgs–fermion–fermion operator obtained at the one-loop level, has
the form Hα(q)fL(q1)fR(q2), where q = q1−q2 and α = 1, 2. Consider first the couplings

x
qL qRg̃

q̃L q̃R

H, A0

FIG. 3. One-loop radiative couplings of quarks to neutral scalar Higgs bosons H (= h0,H0) or
the neutral pseudoscalar A0 from chiral flavor violation and gaugino mass.

of the physical scalar Higgs bosons, h0 and H0, which differ somewhat from that of the
pseudoscalar Higgs A0. The physical mass eigenstates couple to the fermions with amplitude
λh0,H0 = Θ{cos β, sinβ}h̄f,H/

√
2, where Θ is the Higgs mixing matrix between physical and

interaction eigenstates. The mixing matrix Θ is non-trivial and differs in the holomorphic
and non-holomorphic cases as discussed in section VIII. The first (second) term in the curly
brackets corresponds to α = 1(2), and

√
2 is the standard normalization factor for a real

scalar field. With all external particles on-shell, relevant to, for instance, the decay H(q) →
fL(q1)fR(−q2) or the resonant production fL(q1)fR(−q2) → H(q) with H = h0, H0, then in
the approximation q2

1 = q2
2 = 0, as is appropriate for m2

f � m2
H , the radiative Higgs Yukawa

coupling to h0 or H0 through an A- or A′-term may be related to the corresponding fermion
mass Yukawa coupling, mf/|〈Hα〉|. Summing over the scalar partner mass eigenstates and
retaining only the gluino contribution for quarks and the Bino contribution for leptons:

h̄f,H(m2
H) =

mf

|〈Hα〉|
(
sin2 2θf J1(m

2
H ; m2

f̃1
, m2

λ, m
2
f̃2

) + cos2 2θf J2(m
2
H ; m2

f̃1
, m2

λ, m
2
f̃2

)
)

, (7)

where α = 1 or 2. With this definition, h̄f,H is the effective Yukawa coupling for h0 or H0

with Higgs mixing effects factored out. The loop functions with q2 = m2
H are defined as

J1(m
2
H ; m2

f̃1
, m2

λ, m
2
f̃2

) =
1

2

∑
i=1,2 C0(0, 0, m

2
H; m2

f̃i
, m2

λ, m
2
f̃i
)

I(m2
f̃1

, m2
f̃2

, m2
λ)

,

J2(m
2
H ; m2

f̃1
, m2

λ, m
2
f̃2

) =
C0(0, 0, m

2
H ; m2

f̃1
, m2

λ, m
2
f̃2

)

I(m2
f̃1

, m2
f̃2

, m2
λ)

, (8)
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where the conventions for the three-point functions C0(0, 0, m
2
H ; m2

a, m
2
b , m

2
c) are defined in

appendix A3.

The expression (7) is significantly simplified in the heavy superpartner limit m2
f̃
, m2

λ �
m2

H , which is particularly relevant to the case of the light Higgs boson, h0, for which mh0 ≤
mZ at tree level. In this limit the vertex loop functions may be evaluated at q2 = 0, and
reduce to the mass loop function C0(0, 0, 0; m2

a, m
2
b , m

2
c) = I(m2

a, m
2
b , m

2
c) (see appendix A3).

Making this approximation also isolates intrinsic coupling effects from momentum-dependent
effects at finite q2 discussed below. The coupling (7) in this limit becomes

h̄f,H(0) =
mf

|〈Hα〉|

sin2 2θf

1

2

∑
i I(m2

f̃i
, m2

f̃i
, m2

λ)

I(m2
f̃1

, m2
f̃2

, m2
λ)

− 1

+ 1

 . (9)

In order to characterize the magnitude of the intrinsic coupling of the Higgs bosons to
fermions it is useful to define the ratio of the effective Higgs Yukawa coupling to the effective
mass Yukawa coupling with the Higgs mixing effects factored out:

rf,H(m2
H) ≡ h̄f,H(m2

H)

(mf/|〈Hα〉|) ≡ h̄f,H(m2
H)

h̄f,m(0)
. (10)

From eqs. (7) and (8) it can be shown that rf,H ≥ 1. This compares with rf,H = 1 at
lowest order for a fermion mass arising from a hard tree-level Yukawa coupling. The ratio
rf,H for a soft radiative mass is plotted in fig. 4 as a function of the fractional scalar mass
splitting φf for q2 = 0. For m2

LR ∼ m2
f̃
, m2

λ the enhancement rf,H(0) ≥ 1 can be sizeable,

and increases with the scalar mass splitting. The divergence in rf,H(0) for φf → 1 is due to
a vanishing eigenvalue in the scalar partner mass squared matrix in this limit. The physical
Higgs coupling is infrared-singular in this limit from diagrams in fig. 3 with two massless
scalar propagators. The fermion mass however remains finite in this limit, with a single
massless scalar propagator in the diagrams of fig. 1.

The disparity between the effective Higgs and mass Yukawa coupling is due to the dif-
ference in the loop momentum integrations. For m2

f̃
, m2

λ � m2
H , the difference may be

understood as arising from the differing combinatorics for chiral insertions, proportional to
m2

LR, between figs. 1 and 3 (the scalar mass eigenstate propagators implicitly contain a
resummation of an arbitrary number of chiral insertions). For q2 = 0 and at first order in
m2

LR/m̃2, where m̃ = max(mf̃ , mλ), the diagrams in figs. 1 and 3 are identical, with a single
chiral insertion, yielding rf,H(0) = 1 at this order. Since an odd number of m2

LR left–right
mixing insertions are required by chirality, the mass and Higgs Yukawa diagrams only differ
through diagrams with three or more such insertions. The q2 = 0 ratio in the heavy super-
partner limit is thus parametrically rf,H(0) = 1 +O(m4

LR/m̃ 4). This behavior may also be
obtained directly from (9), with the limiting values of the mixing angle and loop functions
given in appendix A3. In the strict superpartner decoupling limit, rf,H(0) → 1, so that the
effective Higgs and mass Yukawa coupling coincide.

The parametric dependence of the Higgs coupling ratio (10) at q2 = 0 can also be
understood from the general form of the effective Higgs Yukawa coupling. Promoting all
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FIG. 4. The ratio of h0 and H0 Higgs–fermion Yukawa couplings to the mass Yukawa coupling,
rf,H = h̄f,H/h̄f,m, as a function of the fractional scalar mass splitting φf for different values of ρλ

f .
The ratio is shown for q2 = 0 and for maximal scalar mixing, sin 2θf = 1.

parameters to background fields, and requiring invariance with respect to all background
and gauge symmetries, the functional dependence of the radiative fermion masses at one
loop may be written

mf = h̄f,m(0)Hα = F
(
m2

f̃
(A∗AH∗

αHα, H∗
βHβ), m∗

λmλ,
µH1H2

m∗
λ

)
m∗

λA

m2
f̃

Hα, (11)

where h̄f,m(0) is the radiative mass Yukawa coupling defined by (10), A∗AH∗
αHα = m4

LR, mf̃

are the physical mass eigenvalues, the Higgs doublets Hα,β are understood as expectation
values, and here β = 1, 2 is summed while α = 1 or 2 is determined by the scalar tri-linear
coupling and is not summed. F is a dimensionless function that depends only on the par-
ticular combinations of parameters indicated in (11). These combinations of parameters are
invariant under the gauge and background symmetries. In the heavy superpartner limit,
F is an analytic function with power series expansion and non-vanishing first derivatives
with respect to any of the invariant combinations of dependent variables. The non-trivial
dependence on Hα,β represents, in the heavy superpartner limit, non-renormalizable oper-
ators with multiple Higgs expectation values, which contribute to the fermion mass. All
such one-loop operators, coupling through the A- or A′-terms, are implicitly included in the
effective Yukawa coupling (7). Additional non-trivial dependence on H∗

βHβ arises implicitly
through O(g2H∗

βHβ) D-term contributions to the scalar partner mass-squared eigenvalues
m2

f̃
. The dependence on H1H2 arises from O(gg′H1H2µ/(m

B̃
(µ2−m2

W̃
))) neutralino mixing

11



effects between gaugino and Higgsino eigenstates through Higgs expectation values. This
functional dependence vanishes in the pure gaugino limit.

The effective Yukawa coupling at q2 = 0 of a Higgs boson to a fermion, again with mixing
effects factored out, is very generally related to the mass by

h̄f,H(0) ≡ ∂mf

∂|Hα| . (12)

With this definition and the general form of the radiative fermion mass (11), the ratio of
physical Higgs to mass Yukawa couplings (10) at q2 = 0 is given by

rf,H(0) = 1 + 2m4
LR

∂h̄f,m(0)

∂m4
LR

+ 2m2
Z

{
cos2 β, sin2 β

}∂m2
f̃

∂m2
Z

∂h̄f,m(0)

∂m2
f̃

+
∂h̄f,m(0)

∂m2
Z

 . (13)

The first term on the right-hand side arises from differentiating (11) with respect to the
Higgs doublet Hα multiplying h̄f,m(0). The second term comes from A- or A′-term con-
tributions to h̄f,m(0) through the m4

LR dependence. The third term comes from D-term
contributions through m2

f̃
where the first (second) term in the brackets is for α = 1 (2).

The fourth term represents contributions through neutralino mixing effects. In the heavy
superpartner limit, the mass scale for variations of h̄f,m are controlled by the largest su-
perpartner mass, ∂h̄f,m(0)/∂m4

LR is of O(1/m̃ 4), which agrees with the scaling given above
based on chiral insertions in the one-loop radiative mass diagram. Likewise, for the D-term
effects ∂h̄f,m(0)/∂m2

f̃
is of O(1/m̃ 2), ∂m2

f̃
/∂m2

Z of O(1), and for the neutralino mixing ef-

fects ∂h̄f,m(0)/∂m2
Z is of O(1/m̃ 2). In the heavy superpartner limit the full parametric

dependence of the Higgs coupling ratio is then rf,H(0) = 1 + O(m4
LR/m̃ 4) + O(m2

Z/m̃ 2) +
O(µm2

Z/(m
B̃,g̃

m̃ 2)). The D-term and neutralino mixing contributions to the effective Higgs

Yukawa couplings are not explicitly included in (7), and are only important respect to the
non-linear dependence on the A- or A′-terms if A <∼ mZ (and are therefore not dominant
for second or third generation radiative masses, which require A or A′ ∼ m̃ as discussed
in section III). An effect of the D-terms and neutralino mixings is to introduce additional
“wrong Higgs” couplings to fermions through the functional dependence of (11). Such cou-
plings, however, are suppressed in the heavy superpartner limit respect to the dominant
coupling through the over-all Higgs doublet Hα multiplying h̄f,m in (11) by O(m2

Z/m̃ 2) and
O(µm2

Z/(m
B̃,g̃

m̃ 2)) respectively. In the strict superpartner decoupling limit the only opera-
tor that couples Higgs doublets to fermions is the renormalizable effective Yukawa coupling.
All other operators are non-renormalizable, and vanish in this limit. So h̄f,m(0) necessarily
approaches an Hα-independent function with rf,H(0) → 1 in this limit.

It is apparent from fig. 4 that the scalar Higgs couplings generated radiatively through the
A- or A′-terms enhances the ratio rf,H(0) in the heavy superpartner limit. The enhancement
rf,H ≥ 1 persists for finite superpartner masses, m2

f̃
, m2

λ ∼ m2
H . In this case the Higgs–

fermion Yukawa couplings have non-trivial form factors, h̄f,H = h̄f,H(q2), in addition to
the usual renormalization group evolution of a Yukawa coupling. For m2

f̃
, m2

λ ∼ m2
H the

fractional change in the loop functions between q2 = 0 and q2 = m2
H , relevant to the

coupling to a physical Higgs boson, can lead to significant variation in the radiative Yukawa

12



couplings. Neglecting Higgs couplings through D-terms and neutralino mixing effects (which
are subdominant for second and third generation radiative masses as mentioned above), the
general expression for the q2 = m2

H momentum dependence of the radiative Higgs Yukawa
couplings can be obtained from (7) and (8). These expressions are considerably simplified in
the limit of degenerate superpartners mf̃1

= mf̃2
= mλ ≡ m̃ for which J1(m

2
H ; m̃ 2, m̃ 2, m̃ 2) =

J2(m
2
H ; m̃ 2, m̃ 2, m̃ 2). The leading q2 = m2

H dependence of the ratio of physical Higgs to mass
Yukawa couplings (10) in the heavy degenerate superpartner limit, m̃ 2 � m2

H , can then be
obtained from the limiting forms of the loop integrals given in appendix A3. For m̃ 2 � m2

H

rf,H(m2
H) = 1 +

1

12

m2
H

m̃ 2
+ · · · (14)

where + · · · represents higher-order dependence. (The full functional momentum depen-
dence, is given below in the context of the pseudoscalar Higgs radiative Yukawa coupling.)
For finite superpartner masses it is possible to characterize the leading low-energy momen-
tum dependence in terms of a finite Higgs Yukawa radius,

R̄2
f,H ≡

6

h̄f,H(0)

∂h̄f,H(0)

∂q2
(15)

analogous to the charge radius of an electromagnetic coupling. From (14) the Higgs Yukawa
radius for a radiative fermion mass in the heavy degenerate superpartner limit is R̄2

f,H(m2
H) '

1/(2m̃2). In real space this radius is determined by the Compton wavelength of the virtual
superpartners, and vanishes in the superpartner decoupling limit. Note that since both the
Higgs Yukawa radius and the radiative fermion mass arise from the same diagrams, the
Higgs Yukawa radius is effectively not suppressed by a loop factor. This is unlike the case
of a tree-level Yukawa coupling, for which the Higgs Yukawa radius is smaller by a loop
factor than the Compton wavelength of the contributing virtual particles. Analogous radii
can also be defined from the form factors for the Higgsino couplings discussed in the next
subsection, and, in the case of an off-shell fermion, for the fermion mass itself.

The effective radiative Yukawa couplings for the pseudoscalar Higgs, A0, differ somewhat
from those of the scalar Higgs bosons. The pseudoscalar Higgs couplings in fig. 3 only
connect one scalar partner mass eigenstate with the other mass eigenstate, unlike the scalar
Higgs couplings, which connect all possible combinations of mass eigenstates. Summing
over scalar partner mass eigenstates, the one-loop A0 effective Yukawa coupling in the pure
gaugino limit can then be related to the fermion mass Yukawa by

h̄f,A(m2
A0) =

mf

|〈Hα〉| J2(m
2
A0 ; m2

f̃1
, m2

λ, m
2
f̃2

) , (16)

where λA0 = Θ{cos β, sinβ}h̄f,A/
√

2 for α = 1, 2 is the amplitude for coupling of the physical
A0 eigenstate to fermions (all considered on-shell), and Θ represents the projection of A0

onto the Higgs doublets. A definition of the ratio of the effective A0 Yukawa coupling to the
effective mass coupling may be introduced

rf,A(m2
A0) ≡ h̄f,A(m2

A0)

h̄f,m(0)
, (17)
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analogous to that for the scalar Higgs coupling (10).

The one-loop result for the effective pseudoscalar Higgs Yukawa coupling (16) has a
number of interesting properties. It is independent of the scalar partner mixing angles and
only depends on the superpartner spectrum and momentum transfer q2 = m2

A0 . In addition,
in the heavy superpartner decoupling limit, m2

f̃
, m2

λ � m2
A0 , the loop function may be

evaluated at q2 = 0, for which the vertex loop function reduces to the mass loop function,
as discussed above, yielding J2(0; m2

f̃1
, m2

λ, m
2
f̃2

) = 1. The intrinsic one-loop pseudoscalar

radiative couplings evaluated at q2 = 0 therefore do not differ from the effective Yukawa
coupling, unlike the scalar Higgs–fermion couplings. This result may also be obtained from
the general form of the radiative fermion mass (11). The effective Yukawa coupling at q2 = 0
of the physical A0 Higgs boson to a fermion, again with mixing effects factored out, is very
generally related to the mass by

h̄f,A(0) =
1

|Hα|
∂mf

∂θα
, (18)

where Hα = |Hα|eiθα. Since in the pure gaugino limit, h̄f,A is a function of the Higgs
doublets at one loop only through the combination H∗

βHβ, which is independent of θβ , the
pseudoscalar coupling arises only through the over-all Higgs doublet, Hα, multiplying h̄f,m

in (11). The ratio of pseudoscalar Higgs to mass Yukawa couplings at q2 = 0 neglecting
neutralino mixing is therefore

rf,A(0) = 1 , (19)

in agreement with the explicit calculation (16) in the q2 = 0 limit. This result amounts
to a very general low-energy theorem for the q2 = 0 coupling of A0 to fermions in any
theory with a single pair of Higgs doublets, and with only one doublet coupling to the
given fermion. It can only be spoiled by effects that allow an H1H2 dependence of the
effective Yukawa coupling. In the present context if radiative masses arise from either
A- or A′-terms, but not both, such a dependence arises in the one-loop diagram only the
from gaugino–Higgsino mixing effects discussed above. Inclusion of these effects does give
O(µm2

Z/(m
B̃,g̃

m̃2)) corrections to (19). In contrast, inclusion of D-term contributions to the
scalar masses does not modify the ratio.

Since the A0–fermion couplings are independent of scalar partner mixing effects and D-
term Higgs couplings, and are only modified by finite-momentum effects in the pure gaugino
limit, it is instructive to consider the q2 = m2

A0 dependence explicitly. From the expressions
for the loop functions given in appendix A3, in the pure gaugino limit with degenerate scalar
partners and gaugino of mass m̃ = mf̃1

=mf̃2
=m̃λ, the ratio of pseudoscalar Higgs Yukawa

coupling to mass Yukawa coupling is given by

rf,A(m2
A0) =


− m̃ 2

m2
A0

log

1 +
√

1−4m̃ 2/m2
A0

1−
√

1−4m̃ 2/m2
A0

− iπ

2

m̃ < 1
2
mA0

+
4m̃ 2

m2
A0

arcsin2
(

mA0

2m̃

)
m̃ ≥ 1

2
mA0

. (20)
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FIG. 5. Magnitude of the ratio rf,A(m2
A0) in the limit of degenerate scalar partners

mf̃1
= mf̃2

= m̃ (φf = 0), and of maximal splitting among superpartner masses mf̃1
= 0, mf̃2

= m̃

(φf =1), for different values of ρλ
f . In both cases, the ratio is shown as a function of m̃ divided by

the pseudoscalar Higgs mass mA0 . The horizontal line indicates the value rf,A(m2
A0) = 1.

For m̃ < 1
2
mA0 the imaginary piece arises from the branch cut for physical intermediate

states in the loop. The ratio rf,A(m2
A0) ≥ 1 for all m̃ > 1

2
mA0 , and rf,A(m2

A0) → 0 as m̃ → 0.
The finite momentum enhancement can be sizeable for m̃ ∼ mA0 , and persists away from
the degenerate superpartner limit. The m̃ � mA0 behavior is identical to the scalar Higgs
ratio (14), with Higgs Yukawa radius vanishing in the strict superpartner decoupling limit.
Figure 5 shows the ratio rf,A(m2

A0) as a function of m̃/mA0 for two extreme choices of the
scalar partner mass spectrum. In the first case, φf = 0, corresponding to a degenerate scalar
spectrum mf̃1

= mf̃2
= m̃, for different values of ρλ

f , with ρλ
f = m̃ 2/m2

λ in this case. The

analytic expression given in eq. (20) corresponds to this case, with ρλ
f = 1. In the second case

φf = 1, corresponding to maximal splittings among superpartner masses, mf̃1
=0, mf̃2

=m̃.

Again, rf,A(m2
A0) is shown for different values of ρλ

f , which for this case ρλ
f = m̃ 2/(2m2

λ).
A simple, analytic expression can be obtained also in this case with m̃ = mλ, i.e. ρλ

f = 1
2
,

by using results listed in appendices A 2 and A3. For a numerical evaluation of the loop
function that appears in rf,A(m2

A0), shown in fig. 5, see ref. [14].

As discussed in section VIII below, measurements of h0–, H0–, and A0–fermion couplings
offer the possibility of isolating intrinsic coupling effects from momentum-dependent form
factors.
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C. The Higgsino coupling

The couplings of neutral Higgsinos H̃0
1 , H̃0

2 to fermions f and associated scalar partners
f̃ , arise radiatively in a manner similar to the fermion masses and Higgs couplings, as shown
in fig. 6. The one-loop radiative couplings have to be calculated separately for the two cases
in which the coupled fermions are both left- or right-handed.

The momentum-dependent coupling h̃fR
of right-handed fermions to left-handed scalars,

h̃fR
fR(q1) H̃0

α(q)f̃L(q2), arises, for example, at one loop from pure B̃–B̃ and mixed B̃–W̃

propagators. With all external particles on-shell, relevant to the decay f̃h(q2) → fR(q1) χ̃0
i (q),

where f̃h is the scalar partner eigenstate labelled by h (h = 1, 2), the neutralino–neutral
Higgs contribution to the effective Yukawa coupling is

h̃fR
= − α′

8
√

2π
A K̃ ijlkh

fR
V ijlkh (21)

with only the indices jlk summed. The coupling K̃ ijlkh
fR

is given by

K̃ ijlkh
fR

=
YfR

2
NjB [NjB − cot θW NjW ]×

[δl2(NiH1 sin α + NiH2 cos α)− δl1(NiH1 cos α−NiH2 sin α)]×
(Uk1Uh2 + Uk2Uh1)Uk1 . (22)

where NiH1, NiH2 are the projection factors for the external neutralino χ̃0
i onto the Higgsino

states H̃0
1 and H̃0

2 respectively. Note that both NiH1 and NiH2 are, in general, non-vanishing,
regardless of which of the two Higgs expectation values induces the corresponding fermion
mass. The index j = 1, . . . , 4 refers to the external neutralino mass eigenstate; l to the type
of CP-even neutral Higgs exchanged in the loop, h0, H0. The matrix U , which diagonalizes
the scalar mass matrix (A1), is defined in appendix A1 and the loop function Vijhkl is given
explicitly in appendix A3 in terms of C0 and B0 functions.

+

q̃L q̃R qR

H B̃

H̃0
1 , H̃

0
2

+

q̃R q̃L qL

H W̃3

H̃0
1 , H̃

0
2

FIG. 6. One-loop radiative Wino and Bino contributions to the Higgsino–scalar–fermion cou-
plings from soft flavor violation. The neutral Higgs H exchanged virtually in the loop, can be h0

or H0.

In the case of left-handed fermions, the momentum-dependent coupling h̃fL
relative to

the vertex h̃fL
fL(q1)H̃

0
α(q)f̃R(q2) can be mediated by pure W̃–W̃ and B̃–B̃ as well as by
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mixed W̃–B̃ propagators. For on-shell external particles, as in the case of the decay f̃h(q2) →
fL(q1) χ̃0

i (q), the neutralino–neutral Higgs contribution to the effective Yukawa coupling is

h̃fL
=

α2

8
√

2π
A K̃ ijlkh

fL
Vijlkh (23)

where K̃ ijlkh
fL

has the expression

K̃ ijlkh
fL

=
[
TfNjW + tan θW

YfL

2
NjB

]
[NjW − tan θW NjB]×

[δl1(NiH1 cos α−NiH2 sin α)− δl2(NiH1 sin α + NiH2 cos α)]×
(Uk1Uh2 + Uk2Uh1)Uk2 . (24)

Also in this case, both projection factors NiH1 and NiH2 for the external neutralino χ̃0
i onto

the two Higgsino states H̃0
1 and H̃0

2 are present.

For both decays, f̃h(q2) → fR(q1) χ̃0
i (q) and f̃h(q2) → fL(q1) χ̃0

i (q), there exist also
chargino–charged Higgs loop contributions, which are not explicitly given here. Their de-
pendence on gauge couplings is the same as that of neutralino–neutral Higgs contributions.

The radiatively generated effective Higgsino Yukawa coupling differs from the effective
mass and Higgs Yukawa couplings in a number of ways. Most importantly, radiatively
induced quark masses get contributions from both gluino and neutralino exchange, whereas
the Higgsino couplings only receive contributions from neutralino exchange in the loop. This
profound difference is due to the absence of a Higgsino analogue of the flavor-violating scalar
tri-linear coupling, combined with the requirement of gauge invariance. Thus, radiative
Higgsino couplings differ significantly in magnitude from the associated radiative mass or
Higgs Yukawa couplings. Furthermore, the fact that the right-handed fermion states couple
only through U(1)Y interactions, while the left-handed ones couple through both U(1)Y

and SU(2)L interactions, yields distinct Higgsino couplings to the right- and left-handed
fermions, h̃fR

and h̃fL
, with h̃fR

/h̃fL
∼ O(α′/α2). This compares with h̃fR

/h̃fL
= 1 at

lowest order for a fermion mass arising from a hard tree-level Yukawa coupling. Finally, the
type of Higgsino appearing in the coupling, H̃0

1 or H̃0
2 , need not coincide with the type of

Higgs expectation value which induces the fermion mass. In contrast, for a tree-level Yukawa
coupling, only the Higgsino of the same type appears.

In order to characterize Higgsino couplings to fermions, it is useful to define their ratio to
the effective mass Yukawa coupling, in analogy with the Higgs coupling ratio (10). Dropping
momentum dependences, this ratio is:

r̃fL,R
≡ h̃fL,R

mf/|〈Hα〉| . (25)

The general expression for these ratios is complicated and can be extracted from (21), (23),
and (A25). When superpartner masses are all of the same order, however, the parametric
dependence of r̃fL,R

is readily determined from the above discussion. For quarks that obtain
a radiative mass from soft flavor breaking, r̃fL

is of O(α2/αs) and r̃fR
of O(α′/αs), whereas
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for leptons, r̃fL
is of O(α2/α

′) and r̃fR
of O(1). This is to be compared with a tree-level

Yukawa coupling for which r̃fL,R
= 1 at the lowest order.

The large differences between the Higgsino and Higgs or mass Yukawa couplings are
a concrete example of apparent hard supersymmetry breaking from the low-energy point
of view. The large splittings arise at the leading order and are not small corrections to
a supersymmetric relation. In contrast, the equality of tree-level Yukawa couplings in the
supersymmetric limit is only slightly modified by higher-order corrections when supersym-
metry is broken. With radiative fermion masses, no symmetry exists in the high-energy
theory to enforce equality of the radiatively generated low-energy Higgs and Higgsino cou-
plings since these couplings vanish in the supersymmetric limit. Large splittings for the
Higgsino–fermion–scalar couplings therefore represent a “smoking gun” for radiatively gen-
erated fermion masses from soft chiral flavor breaking. As discussed in section VIII, however,
the Higgsino couplings are likely to be difficult to measure experimentally.

III. PHENOMENOLOGICAL RADIATIVE MODELS

The magnitude of fermion masses which arise from soft chiral flavor violation depends on
the soft supersymmetry-breaking parameters mλ, mf̃i

and A or A′, as detailed in section IIA.
With the radiative mass given in eq. (3), a given quark or lepton mass can be estimated
from the magnitude of the ratio Amλ/m̃

2 or A′mλ/m̃
2

Lepton :
ml

30−100 MeV
∼
{√

2 cos β
AmB̃

m̃ 2
,
√

2 sin β
A′mB̃

m̃ 2

}

Down−type quark :
mq

1−3 GeV
∼
{√

2 cos β
Amg̃

m̃ 2
,
√

2 sin β
A′mg̃

m̃ 2

}

Up−type quark :
mq

1−3 GeV
∼
{√

2 sin β
Amg̃

m̃ 2
,
√

2 cos β
A′mg̃

m̃ 2

}
(26)

where the first (second) terms in the curly brackets correspond to holomorphic (non-
holomorphic) soft flavor breaking, m

B̃
and mg̃ are the Bino and gluino mass, respectively,

and m̃ = max(mf̃1
, mf̃2

, mλ). For leptons, the radiative mass is assumed to be dominated
by Bino exchange, which is the case in the mostly gaugino or Higgsino region of parameter
space. For the numerical estimates (26) the loop function m̃ 2I(m2

f̃1
, m2

f̃2
, m2

λ) is assumed to

be in the range 1
3
–1, and 〈Hα〉 ' 175 cosβ (sin β) GeV for α = 1 (2).

The radiative masses are maximized if the scalar partner and gaugino masses are of the
same order, mλ ∼ mf̃ . Stability of the charge- and color-preserving vacuum, with vanishing
squark and slepton expectation values, places an upper limit on the scalar tri-linear A- or
A′-parameters. The specific bounds are model-dependent and are detailed in section IV. In
general A/m̃ or A′/m̃ <∼ few, is required for stability of the charge- and color-preserving
vacuum, where m̃ is a scalar mass. This constraint implies that the ratios Amλ/m̃

2 and
A′mλ/m̃

2 cannot be much larger than a few. With this upper limit and the numerical

18



TABLE I. Magnitude of soft chiral flavor breaking A- or A′-terms required for soft radiative
fermion masses. For down-type quarks and leptons the first term in brackets corresponds to
holomorphic A-terms, the second to non-holomorphic A′-terms, and vice versa for up-type quarks.
Approximate masses are specified at the electroweak scale.

Fermion mf (MeV) Amλ/m̃ 2 or A′mλ/m̃ 2

×
{√

2 cos β,
√

2 sinβ
}

e 0.5 (0.5–1.5) × 10−3

u 1 (0.3–1) × 10−3

d 5 (2–5) × 10−3

µ 100 1–3
c 700 0.2–0.7
s 100 0.03–0.1
b 3000 1–3

values (26), it is clear that radiative fermion masses for the first generation can be easily
accommodated. Second-generation masses can also be accommodated, depending on the
size of the ratios Amλ/m̃

2 or A′mλ/m̃
2. For the third generation, it is (not surprisingly)

extremely unlikely that the τ -lepton or top quark obtain masses from soft chiral flavor vio-
lation, because of the very large tri-linear terms required. Avoiding the stability constraints
discussed in section IV would require in these cases an extreme tuning of the potential or
loss of perturbativity in the scalar sector at a very low scale. However, it is possible in the
third generation to obtain a radiative b-quark mass by this mechanism. The magnitude of
the A- or A′-terms required for soft radiative masses are listed in table I. (For a recent
review of numerical values for running fermion masses, see [15].)

The magnitude of soft radiative masses depends on the ratio of Higgs doublet expecta-
tion values, tanβ, as given in table I. For holomorphic chiral flavor breaking in A-terms,
radiative fermion masses arise from the same Higgs doublet as for tree-level Yukawa cou-
plings. However for non-holomorphic breaking in A′-terms, radiative fermion masses arise
from the “wrong Higgs” doublet, and therefore have the “wrong” dependence on tanβ. Soft
radiative muon or b-quark masses require relatively large scalar tri-linear terms, proportional
to cos β in the holomorphic case and sinβ in the non-holomorphic case. So if either of these
fermions gain a mass from holomorphic soft chiral flavor breaking in A-terms, the upper limit
on the tri-linear terms from stability of the potential, A/m̃ <∼ few, discussed in section IV,
strongly disfavors large values of tan β. This is simply because the effective Yukawa coupling
required for a given muon or b-quark mass increases with tan β. Alternatively, large values
of tanβ can be accommodated with radiative masses for either the muon or b-quark from
non-holomorphic flavor breaking in A′-terms. If the charm quark mass, as well as either the
muon or b-quark mass, arise from solely holomorphic or solely non-holomorphic chiral flavor
violation, larger values of tan β are disfavored so that none of the required tri-linear terms
is too large. Note that if all standard model fermions obtained mass radiatively from chiral
flavor violation in purely non-holomorphic A′-terms, the role of H1 and H2 in the radiative
Yukawa couplings would be precisely the reverse of what it is in the minimal case with
tree-level masses. In this case, there would be no observational signature of “wrong Higgs”
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couplings, because the physical observables in the bosonic sector of the theory are invariant
under tan β ↔ cotβ. However, as noted above, vacuum stability and the absence of fine
tuning are not compatible with purely radiative top-quark and τ -lepton masses. Therefore
in practice with radiative mass arising from A′-terms, observable differences from minimal
models are expected, as will be discussed in section VIII.

A corollary of a radiative soft fermion mass from chiral flavor breaking is an enhanced
left–right mixing for the associated scalars, m2

LR = A〈Hα〉 or A′〈Hα〉. In a theory with
tree-level Yukawa couplings, the mixing scales as the product of fermion and scalar partner
masses m2

LR ∼ mfmf̃ . However with a soft radiative mass the mixing is effectively a loop
factor larger, m2

LR ∼ (4π/α)mfm̃
2/mλ, where α = αs or α′ for quarks or leptons. In the case

of radiative second-generation masses, especially for the muon or charm quark, or radiative
b-quark mass, the mixing can be near maximal because of the required large tri-linear term.
This has potentially directly observable consequences for scalar partner production and
decay, as discussed in section VIII.

In the quark sector, the CKM mixing matrix is given by VCKM = V †
u Vd, where Vu and

Vd are the unitary matrices that diagonalize the left-handed up- and down-type quarks
respectively. If some of the quark masses arise radiatively, then the form of Vu and/or Vd

follows in part from that of the scalar tri-linear terms. In particular, if any quark receives
a mass predominantly from chiral flavor breaking, the source of CP violation in the CKM
matrix and QCD vacuum angle are functions of the relative phases between the tree-level
Yukawa couplings and tri-linear terms. (The somewhat related idea that tree-level Yukawa
couplings could be purely real with all CP violation arising from A-terms was recently
discussed in ref. [16].)

The pattern of tree-level and radiative quark masses can in principle arise in any number
of ways. We do not address specific soft and hard textures in this paper, but comment on
some interesting possibilities. As discussed above, the down-type quark masses could be
purely radiative. If this is the case, and all up-type quark masses are tree-level, then of
course Vd follows entirely from the scalar tri-linear terms, while Vu follows from the superpo-
tential up-type Yukawa couplings. In this scenario the breaking of down-type right-handed
quark symmetries solely in soft tri-linear terms can be naturally implemented by continuous
U(1)R or discrete R-symmetries. An accidental U(1)R symmetry of this type would arise au-
tomatically if, for example, down-type quark symmetries are only broken through auxiliary
expectation values, either spontaneously or explicitly in the supersymmetry-breaking sector,
while being respected in the supersymmetric sector of the theory. Alternatively, if some of
the up-type quark masses are radiative, or only some of the down-type quark masses are
radiative, with the remainder tree-level, then Vu and/or Vd are block diagonal. Non-trivial
three-generation mixing requires that Vu and Vd be not simultaneously block diagonal. This
type of texture may be enforced by symmetries. It is also possible that in the absence of
any specific horizontal R-symmetries, all fermions receive mass both radiatively from soft
breaking, and at tree level from a Yukawa coupling. This would arise in a Froggatt–Nielsen
mechanism in which flavor symmetries are broken in both scalar and auxiliary directions.
However, for the radiative contribution to be significant in this scheme, the breaking in the
auxiliary directions must be stronger than in the scalar directions, so that they overcome
the loop factor. However, we concentrate on the cases of purely radiative or dominantly
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tree-level masses for a given fermion.

Radiative generation of fermion masses can lead to new sources of flavor violation. In
the electroweak scale theory, these amount to misalignments in flavor space between the
effective Yukawa couplings, which determine both the fermion mass eigenstates and Higgs
sector couplings, and the A- or A′-terms and/or left- and right-handed scalar mass-squared
matrices, which determine the squark and slepton eigenstates. Misalignment between these
terms in general leads to flavor-changing gaugino couplings, which link the fermion and
scalar partner sectors, and in Higgs boson and longitudinal gauge couplings to fermions.
The magnitudes of induced flavor violations are model-dependent functions of the specific
flavor textures and superpartner mass spectrum, and are outside the scope of this work.
However, it is worth while to discuss some general features and scenarios in which the new
sources of flavor violation associated with radiative masses are suppressed or eliminated.

Dangerous flavor-changing neutral currents in fermionic couplings to Higgs bosons and
longitudinal gauge bosons potentially can be produced by misalignment in flavor space
between the fermionic couplings to the Higgs doublet expectation values, which give rise to
the fermion mass matrix, and the fermionic couplings to the physical Higgs bosons. However,
this source of flavor violation is automatically avoided, with no misalignment of the physical
Higgs couplings, if the Glashow–Weinberg [17] criterion of coupling all up-type quarks to a
single Higgs doublet, all down-type quarks to a single Higgs doublet, and all leptons to a
single Higgs doublet, is satisfied. Since the top-quark and τ -lepton masses must be at tree
level, this condition requires, with a minimal Higgs sector, that any radiative up-type quark
or lepton mass arises from holomorphic chiral flavor breaking, and likewise if only some of
the down-type quark masses arise radiatively. This potential source of flavor violation is also
avoided if all down-type quark masses arise solely from non-holomorphic tri-linear terms.
With any of these conditions, the charged Higgs couplings to fermions are also proportional
to the charged current CKM mixing matrix, and thus generally safe.

Flavor violation in the superpartner sector is not as readily eliminated. Misalignment
between the full fermion Yukawa couplings and A- or A′-terms in general arises if a fermion
receives mass both radiatively and from a tree-level Yukawa, since the flavor structure of
these contributions need not coincide. This misalignment between the hard and soft com-
ponents of effective Yukawa couplings is eliminated if all fermions receive mass solely from
either soft or hard flavor breaking, but not from both. For the quark sector, in which the
top quark Yukawa must be at tree level, this source of misalignment is avoided, for example,
in the scenario discussed above, in which all down-type chiral flavor symmetries are broken
in the supersymmetry-breaking sector, while up-type chiral flavor symmetries are broken by
tree-level Yukawa couplings. In the lepton sector, in which the τ -lepton Yukawa must be at
tree level, the above misalignment is analogously eliminated if the muon and electron chiral
flavor symmetries are only broken by auxiliary components in the supersymmetry-breaking
sector.

Even if every fermion receives mass solely from either hard or soft flavor breaking, precise
alignment between the effective Yukawa couplings and tri-linear A- or A′-terms is not guar-
anteed, if the scalar partner mass matrices have a non-trivial flavor structure. One possible
sufficient condition, which guarantees complete alignment, is for all the left- and right-handed
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scalar superpartners in each sector to be degenerate, with masses squared of m2
LL and m2

RR

respectively. The radiative Yukawa couplings are then proportional to the tri-linear A- or
A′-terms. Consider, for example, the scenario mentioned above in which up-type quark chi-
ral flavor symmetries are broken only by tree-level superpotential Yukawa couplings, while
down-type quark symmetries are broken only in the soft tri-linear terms. Then the down-
type effective Yukawa couplings with degenerate squarks are hd,ij = Ad,ijf(m2

d̃1
, m2

d̃2
, m2

λ),
where i, j refer to flavor, and f is a flavor-independent loop function, which may be ob-
tained from (3). The proportionality implies that the fermion and scalar mass matrices are
simultaneously diagonalized, with the result that neutralino couplings are flavor-conserving.
Chargino couplings are also proportional to the charged current CKM mixing matrix. Pre-
cise alignment in this case may also be understood by promoting the flavor symmetries to
background symmetries and treat the down-type quark tri-linear terms and up-type quark
Yukawa couplings as spurions that spontaneously break the symmetries. Invariance with
respect to the background symmetries then implies that any chirality-violating amplitude
between external quarks is exactly proportional to a single power of either of these spuri-
ons, and therefore has precisely the same flavor structure as the quark mass matrices. This
particular alignment is of course in general spoiled by non-degeneracy among the scalar part-
ners. Also, the required degeneracy does not follow a priori from any symmetry since the
flavor symmetries are broken in the tri-linear terms or Yukawa couplings. Near degeneracy
might arise dynamically, however, if there is a relatively large flavor neutral contribution to
the soft scalar masses.

There are other scenarios that avoid dangerous levels of quark-sector flavor violation
associated with soft radiative masses. If all down-type quarks receive mass from soft flavor
breaking as outlined above, but the individual down-type quark number is conserved, the
down-type squark mass-squared matrices and A- or A′-terms are diagonal (though not neces-
sarily degenerate), as are the down-type effective Yukawa couplings. In this case VCKM = V †

u ,
and all quark mixing and CP violation in the CKM matrix arise from tree-level Yukawa cou-
plings in the up sector. In addition, the chargino couplings are proportional to the charged
current CKM mixing matrix. Then all supersymmetric flavor violation occurs in the up-
type quark sector, from possible mismatch between the quark and squark mass matrices.
At present, experimental probes in this sector are not very sensitive to such flavor violation.
An analogous scenario may also be extended to the leptons, with individual lepton number
conserved [18].

A very general scenario in which low-energy flavor violations arising from supersymmet-
ric effects are suppressed results if some of the superpartners are much heavier than the
electroweak scale. Requiring that two-loop quadratically divergent gauge contributions to
the Higgs potential from heavy scalars lead to not excessive tuning of electroweak symmetry
breaking implies that first- and second-generation scalar partners and the gluino are lighter
than O(20 TeV) [19]. The analogous naturalness requirement from one-loop quadratically
divergent contributions from heavy electroweak gauginos implies that these gauginos are
lighter than O(2 TeV). Finally, for the third generation, a similar naturalness requirement
from one-loop quadratically divergent contribution through the tree-level top Yukawa im-
plies that the left- and right-handed top squarks, and the left-handed b-squark are lighter
than O(1 TeV). In the scenario for radiative fermion masses, consider the case where the
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first-generation scalars are as heavy as the naturalness bounds allow. If all gauginos have
masses at the electroweak scale, the hierarchy mλ � mf̃ provides an attractive explanation
for the smallness of first-generation radiative masses. As discussed above, radiative masses
for second-generation quarks and the b-quark require mλ ∼ mf̃ . In this case, the associated
scalars cannot be as heavy as allowed by the naturalness bounds unless the gluino is also
very heavy. Even if only the first-generation scalars are heavy, flavor violation involving
first-generation fermions arising from scalar partner mixing is suppressed by the large mass
splitting between first- and second-generation scalars.

IV. STABILITY ANALYSIS OF THE SCALAR POTENTIAL

Radiatively generated fermion masses arising from soft chiral flavor violation require
sizeable scalar tri-linear couplings, in particular A � hmf̃ , where h is the effective Yukawa
coupling, and mf̃ represents the scalar masses. For second-generation and b-quark radiative
masses, A ∼ mf̃ are required, as discussed in the previous section and shown in table I. Such
large tri-linear terms give negative contributions to the scalar potential along certain direc-
tions in field space. If large enough, these can lead to color- and/or charge-breaking minima
with non-vanishing squark or slepton expectation values. The possible existence of these
vacua gives an upper limit on the magnitude of the tri-linear couplings, and consequently
on the radiatively induced fermion mass.

In the vacuum with electroweak symmetry broken by Higgs field expectation values,
the scalar tri-linear terms (1) and (2) contribute a left–right mixing term to the squark
or slepton mass-squared matrices, m2

LR = A〈Hα〉 or A′〈H∗
α〉, which induces the radiative

fermion masses. These mixings cause a level repulsion between the scalar mass eigenvalues.
Stable electroweak symmetry breaking without color or charge breaking requires that the
lightest squark or slepton eigenstate does not become tachyonic. This puts an upper limit on
the A-parameters of |A〈Hα〉| < mLLmRR or |A′〈Hα〉| < mLLmRR. For second-generation and
b-quark radiative masses, for which A >∼ mLL,RR, then mLL,RR

>∼ 〈Hα〉 is required in order
to achieve stable electroweak symmetry breaking. This is easily satisfied in the scenarios
discussed in section III with sufficiently massive squark or sleptons.

The negative contribution of the tri-linear terms to the total potential is maximized
in a direction along which all scalar fields that appear in the tri-linear term have equal
expectation values:

|Hα| = |φL| = |φR| = 1√
6
φ , (27)

where gauge indices and an over-all phase have been suppressed, and φ is a real valued
collective coordinate [20,21]. Even if the constraint given above for locally stable electroweak
symmetry breaking is satisfied, color- and/or charge-breaking vacua can appear along this
direction at larger field values. With the normalization (27), φ is a canonically normalized
real scalar field with general renormalizable tree-level potential

V (φ) =
1

2
m̃ 2φ2 − 1

3
√

6
Aφ3 +

1

36
λ2φ4 , (28)
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where m̃ 2 ≡ 1
3

(
m2

LL + m2
RR + m2

Hα

)
. The Higgs mass term m2

Hα
receives a contribution

from the Higgs Dirac mass in the superpotential W ⊃ µH1H2. Hence, m̃ 2 � m2
LL,RR is

possible in principle with a large Dirac mass, µ2 � m2
LL,RR. However, minimal tuning of

electroweak symmetry breaking usually implies |m2
Hα
| ∼ m2

Z
<∼ m2

LL,RR. In what follows
m̃ ∼ mLL,RR is implicitly assumed. The quartic coupling (1/36)λ2φ4 is crucial for global
stability and can arise in a number of ways, as discussed below.

The potential (28) in general has a local charge- and/or color-breaking minimum at non-
vanishing φ, in addition to the charge and color preserving minimum φ = 0. A sufficient
condition to avoid color or charge breaking is to require that the deepest minimum along (27)
is at the origin. The global minimum of the theory then conserves color and charge and
is absolutely stable. For the potential (28) this stability constraint gives an upper limit
A/m̃ <

√
3λ [20,21], and is plotted in fig. 7.

FIG. 7. Maximal value of A/m̃ for absolute stability and metastability of tree-level scalar
potential as a function of the quartic coupling λ, where m̃ 2 ≡ 1

3

(
m2

LL+m2
RR+m2

Hα

)
. Absolute

stability refers to the absence of global charge-breaking minima, while metastability refers to a
lifetime of the charge preserving vacuum greater than the age of the Universe, corresponding to a
bounce action S > 400.

If the absolute stability constraint is not satisfied, and the color- and charge-breaking
vacuum is the global minimum, a weaker necessary condition is that the time to tunnel from
the color and charge preserving metastable vacuum be greater than the present age of the
Universe. Cosmological selection of the color and charge preserving vacuum at the origin is
natural, since this is a point of enhanced symmetry and always a local minimum of the free
energy at high enough temperature. For the potential (28) with electroweak scale mass m̃,
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a lifetime greater than the present age of the Universe corresponds to a bounce action out
of the metastable vacuum along the direction (27) of S >∼ 400 [22]. The bounce action for
the potential (28) may be calculated numerically [22,23]. The action interpolates between
the thin-wall limit, λ2m̃2/A2 → 1/3−, in which the two vacua are nearly degenerate [24]:

Sthin ' 9π2

2

(
m̃ 2

A2

)(
1− 3λ2 m̃ 2

A2

)−3

,

and the thick-wall limit, |λ2m̃2/A2| � 1, in which the quartic term is unimportant [25]

Sthick ' 1225

(
m̃ 2

A2

)
.

The maximum value of A/m̃ for which S > 400 is shown in fig. 7 as a function of the
quartic coupling coefficient λ. This figure employs the empirical fit to the numerically cal-
culated bounce action given in ref. [23]. The maximum allowed A/m̃ continues as a smooth
monotonically decreasing function for λ2 < 0, even though the renormalizable potential is
unbounded from below in this case. For |λ2| � 1 the weak requirement of metastability on
a cosmological time scale is met for A/m̃ <∼ 1.75.

The magnitude of the quartic coupling for the direction (27) is clearly crucial for de-
termining the maximum allowed value of A/m̃ implied by the absolute or metastability
constraints given above. This in turn determines the maximum allowed radiatively induced
fermion masses. Quartic couplings can arise from the D-term gauge potential or tree-level
Yukawa coupling F -terms with standard model fields or mirror matter. These contributions
distinguish between different classes of models.

• Minimal holomorphic models

A minimal class of models with soft radiative fermion masses are those with the holomor-
phic tri-linear terms AHαφLφR, and no additional significant tree-level Yukawa couplings to
the associated fermions. With holomorphic tri-linear terms, gauge invariance implies that
the D-term gauge potential vanishes along the direction (27). This is guaranteed since
holomorphic directions are invariant with respect to complexified gauge transformations
and are therefore D-flat. Without additional superpotential couplings, the quartic coupling
along the direction (27) vanishes and the tree-level potential (28) is then unbounded from
below. This persists at one loop, where a small negative quartic coupling is generated:
λ2 ' −(A/m̃)4/96π2. Radiative fermion masses in this class of models therefore have a
metastable vacuum, and absolute stability of the charge and color preserving vacuum is
not possible. In this case, however, the cosmological metastability bound is easily satisfied
for first-generation masses for which A/m̃ ∼ 10−3 is required. Second-generation masses
for charm and strange quarks, which require A/m̃ ∼ 10−1–1, can also be accommodated,
while for the muon and b-quark A/m̃ ∼ 1–3 is very close to the maximum value allowed by
metastability of A/m̃ <∼ 1.75.

• Minimal non-holomorphic models

A non-holomorphic tri-linear term A′H∗
αφLφR can also give rise to radiative fermion

masses. In this case the operator does not correspond to a holomorphic direction and is
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not necessarily D-flat. The SU(3)C and SU(2)L D-term gauge potentials do in fact vanish
along the direction (27), but the U(1)Y gauge potential does not. The D-term potential in
this case is then

VD =
g′2

2

∣∣∣∣Tr
Yi

2
φ∗i φi

∣∣∣∣2 =
g′2

288
(Tr Yi)

2 φ4 , (29)

where the trace is over all fields along the collective direction. For either the quark or lepton
non-holomorphic tri-linear terms, this trace is |Tr Yi| = 2. The U(1)Y D-term contribution
to the quartic coupling along these directions is then λ = g′/

√
2 ' 0.25.

With this tree-level quartic coupling, global stability of the charge and color preserv-
ing vacuum is easily achieved for first-generation radiative masses. In addition, second-
generation strange and charm quark and muon radiative masses do not necessarily lead to
a deeper charge- and color-obreaking minimum. A radiative b-quark mass does lead to a
metastable vacuum in this class of models. From fig. 7 it is apparent that the value of the
quartic coupling arising from the U(1)Y gauge potential is not large enough to significantly
modify the metastability constraints with respect to the case of vanishing quartic coupling.

• Tree–level top Yukawa

Quartic couplings for the direction (27) can also arise from superpotential F -terms.
Without additional matter, this requires that some of the standard model fermions have
tree-level superpotential Yukawa couplings. In the case of a tree-level top quark Yukawa
coupling, W = htH2QU , an effective quartic coupling is generated for the direction (27)
relevant to a radiative b-quark mass from a non-holomorphic A′

b term:

VF =

∣∣∣∣∣∂W

∂U

∣∣∣∣∣
2

= h2
t |H2Q|2 =

1

36
λ2φ4 . (30)

The tree-level top Yukawa contribution to the quartic coupling along this direction is then
λ = ht. With such a large quartic coupling, both the metastability and absolute sta-
bility bounds on A′/m̃ are increased and a radiative b-quark mass can be obtained with
A′

b/m̃ ∼ 1–2.5, while preserving the absolute stability of the color and charge preserving
global minimum. In a hybrid model with non-holomorphic tri-linear scalar terms, and a
tree-level top Yukawa, it is therefore possible to obtain all fermion masses radiatively, aside
from the top quark and τ -lepton, while preserving the global charge and color preserving
minimum.

• Models with mirror matter

Effective quartic scalar couplings can also arise from tree-level superpotential couplings
between standard model and non-standard model mirror matter. Vector-like Dirac pairs of
mirror matter with the same gauge quantum numbers as some standard model fields exist in
many extensions of the standard model. Mirror matter may however transform differently
from standard model matter under flavor or discrete R-symmetries. It is therefore possible
that such symmetries, which forbid or highly suppress Yukawa couplings for standard model
fields, allow large couplings to mirror matter. For example, with massive mirror matter Ψ
and Ψ, mixing with quark or lepton fields can arise from the superpotential coupling
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W = hHαΦΨ + MΨΨΨ , (31)

where Φ represents ΦL or ΦR standard model fields. Integrating out the mirror matter with
supersymmetry-breaking soft mass potential

V = m2
Ψ

(
Ψ∗Ψ + Ψ

∗
Ψ
)

(32)

gives the quartic potential V ⊃ λ2|HαΦ|2, with

λ2 = h2

(
m2

Ψ

M2
Ψ + m2

Ψ

)
. (33)

In the supersymmetric limit, mΨ → 0, the quartic coupling vanishes as required by super-
symmetric decoupling and exactness of the superpotential. Obtaining a sizeable effective
scalar quartic coupling for the standard model fields therefore requires both a large mirror
matter Yukawa coupling, h, and that the mirror matter soft supersymmetry-breaking mass,
mΨ, be of the order of the supersymmetric Dirac mass, MΨ. The quartic couplings in this
case therefore represent an apparent large violation of supersymmetry in the low-energy
theory with the mirror matter integrated out. Mirror matter mixing with the Higgs fields
can also give rise to analogous effective quartic couplings.

Mirror matter with the properties discussed above arises in many extensions of the stan-
dard model. In a grand unified theory, for example, a 27 of E6 contains, in addition to
an entire generation, Dirac pairs of lepton doublets and down-type right-handed quarks.
Entire massive pairs of generations and antigenerations also often occur in string compact-
ifications. With Yukawa couplings to standard model fields, and electroweak scale Dirac
and supersymmetry-breaking masses, these fields yield effective quartic scalar couplings. As
another example, theories of gauge mediated supersymmetry breaking often have messenger
matter, which has identical gauge quantum numbers as some of the standard model fields.
If allowed by flavor or discrete symmetries, the messengers can therefore mix with standard
model fields through superpotential Yukawa couplings [26]. In addition, for one-scale theo-
ries, the Dirac mass messenger scale and supersymmetry-breaking scale are roughly equal,
O(10–100) TeV, as required to obtain a large effective quartic coupling, as discussed above.
Finally, theories with additional compact dimensions also often contain mirror matter. For
example, massive N = 2 hypermultiplet excitations, which exist in the bulk of the compact
space, may mix with standard model matter. If the scale of supersymmetry breaking is re-
lated to the size of the compact manifold, for example by twisted boundary conditions [27],
both the supersymmetry-breaking, and supersymmetry-preserving N = 2 masses can be of
the same order, thereby leading to a large effective quartic coupling. For any type of mirror
matter, effective quartic couplings can arise from mixing with either quark or lepton fields,
or the Higgs fields.

With large effective quartic couplings arising from mirror matter mixing, the upper limits
on soft chiral flavor breaking implied by both metastability and absolute stability can be
increased to A/m̃ <∼ few. This could in principle allow all fermions except the top quark
and τ -lepton to obtain masses radiatively from holomorphic soft chiral flavor breaking, while
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TABLE II. The quartic coupling, λ2, along the equal field direction for different classes of
models. For the tree-level top Yukawa models tan β > 1 is assumed for the stability limits.

Model λ2 Absolute stability Metastability Comments
limits limits

Minimal holomorphic ∼ −1
96π2

(
A
m̃

)4
A
m̃
� 1 A

m̃
<∼ 1.75 Metastable vacuum

Minimal non-holomorphic g′2
2

A′
m̃

<∼ 0.4 A′
m̃

<∼ 1.8

Tree-level top Yukawa h2
t

A′
b

m̃
<∼ 1.7 − 2.5 A′

b

m̃
<∼ 2.7 − 3.2 Relevant to b

Mirror matter h2 m2
Ψ

(M2
Ψ

+m2
Ψ

)
A
m̃

<∼ few A
m̃

<∼ few

keeping the charge and color preserving vacuum as the global minimum. By appropriate
choice of the representation, mirror matter can also stabilize non-holomorphic A′ terms.

The different classes of models for the origin of the effective scalar quartic couplings
along with the associated absolute or metastability constraints are summarized in table II.

V. CLASSIFICATION OF OPERATORS

Soft chiral flavor breaking in the scalar tri-linear operators AHαφLφR and A′H∗
αφLφR,

along with gluino or neutralino masses, are sufficient to generate radiative fermion masses
and Higgs and Higgsino couplings at one loop. Both these operators are gauge-invariant
and may be included in the most general low-energy soft supersymmetry-breaking scalar
potential [12]. It is instructive to consider the effective operators that couple the visible and
supersymmetry-breaking sectors and give rise to these soft terms.

Supersymmetry-breaking is associated with non-zero auxiliary-component expectation
values in the supersymmetry-breaking sector. Soft supersymmetry-breaking terms in the
visible sector originate in operators that couple these auxiliary components to visible sector
fields. Below the messenger scale for transmitting supersymmetry breaking, these give rise
to effective operators suppressed by appropriate powers of the messenger scale. The lowest-
order operator, which produces holomorphic tri-linear soft terms, is a superpotential term
of the form

1

M

∫
d2θ ZHαΦLΦR , (34)

where, as throughout, M represents the messenger scale, the explicit flavor structure is
suppressed, and Z = A + θ2F represent chiral superfields in the supersymmetry-breaking
sector. A non-vanishing auxiliary component gives rise to holomorphic soft tri-linear terms,
AHαφLφR, with A ∼ F/M . The scale of soft supersymmetry breaking in the visible sector, in
particular the scale for the superpartner and gaugino masses, is m̃ ∼ F/M . The holomorphic
A-parameters are then parametrically of the same order (up to model-dependent couplings
and flavor suppressions), A ∼ m̃, independent of the messenger scale. In high-scale gravity
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mediated supersymmetry breaking, the messenger scale is the Planck scale, M ∼ MP , and
m̃ ∼ m3/2 ∼ F/MP .

The existence of the coupling (34) requires non-trivial flavor interactions at the mes-
senger scale, or equivalently that the supersymmetry-breaking sector field(s) Z transform
non-trivially under flavor. Flavor must therefore be intimately linked to the transmission
and/or breaking of supersymmetry. Specifically, the flavor symmetries (for fermions with
soft radiative masses) are either broken explicitly by the messenger sector interactions and/or
spontaneously in the supersymmetry-breaking sector. As discussed in section III, second-
and third-generation radiative masses require A ∼ m̃. So in this case the flavor scale can-
not be greater than the messenger scale. Alternatively, for first-generation radiative masses,
which require somewhat smaller tri-linear A-terms, there could be a small hierarchy between
the messenger and flavor scales, so that the operators (34) possess an additional suppression
M/Mflav in this case, where Mflav is the flavor scale.

In addition to the soft tri-linear couplings arising from (34), with auxiliary expectation
values F , superpotential Yukawa couplings in general arise with scalar expectation values A.
The latter case of scalar expectation values, or spurions in the low-energy theory, which give
rise to Yukawa couplings, is nothing but the well-known Froggatt–Nielsen mechanism [1],
with the hierarchies in the Yukawa coupling matrix arising from the ratio A/M . The soft
breaking of chiral flavor symmetries considered here may therefore be thought of as a version
of the Froggatt–Nielsen mechanism in which auxiliary spurions break chiral flavor symmetries
rather than scalar spurions. In order for the induced Yukawa couplings to be unimportant
the scalar expectation values must be insignificant, A � M , or vanish. This is the case
if all scalar expectation values in the supersymmetry-breaking sector are small respect to
the messenger scale. This could occur, for example, in a renormalizable hidden sector with
high-scale mediation for which A/M ∼ m3/2/

√F � 1.

Since the breaking of chiral flavor symmetries must be linked with the messenger and/or
supersymmetry-breaking sectors, there are additional operators beyond (34) which have non-
trivial flavor transformation properties in the low-energy theory. In particular, no symmetry
can forbid operators of the form

1

M2

∫
d2θd2θ̄ Z†ZΦ†Φ , (35)

where Φ = ΦL or ΦR. With auxiliary expectation values, these operators give rise to soft
scalar masses in the visible sector, m̃ 2φ∗φ, where m̃ ∼ F/M . Arbitrary breaking of flavor
symmetries in the scalar masses of course leads in general to unacceptable flavor-changing
neutral currents. The specific magnitude of the flavor breaking depends on the precise
flavor structure of the operators (35) and/or on how the flavor symmetries are broken by
the auxiliary expectation values, and may be minimized in particular models. In addition,
the problem of excessive flavor-changing can be largely ameliorated if the scalar partners of
the first generation, and to a lesser extent those of the second generation, are much heavier
than the electroweak scale [19], as discussed in section III.

The form of the coupling (34) between the visible and supersymmetry-breaking sectors,
and the subsequent absence of tree-level superpotential Yukawa coupling, can be enforced
by discrete or continuous flavor or R-symmetries. For example, a Z2 R-symmetry [28]
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under which Z → −Z and HαΦLΦR → −HαΦLΦR allows the coupling (34) but forbids a
superpotential Yukawa coupling. This is easily extended to continuous U(1)R symmetries,
or specific flavor symmetries under which Z transforms.

Non-holomorphic tri-linear soft terms can only arise from Kähler potential terms rather
than from the superpotential. The lowest-order operator that gives rise to such terms is of
the form

1

M3

∫
d2θd2θ̄ ZZ†H†

αΦLΦR . (36)

Non-vanishing auxiliary terms give rise to soft tri-linear terms, A′H∗
αφLφR, with A′ ∼

F2/M3 ∼ m̃ 2/M . Because of the dimensionality of the Kähler potential, these non-
holomorphic tri-linear terms are suppressed for a messenger scale well above the super-
symmetry breaking by O(m̃/M). This non-holomorphic source of chiral flavor breaking can
therefore be relevant only with a low scale for both flavor and supersymmetry breaking. In
this case the small ratio A/m̃ ∼ 10−3 required for first-generation radiative masses could
arise wholly or in part from the ratio of the electroweak to messenger/flavor scale(s), m̃/M .

VI. ANOMALOUS MAGNETIC MOMENTS

With soft chiral flavor breaking, radiative fermion masses arise from effective operators
generated at the superpartner mass scale. The same virtual processes which give rise to the
fermion mass also generate other chirality violating operators below the superpartner scale.
The experimentally most important of these operators is the fermion anomalous magnetic
moment. As shown in fig. 8, the anomalous magnetic moment arises from the same one-
loop diagram which gives rise to the fermion mass shown in fig. 1, with an external photon
coupling to the virtual scalar partner. Since the mass and magnetic moment both arise at

x

x

µR µL

γ

B̃

µ̃R

µ̃L

FIG. 8. One-loop radiative contribution to the muon anomalous magnetic moment from soft
chiral flavor violation and Bino mass.

one loop with the same chiral structure, the supersymmetric contribution to the dimension-
six operator, which gives a fermion anomalous magnetic moment, af ≡ 1

2
(g − 2), is given

parametrically by aSUSY
f ∼ m2

f/m̃
2, where m̃ = max(mf̃1

, mf̃2
, mλ). Notice that this is

not suppressed by a loop factor even though it arises perturbatively. Anomalous magnetic
moments suppressed by the relevant heavy mass scale without a loop factor suppression
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are a generic feature of any theory of radiative fermion masses [29]. The relatively large
supersymmetric contribution to the magnetic moments is in analogy to the relatively large
Higgs Yukawa radii discussed in section IIB, which also are effectively not suppressed by
a loop factor. In fact, in the present scenario for radiative fermion masses, any chirality-
violating operator generated at the superpartner mass scale is effectively a loop factor larger
than with tree-level Yukawa couplings.

The best measured fermion magnetic moment in relation to its mass squared is by far
that of the muon. If the muon mass arises radiatively from soft chiral flavor violation, the
loop function for the anomalous magnetic moment can be related to that for the radiative
mass

aSUSY
µ = +2m2

µ

∑
j Kj

µ mχ̃0
j
Ig−2(m

2
µ̃1

, m2
µ̃2

, m2
χ̃0

j
)∑

j Kj
µ mχ̃0

j
I(m2

µ̃1
, m2

µ̃2
, m2

χ̃0
j
)

. (37)

The loop function Ig−2(m
2
µ̃1

, m2
µ̃2

m2
χ̃0

j
) and details of the calculation are given in appendix B.

From the general expressions given in the appendix, one has

Ig−2(m
2
µ̃1

, m2
µ̃2

, m2
λ)

I(m2
µ̃1

, m2
µ̃2

, m2
λ)

∼ 1

6m̃ 2
; m̃ = max(mf̃1

, mf̃2
, mλ) , (38)

where the prefactor 1/6 arises for degenerate superpartners. The supersymmetric contri-
bution to the muon anomalous moment is then aSUSY

µ ∼ m2
µ/(3m̃ 2). This result differs

in a number of ways from the supersymmetric contribution with tree-level Yukawa cou-
plings, which is dominated by chargino exchange over much of the parameter space and is
aSUSY

µ ∼ (g2/16π2)(m2
µmZ tan β/m̃ 3) [30]. Besides not being suppressed by a loop factor,

the anomalous magnetic moment obtained in the radiative mass scenario is dominated by
Bino exchange. Because of the absence of a chargino contribution, which vanishes without a
tree-level Yukawa, it is largely independent of tanβ. Finally, it is necessarily positive. The
positivity may be understood from the real space form of the radiative magnetic moment
amplitude. The external low frequency photon field couples to the scalar partner virtual
cloud, which necessarily has the same charge as the fermion, and in real space necessarily
has positive extent. In addition, the radiative mass and contribution to the magnetic mo-
ment have the same fermionic chiral structure as that arising from the virtual neutralino.
It then follows that the supersymmetric contribution to the magnetic moment has the same
sign as the minimal Dirac term. The positivity of the supersymmetric contribution to the
anomalous magnetic moment is an interesting feature and a definite prediction of radiative
fermion masses from soft chiral flavor breaking. With a tree-level Yukawa coupling, the
supersymmetric contribution is correlated with sgn(µ) over much of the parameter space,
and can have either sign [30].

The anomalous magnetic moment (37) is plotted in fig. 9 as a function of the fractional

smuon mass-squared splitting, φµ, for various values of the ratio ρB̃
µ in the pure gaugino limit.

Note that the dependence on the A- or A′-parameter, or equivalently the smuon left–right
mixing angle, is implicitly contained in the muon mass mµ, so that aSUSY

µ is only a function
of the superpartner mass spectrum through the loop functions. The current experimental
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FIG. 9. Supersymmetric contribution to the muon anomalous magnetic moment,
aµ ≡ (gµ−2)/2, for a radiative muon mass, as a function of the fractional smuon mass splitting
φµ. The anomalous moment is given in units of (mB̃/300 GeV)−2 for various values of the ratio
ρB̃

µ , neglecting neutralino mixing effects. The current experimental bound of anew
µ < 220 × 10−10

is indicated for comparison, and already constrains the parameter space for low values of mB̃ and
ρµ.

measurement of aexp
µ [31] is in good agreement with the theoretical calculations, which include

O(α5) QED corrections and hadronic vacuum polarization to O(α3) [32]. This agreement
allows to put a bound on positive, non-standard model contributions of anew

µ < 220× 10−10

at the 95% CL [31,32], which is indicated in fig. 9 for comparison. If the muon mass
arises radiatively, the current bound already rules out mµ̃1,2

<∼ 400 GeV for mB̃
<∼ mµ̃1,2 .

The Brookhaven E821 muon g − 2 experiment is expected to reach a level of sensitivity of
δaexp

µ ∼ 4 × 10−10 [33]. If all the standard model contributions can be calculated to this

precision, smuon masses up to mµ̃1,2 ∼ 3 TeV can be probed for mB̃
<∼ mµ̃1,2 if the muon

mass is radiative. The muon anomalous magnetic moment is by far the best experimental
probe of a radiative muon mass arising from soft chiral flavor violation.

If the muon mass does arise radiatively, the indirect constraints on the superpartner
masses from the experimental bound on anew

µ discussed above may be used to give an upper
limit on the enhancement of the effective Higgs Yukawa coupling over the mass Yukawa,
rµ = h̄f(〈Hα〉/mµ).

For fixed φµ and ρB̃
µ this bound, mµ̃1,2

>∼ 400 GeV for mB̃
<∼ mµ̃1,2 , may be translated into

a lower limit on the combination m3
B̃

ρB̃
µ I(m2

µ̃1
, m2

µ̃2
, m2

B̃
), which is related to the radiative
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FIG. 10. Upper limit on the Higgs–Yukawa enhancement parameter rµ,H(0) at zero momen-
tum transfer for a radiative muon mass as a function of the smuon mass squared splitting φµ,
for various values of the ratio ρB̃

µ . The upper limit follows indirectly from the current experimen-
tal constraint on non-standard model contributions to the muon anomalous magnetic moment of
anew

µ < 220× 10−10.

muon mass (6). Given the known muon mass, this may then be used to place an upper limit
on the smuon mixing angle sin 2θµ using (6). Finally, these bounds may all be put together
to bound the q2 = 0 effective Higgs Yukawa coupling ratio rµ,H(0), using (9) and (10). This
upper limit on rµ,H(0) from the current experimental bound on anew

µ is given in fig. 10. For

φµ
<∼ 0.6–0.7, the current experimental bound on anew

µ provides no limit on sin 2θµ, and the
maximum value of rµ,H(0) just follows from (9) and (10) with sin 2θµ = 1 (compare fig. 4).
This is because, in this region of fractional smuon mass squared splitting φµ, the correct
value of the muon mass is obtained only with relatively massive superpartners, which are
not bounded by anew

µ . However, for φµ
>∼ 0.6–0.7 the current bound on anew

µ does provide
a non-trivial limit on sin 2θµ. This is reflected in the maximum value of rµ,H(0) shown in
fig. 10. As discussed in detail in section VIII, the ratios rµ,H(m2

h) and rµ,H(m2
H) could also be

probed at a µ+µ− collider by direct measurement of the Higgs–muon coupling. This would
give additional sensitivity to possible momentum dependence of the Higgs–muon couplings.
However, the Brookhaven E821 muon g−2 experiment will in general be much more sensitive
to a radiative muon mass.

The limits on Higgs coupling enhancements for a radiative muon mass implied by the
current experimental bound on the muon anomalous magnetic moment may be extended to
other fermions with radiative masses, if assumptions about relations within the superpartner
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FIG. 11. Upper limit on the Higgs–Yukawa enhancement parameter rb,H(0) at zero momentum
transfer for a radiative b-quark mass as a function of the sbottom mass splitting φb, for various
values of the ratio ρg̃

b = ρB̃
µ , and assuming φb = φµ. The upper limit follows indirectly from

the current experimental constraint on non-standard model contributions to the muon anomalous
magnetic moment of anew

µ < 220×10−10 under the assumption of gaugino unification mass relations.
The bound is only obtained if both the muon and b-quark obtain mass radiatively from soft chiral
flavor breaking.

mass spectrum are postulated. The Higgs–b-quark coupling may be well measured at future
colliders, as detailed in section VIII. If both the muon and b-quark masses arise radiatively,
an upper limit on rb,H(0) can be obtained indirectly from the anew

µ experimental bound.
For example, assuming i) that there is a gaugino unification relation between the Bino and

gluino masses, (mg̃ = 3
5
(αs/α

′)mB̃ ' 6 mB̃), ii that ρB̃
µ = ρg̃

b , iii that fractional smuon and
sbottom mass squared splittings are the same (φµ = φb), iv that the b-quark mass has the
known value, the bound on anew

µ may be translated into the analogous indirect bound on
rb,H(0) given in fig. 11. The constraint implied on the Higgs–b-quark coupling is more severe
than that for the Higgs–muon coupling simply because, under the assumption of gaugino
unification, the strongly interacting superpartners, which radiatively generate the b-quark
mass, are somewhat heavier than the weakly interacting superpartners, which generate the
muon mass; and rf,H(0) → 1 in the superpartner decoupling limit. Other assumptions for
the relations between the b-squark and smuon masses and the gaugino masses would yield
different bounds on rb,H(0). If the muon mass is tree-level, or if no relations are assumed,
then of course no indirect bound on the Higgs–b-quark coupling for a radiative b-quark mass
can be gleaned from the muon anomalous magnetic moment.
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It is also possible, in general, for flavor-changing electromagnetic- and chromo-dipole
operators to be generated, depending on the precise textures that appear in the scalar
partner mass matrices. Within any specific model for the soft and hard textures in the
Yukawa couplings, such flavor-changing dipole operators may give the most interesting low-
energy probe of supersymmetric flavor violation. These are, however, very model-dependent
and outside the scope of this work. In the scenario discussed in section III, in which all the
down-type quarks gain a mass radiatively, in the limit of degenerate squarks in each sector, all
the transition quark dipole moments vanish. In the same scenario, but with non-degenerate
squarks and down-type quark number conserved, all supersymmetric contributions to the
flavor-changing down-type dipoles associated directly with the radiative masses also vanish,
and likewise for the analogous scenario with radiative electron and/or muon masses.

VII. CP VIOLATION

In generic supersymmetric theories, virtual contributions to low-energy CP-violating
operators, such as electric dipole moments (EDMs) and CP-odd Higgs–fermion couplings,
appear due to the presence of intrinsic supersymmetric CP-violating phases. The flavor-
conserving phases reside in the complex Lagrangian parameters: A- or A′-terms, the gaugino
masses, mλ, the Higgsino mass term µ, and the scalar Higgs mass coupling m2

12. In the case
of hard tree-level Yukawa couplings, contributions to the EDMs of the neutron and atoms
are generated at one loop. For superpartners at the electroweak scale, these contributions
are relatively large with respect to current experimental bounds. The apparent requisite
smallness of the intrinsic phases, typically 10−2–10−3 [29,34,35], is generally referred to as
the SUSY CP problem.

With radiative fermion masses arising from soft chiral flavor breaking, the masses and
possible CP-violating operators both arise at the one-loop level. At first sight, the lack of
suppression of the CP-violating operators by a relative loop factor would appear to result in
an even worse SUSY CP problem with the scenario for radiative masses presented here. In
this scenario, however, the phases of chirality-violating operators can be aligned to a very
high precision with the phase of the relevant fermion mass. This occurs because the radiative
fermion mass and chirality-violating operators arise from very similar diagrams with similar
phase structure, as shown in fig. 3 for the Higgs couplings, and fig. 8 for the electromagnetic
dipole moment. The natural alignment can significantly suppress the magnitude of such CP-
violating operators and may in fact provide an effective solution to the SUSY CP problem
within the context of radiatively generated fermion masses. If the light-quark masses arise
radiatively, the neutron EDM is highly suppressed, as detailed below, and is compatible
with the current experimental bounds [36]. The electron EDM is in general not as strongly
suppressed. However, as described below, if the electron mass arises radiatively, there are
interesting regions of superpartner parameter space in which it is also sufficiently suppressed.

A CP-odd observable associated with a chirality and CP-violating effective operator such
as an EDM is proportional in a general basis to the sine of the relative phase between the
mass m and the coefficient of the chirality-violating operator d:

sin (Arg(dm∗)) .
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In terms of field redefinitions, this implies that, the CP-odd observable is proportional to the
imaginary part of the coefficient of the effective operator in a basis in which the fermion mass
is taken to be real. In the absence of tree-level Yukawa couplings, gauge invariance implies
that only the neutralinos, and for quarks the gluino, contribute to the radiative mass at one
loop, as noted in section II. The same is true of radiative contributions to the chirality-
violating dipole moments and Higgs–fermion couplings. The full one-loop contributions to
the (in general complex) mass m and to the dipole coefficient or Higgs-fermion coupling d
then are:

m =
∑
j

mj , d =
∑
j

dj, (39)

where the sums are over the individual contributions of each neutralino, and gluino in
the case of quarks. In general, the phases of each individual contribution are not related,
Arg(mim

∗
j) 6= 0 and Arg(did

∗
j ) 6= 0. However, the one-loop contribution of any given neu-

tralino or gluino to the mass does have exactly the same phase as the corresponding contri-
bution to the dipole coefficient or Higgs–fermion coupling,

Arg(djm
∗
j ) = 0. (40)

This is because the individual one-loop contributions to the mass and dipole moment only
differ diagrammatically by the coupling to an external electromagnetic field, so that they
necessarily have the same over-all phase up to a possible sign. Neglecting any scalar–
pseudoscalar Higgs mixing induced by CP violation in the Higgs potential (which vanishes
at tree-level in the MSSM), the same is true of the Higgs–fermion couplings. For the dipole
coefficient, this can be seen explicitly by comparing eqs. (3) and (B4) and for the Higgs–
fermion coupling directly from eq. (7). The arguments and results given in section VI for
the positivity of the anomalous magnetic moment further imply that the contribution of any
given neutralino or gluino to the mass and electromagnetic dipole are in fact aligned rather
than anti-aligned with opposite sign.

The automatic alignment of the individual one-loop contributions (40) has some interest-
ing consequences in the case that a single neutralino or gluino dominates the total radiative
effects. This is in fact expected to be the case for radiative quark masses, and in certain
regions of parameter space for radiative lepton masses, as described in detail below. If the
i-th contribution dominates the sums (39), so that |mj/mi| � 1 and |dj/di| � 1 for j 6= i,
the physical CP-violating phase of the effective operator is approximately

sin (Arg(dm∗)) '∑
j 6=i

(∣∣∣∣∣dj

di

∣∣∣∣∣−
∣∣∣∣mj

mi

∣∣∣∣
)

sin (Arg(mjm
∗
i )) , (41)

where (40) has been used. The leading contribution alone does not give rise to a physical
phase because of the automatic alignment of individual contributions noted above in (40). A
non-zero physical phase only arises from interference between the leading and subdominant
contributions. This leads to the suppression factor in parenthesis, multiplying the intrinsic
phase contributions to the physical phase. From expression (41) it is apparent that the
physical CP-violating phase may be suppressed by any of the following conditions:
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1. The subdominant contributions are much smaller than that of the leading diagram:
|mj/mi| � 1 and |dj/di| � 1.

2. The relative magnitudes of the subdominant contributions to both the mass and dipole
moment operator are nearly equal: |mj/mi| ' |dj/di|.

3. The phase of the dominant and subdominant contributions are nearly equal:
sin (Arg(mjm

∗
i )) � 1.

As detailed below, the first effect significantly suppresses both CP-violating Higgs–quark cou-
plings and quark EDMs; the second effect strongly suppresses CP-violating Higgs–fermion
couplings and EDMs in some regions of parameter space; and the third effect further sup-
presses CP-violating Higgs-quark couplings and quark EDMs under the assumption of strict
gaugino mass unification.

Consider first the possible CP-violating couplings of the Higgs bosons to fermions. The
CP-conserving and -violating couplings of the lightest Higgs boson to fermions, through
scalar and pseudoscalar fermion bilinears respectively, are

L ⊃ |λh0| cos
(
Arg(m∗

fhf,H)
)

ffh0 + |λh0| sin
(
Arg(m∗

fhf,H)
)
fiγ5fh0 , (42)

where the magnitude of the Higgs coupling is |λh0| = Θ{cos β, sinβ}|hf,H |/
√

2, where the
first (second) term in brackets is for α = 1 (2), and Θ is the h0 mixing coefficient given in sec-
tion VIII. Couplings to other Higgs bosons have similar forms, with scalar and pseudoscalar
fermion bilinears exchanged for the pseudoscalar Higgs A0. The full expression for the (in
general complex) radiatively generated Yukawa coupling, hf,H , is a sum over the neutralino

contributions, and for quarks, the gluino contribution. Neglecting B̃–W̃3 mixing, only the
Bino, and for quarks the gluino, contributes at one loop. For a radiative quark mass, in this
limit the ratio of Bino contribution to the quark mass, mB̃

q , to that of the gluino mg̃
q , from

the general expression for a radiative fermion mass (3) is∣∣∣∣∣∣m
B̃
q

mg̃
q

∣∣∣∣∣∣ = 3α′

16αs

∣∣∣∣∣mB̃

mg̃

∣∣∣∣∣YqL
YqR

I(mq̃1, mq̃2 , mB̃)

I(mq̃1 , mq̃2, mg̃)
, (43)

where mB̃ and mg̃ are in general complex, but throughout the masses appearing in the loop
functions are understood to be the real positive mass eigenvalues. For up- and down-type
quarks the product of hypercharges are YuL

YuR
= 4

9
and YdL

YdR
= −2

9
respectively. The

Bino contribution to the radiative mass is naturally suppressed for a number of reasons.
The individual contributions are proportional to the gauge couplings squared times the
chirality-violating gaugino mass. Under the assumption of gaugino-mass unification for the
magnitudes of the gaugino masses, |mB̃/mg̃| = 5

3
α′/αs, this results in a suppression of

mB̃α′/(mg̃αs) = 5
3
α′2/α2

s ∼ 10−2. The ratio of loop functions is not particularly small in
this limit: I(mq̃1, mq̃2, mB̃)/I(mq̃1, mq̃2, mg̃) ∼ 2, and equals 2 for mq̃1 = mq̃2 = mg̃ � mB̃.
In addition, the color factor and the product of hypercharges give a suppression 3

16
YqL

YqR
∼

10−1. Numerically, then, |mB̃
q /mg̃

q | <∼ 10−3, so the situation discussed above in which a single
contribution dominates is achieved.
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The ratio of Bino to gluino contributions to the Higgs–quark coupling (7) is very similar
to the ratio for the radiative mass (43), modified only by the ratios of Higgs to mass effective
Yukawa couplings defined in (10). Altogether then, the coefficient of the CP-violating Higgs–
quark couplings in (42) in the approximation (41) is

sin
(
Arg(m∗

qhq,H)
)
' 3α′

16αs

∣∣∣∣∣mB̃

mg̃

∣∣∣∣∣YqL
YqR

1− rB̃
q,H(m2

h0)

rg̃
q,H(m2

h0)

 I(mq̃1, mq̃2 , mB̃)

I(mq̃1 , mq̃2, mg̃)

× sin
(
Arg(mB̃m∗

g̃)
)
, (44)

where rB̃
q,H(m2

h0) and rg̃
q,H(m2

h0) are the ratios of Higgs Yukawa coupling at q2 = m2
h0 to

mass Yukawa coupling for the Bino and gluino contributions respectively. The physical CP-
violating phase arises from the interference between the Bino and gluino contributions. It
is proportional to the relative phase between the Bino and gluino masses, and is suppressed
because of the small magnitude of the subdominant Bino contribution. In addition, the
factor (1 − rB̃

q,H(m2
h0)/r

g̃
q,H(m2

h0)) reflects the second of the general suppressions mentioned
above, leading to the alignment of the phases when the relative contributions of the Bino
to both the mass and Higgs couplings are similar to those of the gluino. Since the loop
functions for the mass and Higgs couplings are so similar, this is generally a non-trivial
suppression, especially if the superpartners are much heavier than the Higgs boson, for
which rf,H(m2

h0) → 1. As discussed in section VI, if both a quark mass and the muon mass
arise radiatively, the current limit on the muon anomalous magnetic moment can be used
to bound rq,H(0) if certain relations are assumed within the superpartner mass spectrum.
For mq̃i

∼ mg̃ the bounds on rg̃
q,H(0) shown in fig. 11, obtained under the assumption

of gaugino unification for the magnitude of the gaugino masses, also approximately apply
to rB̃

q,H(0). In this case the q2 = m2
h0 corrections should be quite small. With all these

assumptions, this additional suppression from the bounds in fig. 11, is conservatively (1 −
rB̃
q,H(m2

h0)/r
g̃
q,H(m2

h0)) <∼ 10−1. Taken together all these suppressions imply that the CP-
violating Higgs–quark couplings for a quark with a radiative mass are naturally small, i.e.
sin(Arg(m∗

qhq,H)) <∼ 10−(3−4) sin(Arg(mB̃m∗
g̃)). In addition, under the assumption of strict

gaugino unification, mg̃ = mW̃ = mB̃ at the unification scale, the phases of the gaugino
masses are also correlated. This is the final source of possible suppressions of the physical
phases mentioned above. In this case Arg(mB̃m∗

g̃) = 0 at lowest order, and the CP-violating
Higgs–quarks couplings vanish at one loop in the pure Bino limit. The only contributions
at this order arise from gaugino-Higgsino mixing effects.

For radiative lepton masses, in the pure gaugino limit, the B̃–W̃3 mixing vanishes, so only
the Bino contributes at one loop to both the radiative mass and Higgs Yukawa couplings
of leptons. The phases are then precisely aligned at one loop and the CP-violating Higgs
couplings vanish in this limit. Neutralino mixing through electroweak symmetry breaking
can however introduce non-trivial phases. In the mostly gaugino or Higgsino region of
parameter space, the dominant radiative contributions come from the mostly Bino state,
denoted χ̃0

1 ' B̃, as discussed in section II. Thus the approximation (41) for the CP-violating
Higgs–lepton couplings may be employed. Summing over the neutralino contributions to the
radiative fermion mass (3) and to the effective Higgs Yukawa coupling parametrized by the
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ratios (10), yields:

sin (Arg(m∗
l hl,H)) '

4∑
j=2

∣∣∣∣∣∣
Kj

l mχ̃0
j

K1
l mχ̃0

1

∣∣∣∣∣∣
1− r

χ̃0
j

l,H(m2
h0)

r
χ̃0

1
l,H(m2

h0)

 I(ml̃1
, ml̃2

, mχ̃0
j
)

I(ml̃1
, ml̃2

, mχ̃0
1
)

× sin
(
Arg

(
Kj

l mχ̃0
j
K1∗

l mχ̃0∗
1

))
, (45)

where Kj
l are the neutralino coupling coefficients defined in eq. (4). In the mostly gaugino or

Higgsino region of parameter space, the neutralino mixing may be treated perturbatively. To
first order in mixing, the product of neutralino eigenvectors in (4) is unmodified, Kj

l = 1
2
δj1,

and the physical phase vanishes at this order. To second order, however, a non-trivial phase
dependence in the interference terms is introduced by mixing. At this order the Bino mixes
with the Higgsino states, giving a small coupling Kj

l ∼ O(m2
Z/m̃2) for j the mostly Higgsino

states, where m̃ = max(mB̃, µ). The physical phase then arises as an interference between
the mostly Bino and Higgsino states. The intrinsic phase that appears on the right-hand
side of (45) is therefore the phase between the masses of the mostly Bino and Higgsino
states, Arg(mB̃µ(m2

12)
∗), where V ⊃ −m2

12H1H2 + h.c. determines the phase of the Higgs
condensate in a general basis.

In the mostly gaugino or Higgsino region of parameter space, the contribution of the
intrinsic phase to the physical CP-violating phase is further suppressed beyond the small
Kj

l couplings of the mostly Higgsino states. The ratio of the loop functions in (45) can
be small. For mB̃, µ � ml̃ this ratio is of O(1). It is, however, small for mB̃

<∼ ml̃ � µ,
i.e. I(ml̃1

, ml̃2
, mχ̃0

j
)/I(ml̃1

, ml̃2
, mχ̃0

1
) ∼ m2

l̃
/µ2. In addition, the relative contribution of

the mostly Higgsino states to the mass and Higgs-lepton couplings can be very similar,

causing the factor (1− r
χ̃0

j

l,H(m2
h0)/r

χ̃0
1

l,H(m2
h0)) to give a significant suppression. This relative

suppression is dominated by the largest individual deviation from unity of the ratios r
χ̃0

i
l,H , i =

1, . . . , 4. From the discussion in section IIB, the D-term and finite-momentum contributions

to rχ̃0
j decouple most slowly. For m2

h0 ∼ m2
Z , these are both parametrically r

χ̃0
i

l,H ∼ 1 +
O(m2

Z/m̃′2), where m̃′ = max(mχ̃0
i
, m̃l). This suppression, due to the relative similarity of

the mostly Higgsino contributions to both the mass and Higgs couplings, can be understood
in terms of the effective operator discussion of the Yukawa couplings given in section IIB. At
the renormalizable level a single operator, namely the effective Yukawa coupling, contributes
to both the mass and Higgs couplings. This operator has a definite phase, even if more

than one neutralino contributes. The deviations (1 − r
χ̃0

j

l,H(m2
h0)/r

χ̃0
1

l,H(m2
h0)) represent non-

renormalizable operators, which give different contributions to the mass and Higgs effective
Yukawa couplings. Thus, it is only the interference between the renormalizable Yukawa
coupling, and the non-renormalizable operators that gives rise to a physical phase.

The total suppression of the CP-violating Higgs–lepton coupling can be substantial in the
mostly gaugino or Higgsino region of parameter space. Alltogether, the following parametric
suppression of the physical phase is obtained:

sin (Arg(m∗
l hl,H)) ∼ O(m4

Z/(µmB̃m2
l̃
)) sin(Arg(mB̃µ(m2

12)
∗)) ,
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for mB̃
<∼ µ � ml̃, and

sin (Arg(m∗
l hl,H)) ∼ O(m4

ZmB̃/(µ3m2
l̃
)) sin(Arg(mB̃µ(m2

12)
∗)) ,

for mB̃
<∼ ml̃ � µ. If the superpartners are somewhat heavier than the Z boson, the

suppression can be significant, yielding very small CP-violating Higgs–lepton couplings.

Now consider the EDM of the neutron and electron in the case where the light-quark and
electron masses are radiative. The discussion parallels that of the Higgs Yukawa couplings
in many respects. For the neutron EDM, the dominance of the gluino contribution to light-
quark radiative masses turns out to be sufficient, on its own, to render the supersymmetric
contribution compatible with current experimental bounds. For the electron EDM, the
suppression depends sensitively on the neutralino masses and mixings as described below.

From the definitions in appendix B, a fermion EDM, de
f , is related to the complex

coefficient of the electromagnetic dipole operator, df , by eq. (B2)

de
f = |df | sin

(
Arg(dfm

∗
f)
)

.

For a radiative quark mass, neglecting B̃–W̃3 mixing, only the gluino and Bino contribute
to chirality-violating operators at one loop. The gluino contribution is likely to dominate
the Bino contribution, as illustrated in (43) and discussed above. Given the dominance of a
single contribution, the approximation (41) may be employed for the relative phase of the
mass and dipole-moment coefficient. The magnitude of the Bino and gluino contributions to
the dipole-moment coefficient may be obtained from eqs. (B4) and (B9) respectively. With
this, the leading contribution to the EDM of a quark with radiative mass is

de
q '

3α′

8αs

∣∣∣∣∣mB̃

mg̃

∣∣∣∣∣ eQqYqL
YqR

mq
Ig−2(mq̃1 , mq̃2, mg̃)

I(mq̃1 , mq̃2, mg̃)
sin

(
Arg(mB̃m∗

g̃)
)

×
(

Ig−2(mq̃1 , mq̃2, mB̃)

Ig−2(mq̃1, mq̃2, mg̃)
− I(mq̃1 , mq̃2, mB̃)

I(mq̃1 , mq̃2, mg̃)

)
. (46)

The EDM arises from the interference between the subdominant Bino contribution and lead-
ing gluino contribution, and is proportional to the relative phase between the gluino and
Bino masses. It is suppressed not by a relative loop factor, but by the small magnitude
of the Bino coupling, in analogy to the suppression of the CP-violating Higgs–quark cou-
plings. Under the assumption of unification of gaugino masses, |mB̃/mg̃| = 5

3
α′/αs, the

factor mB̃α′/(mg̃αs) = 5
3
α′2/α2

s results in a suppression ∼ 10−2. In addition, the prod-
uct of color factor and gauge couplings gives a further suppression 3

8
QqYqL

YqR
∼ 10−1.

The difference of the ratio of loop functions in the parenthesis in (46) need not be par-
ticularly small, since the mass and dipole loop functions are very different. In the limit
mg̃ = mq̃1 = mq̃2 = m̃ � mB̃, the difference approaches (· · ·) → 4. So unlike the case of
the Higgs–quark CP-violating couplings, there is generally no suppression coming from a
relative similarity of Bino contributions to the mass and dipole moment. From the general
expressions in appendices A 2 and B, the over-all ratio of loop functions appearing in (46)
is Ig−2(mq̃1 , mq̃2, mg̃)/I(mq̃1, mq̃2 , mg̃) ∼ 1/(6m̃2), where the prefactor arises for mg̃ = mq̃1 =
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mq̃2 = m̃. The heaviest particle in the gluino loop contribution sets the scale for the EDM
operator. Explicitly, for an up-type quark with radiative mass and mB̃ � mq̃

<∼ mg̃, the

up-quark EDM is de
u ∼ e(2/27)(α′/αs)(mu|mB̃|/|mg̃|3) sin

(
Arg(mB̃m∗

g̃)
)
, where the specific

prefactor arises for mq̃ = mg̃ � mB̃.

If the first-generation-quark masses arise radiatively, the up- and down-quark EDMs (46)
may be used to estimate the neutron EDM. In this case, the EDMs are related by de

d =
1
4
(md/mu)d

e
u. The valence approximation for the neutron EDM in the SU(2) limit is de

n =
4
3
de

d − 1
3
de

u. The resulting neutron EDM from the first-generation quark EDMs is plotted

FIG. 12. Leading supersymmetric contribution to the neutron electric dipole moment in units
of e · cm with radiative masses for the first-generation quarks as a function of the fractional squark
mass splitting, φu = φd. The SU(2) valence quark approximation and equal up- and down-squark
mass eigenvalues are assumed. The modulus of the Bino and gluino masses are assumed to be
related by gaugino mass unification, and the electroweak scale masses for the valence quarks are
taken to be mu = 1 MeV and md = 5 MeV. The intrinsic CP-violating phase is the relative phase
between the Bino and gluino masses, sin θ ≡ sin(Arg(mB̃m∗

g̃)).

in fig. 12 as a function of the fractional mass splitting between squarks. Gaugino mass
unification is assumed for the ratio of the Bino and the gluino mass, |mB̃/mg̃| = 5

3
α′/αs, and

the electroweak scale masses for the quarks are taken to be mu = 1 MeV and md = 5 MeV.
Renormalization group running to the QCD scale would increase de

n slightly.

If the first-generation quark masses do in fact arise radiatively, the leading contribution
to the neutron EDM in the valence approximation given in fig. 12 is easily compatible with
the current experimental bound of |de

n| < 1.0 × 10−25 e · cm, at the 90% CL [37]. Light-
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quark chromo-electric dipole moments (CDMs) can also contribute to the neutron EDM [38].
However, the phases of the chromo-dipole coefficients are also naturally nearly aligned with
that of the mass, just as for the EDMs, resulting in a suppression very similar to that of
the light-quark EDMs given in (46) and discussed above. With this, estimates of the light-
quark CDM contribution to the neutron EDM [38] are very similar to that of the light-quark
EDMs. The strange sea content of the neutron may also allow comparable contributions to
the neutron EDM from the strange quark EDM and CDM [39]. If the strange quark mass
arises radiatively, however, these moments are also significantly suppressed. So if the three
lightest quark masses arise radiatively from soft chiral flavor breaking, the present SUSY CP
problem for the neutron EDM is essentially eliminated by the natural phase alignment. But,
depending on the superpartner mass spectrum and relative phase of the gluino and Bino
masses, Arg(mB̃m∗

g̃), the neutron EDM could be not too far below the current experimental
bound.

Of course, if strict gaugino mass unification holds, in which the phases of the gaugino
masses are correlated so that Arg(mB̃m∗

g̃) = 0 at lowest order, the leading light-quark
contributions to the neutron EDM given above vanish, just as for the Higgs–quark CP-
violating couplings. In this case the neutron EDM receives contributions from light-quarks
with radiative masses mainly from neutralino mixing effects, which can be much smaller than
the leading contribution discussed above. There are also potentially small contributions from
pure glue operators arising from integrating out heavy quarks [40,41].

For radiative lepton masses, only the neutralinos contribute at one loop to both the dipole
moment and mass. Since both the electric and magnetic dipole moments are related to the
coefficient of the electromagnetic dipole operator by eqs. (B2) and (B3), it is convenient in
this case to relate the EDM to the supersymmetric contribution to the anomalous magnetic
moment and intrinsic CP-violating phases. For the lepton EDM, the full one-loop EDM
with a radiative mass, using the general expression for a radiative fermion mass (3) and
electromagnetic dipole moment (B4), may be written

de
l =

e aSUSY
l

2ml
tan

Arg

∑j Kj
l mχ̃0

j
Ig−2(ml̃1

, ml̃2
, mχ̃0

j
)∑

j Kj
l mχ̃0

j
I(ml̃1

, ml̃2
, mχ̃0

j
)

 (47)

where aSUSY
l is the supersymmetric contribution to the lepton anomalous magnetic moment,

given in eq. (37). In the pure gaugino limit, only the Bino contributes to both the mass and
dipole moment coefficient. The phases appearing in (47) are then aligned, and the one-loop
lepton EDMs vanish. In general, however, gaugino–Higgsino mixing through electroweak
symmetry breaking introduces non-vanishing phases.

In a region of neutralino parameter space in which there is strong mixing between gaugino
and Higgsino states, the phases that appear in (47) are generally not suppressed, potentially
leading to a sizeable lepton EDM. For example, if both the electron and muon masses
arise radiatively, the anomalous magnetic moments are related by aSUSY

e = (m2
e/m

2
µ)aSUSY

µ ,
assuming mẽL

= mµ̃L
and mẽR

= mµ̃R
. In this case the current experimental upper limit

on the muon anomalous magnetic moment of anew
µ < 220 × 10−10 [31,32] gives an upper

limit on the prefactor in (47) for the electron EDM of aSUSY
e e/(2me) < 10−23 e · cm. This

is to be compared with the current experimental bound on the electron EDM of roughly
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|de
e| < 3 × 10−27 e · cm [42]. Therefore in the well-mixed region of neutralino parameter

space, compatibility of the electron EDM with the current bound would require either small
relative intrinsic phases or a much smaller value of aSUSY

e than implied by the current bound
on anew

µ . The latter would in fact occur with very heavy selectrons.

In the mostly gaugino or Higgsino region of neutralino parameter space, however, the
physical CP-violating phase appearing in a lepton EDM can be significantly suppressed by
phase alignment. In this case the mostly Bino state dominates the contribution to both the
mass and dipole moment coefficient. The general expression for the physical phase (41) is
therefore applicable. The lepton EDM (47) in this limit then reduces to

de
l '

e aSUSY
l

2ml

4∑
j=2

∣∣∣∣∣∣
Kj

l mχ̃0
j

K1
l mχ̃0

1

∣∣∣∣∣∣
Ig−2(ml̃1

, ml̃2
, mχ̃0

j
)

Ig−2(ml̃1
, ml̃2

, mχ̃0
1
)
−

I(ml̃1
, ml̃2

, mχ̃0
j
)

I(ml̃1
, ml̃2

, mχ̃0
1
)


× sin

(
Arg(Kj

l mχ̃0
j
K1∗

l m∗
χ̃0

1
)
)
. (48)

Just as in the case of the Higgs–lepton couplings, neutralino mixing induced through elec-
troweak symmetry breaking may be treated perturbatively in this limit, with the coupling
coefficients Kj

l unmodified at first order. At second order in the mixing, a non-trivial phase
dependence is introduced by the mixing between the Bino and Higgsino states, with a small
coupling Kj

l ∼ O(m2
Z/m̃2) for j the mostly Higgsino states, where m̃ = max(mB̃, µ). The

leading intrinsic phase that appears on the right-hand side of (48) is then the phase between
the masses of the mostly Bino and Higgsino states, Arg(mB̃µ(m2

12)
∗). The suppression for

the relative similarity of the mostly Higgsino contributions to the mass and dipole coefficient,
contained in the difference of ratios of loop functions in the parenthesis in (48), although
not necessarily so, can be significant in certain regions of parameter space. For example, in
the limit mB̃

<∼ ml̃ � µ the difference factor (· · ·) in (48) is dominated by the ratio of mass
loop functions since the non-renormalizable dipole operator decouples more quickly than the
renormalizable effective Yukawa coupling. The relative contribution of the mostly Higgsino
state to the dipole coefficient is therefore insignificant, and the phase misalignment comes
mainly from the mostly Bino and Higgsino contributions to the radiative mass. Parametri-
cally, in this case, the term in parenthesis in (48) is (· · ·) ∼ O(m2

l̃
/µ2). Altogether then, in

this limit the lepton EDM is

de
l ∼

e aSUSY
l

2ml
O(m2

Zm2
l̃
/(µ3mB̃)) sin

(
Arg(mB̃µ(m2

12)
∗)
)
.

As another example, in the limit mB̃
<∼ µ � ml̃, the slepton masses set the scale for all

the loop functions, and the ratios of loop functions approach unity. The difference of loop
functions in (48) may be obtained from the results of appendices A 2 and B. Parametrically,
in this case, (· · ·) ∼ O(µ2/m2

l̃
). The lepton EDM in this limit is then

de
l ∼

e aSUSY
l

2ml

O(m2
Zµ/(mB̃m2

l̃
)) sin

(
Arg(mB̃µ(m2

12)
∗)
)
.

Note in addition that aSUSY
l is itself also suppressed in this limit, aSUSY

l ' m2
l /m

2
l̃
, for

ml̃L
= ml̃L

= ml̃ � mB̃. Obtaining a radiative mass for the electron is in fact possible
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with very heavy selectrons, since the effective renormalizable Yukawa coupling need not
vanish in the superpartner decoupling limit. As discussed in section III, very heavy first-
generation scalar partners could partially or fully account for the smallness of the first-
generation fermion masses. Depending on the specific superpartner masses and mixings, it is
possible for the physical phase appearing in the electron EDM to be suppressed sufficiently to
be compatible with the current experimental bound in the radiative electron mass scenario.

In summary, if the light-quark masses arise radiatively from soft chiral flavor breaking,
the supersymmetric contribution to the neutron EDM is significantly suppressed because of
the natural near-alignment of the phases of the dipole operators and fermion masses. This
suppression is numerically significant even though the EDM is not suppressed by a relative
loop factor. The leading contribution is proportional to the intrinsic CP-violating phase
sin(Arg(mB̃m∗

g̃), and is easily compatible with the current experimental bound. Depending
on the superpartner mass spectrum and Arg(mB̃m∗

g̃), the neutron EDM could be not too
far below the current experimental bound. However, with strict gaugino mass unification,
Arg(mB̃m∗

g̃) = 0, and the neutron EDM is likely to be well beyond the reach of currently
anticipated experiments. The electron EDM is also suppressed in the mostly gaugino or
Higgsino region of neutralino parameter space, where the leading contribution is proportional
to the intrinsic phase sin(Arg(mB̃µ(m2

12)
∗)). Unlike the neutron EDM, the magnitude of the

electron EDM in terms of this intrinsic phase is a very model-dependent function of the
neutralino mixings and superpartner masses. In plausible regions of neutralino and scalar
partner parameter space it can be consistent with current experimental limits. CP-violating
Higgs–fermion couplings are negligible with radiative masses.

VIII. PROBING THE STIFFNESS OF YUKAWA COUPLINGS

Radiative fermion masses generated at the superpartner mass scale require a relatively
large breaking of chiral flavor symmetries in scalar tri-linear terms, and imply that the effec-
tive Yukawa couplings are soft, as discussed in section II. This leads to various distinctive
effects, which can in principle be probed directly in high energy experiments, including:

1. Form factor effects for the effective Higgs Yukawa couplings, summarized in the ratios
rf,H(q2) and rf,A(q2).

2. “Wrong Higgs” couplings for radiative masses arising from non-holomorphic A′ oper-
ators.

3. Large left–right mixing for second-generation scalar partners.

4. Apparent, hard supersymmetry-breaking effects in Higgsino–matter couplings.

In this section the possibilities for detecting and measuring these effects are outlined. As
discussed below, one of the most useful tools would be the proposed µ+µ− collider, which can
produce the neutral Higgs bosons as s-channel resonances and make precision measurements
of Higgs–fermion couplings [43].
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TABLE III. The neutral Higgs boson mixing coefficients Θ appearing in the effective
Higgs–fermion Yukawa coupling. The coefficient for a particular fermion depends on whether
the fermion mass originates from a holomorphic A-term, non-holomorphic A′-term, or tree-level
superpotential Yukawa coupling.

Higgs boson Radiative up-type ∝ A Radiative up-type ∝ A′

Radiative down-type/lepton ∝ A′ Radiative down-type/lepton ∝ A

Tree-level up-type Tree-level down-type/lepton
h0 cos α/ sin β − sinα/ cos β

H0 sin α/ sin β cos α/ cos β

A0 i cot β i tan β

The most obvious arena for direct experimental probes of radiatively generated effec-
tive Yukawa couplings are precision measurements of the physical Higgs–fermion couplings.
These couplings are given by λh0,H0 = Θ{cos β, sin β}h̄f,H/

√
2 with H = h0, H0, and

λA0 = Θ{cos β, sin β}h̄f,A/
√

2, where the first (second) terms in curly brackets corresponds
to α = 1 (2), and Θ represents the Higgs mixing matrix between physical and interaction
eigenstates [44,45] relevant to the fermion in question. The mixing coefficients Θ are given in
table III, where α is the h0–H0 mixing angle, and tan β = 〈H2〉/〈H1〉. From (10) and (17),
h̄f,H = rf,Hhf,m, and h̄f,A = rf,Ahf,m, where rf,H , rf,A are the magnitude of the effective
Yukawa couplings relative to a tree-level coupling. The form factor effect is contained in the
magnitude and momentum dependence of the ratios rf,H , rf,A. For m2

f̃
, m2

λ ∼ m2
H the ratio

rf(q
2) has a non-trivial momentum dependence in addition to the logarithmic momentum

dependence from renormalization group evolution. The logarithmic dependence may be sub-
sumed in the definition mf = mf (q

2) or hf,m = hf,m(q2) above. For m2
f̃
, m2

λ
>∼ m2

H , the scalar

Higgs–fermion radiative coupling ratios are greater than unity, rf,H(m2
h0), rf,H(m2

H0) ≥ 1,
from intrinsic coupling effects in the one-loop diagram, as described in section IIB. Thus,
even if the momentum dependence cannot be determined experimentally, the over-all mag-
nitude of the effective Yukawa coupling can differ from the minimal case with tree-level
masses. In contrast, the pseudoscalar Higgs–fermion radiative coupling ratios deviate from
unity only from neutralino mixing in the one-loop diagram, and through non-trivial mo-
mentum dependence. Comparison of scalar and pseudoscalar Higgs couplings, as discussed
below, might then in principle allow the momentum dependence of the Yukawa couplings,
or equivalently of the finite Yukawa mass radii, to be disentangled from intrinsic coupling
effects.

The Higgs mixing effects in the Higgs–fermion couplings, contained in Θ, depend on
the projection of the physical Higgs bosons onto the Higgs doublet, which gives rise to
the fermion mass. In any supersymmetric theory with tree-level fermion masses and a
single pair of Higgs doublets, H1 with U(1)Y hypercharge Y = −1, and H2 with Y = +1,
gauge invariance and holomorphy of the superpotential guarantee that, at tree level, up-
type quarks receive mass from H2 while down-type quarks and leptons receive mass from
H1. The coupling coefficients of the physical scalar Higgs bosons h0 and H0, and physical
pseudoscalar A0, are then fixed to be those given in table III. For radiative masses arising
from holomorphic chiral flavor breaking, the fermions receive mass from the same type
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of Higgs doublets, and the coupling coefficients are the same as with tree-level masses.
In this case the Higgs–fermion couplings differ from those in the minimal case with tree-
level masses only through the magnitude of the momentum-dependent form factors rf,H(q2),
rf,A(q2). However, with non-holomorphic chiral flavor breaking, radiative up-type quark
masses arise from H1, while radiative down-type quark and lepton masses arise from H2.
The resulting “wrong Higgs” coupling coefficients to physical Higgs bosons in this case are
given in table III. Depending on α and β, these coupling coefficients can drastically differ
from those in the minimal case with tree-level masses or those obtained with holomorphic
chiral flavour breaking. The “wrong Higgs” modifications of the couplings persist in the
strict superpartner decoupling limit of m2

f̃
, m2

λ � m2
H , even though rf,H , rf,A → 1 in this

limit.

Because the Higgs coupling coefficients depend on two mixing parameters, even in the
minimal model, multiple measurements are necessary in order to discern any radiative con-
tribution to a fermion mass. Fortunately, it is very unlikely that the top quark or τ -lepton
masses arise radiatively, as discussed in section III. The couplings of these fermions to var-
ious Higgs bosons can be used as “standard candles” by which to compare other fermion
couplings. For the lightest Higgs boson, h0, the theoretical upper bound in supersymmetric
theories on the Higgs mass and the measured top-quark mass imply mh0 < mt. The channel
h0 → tt is therefore closed, so h0 → ττ must be used as a “standard candle”. In a minimal
theory with tree-level masses, all the down-type quarks and leptons gain mass from a single
Higgs doublet, H1. For h0 couplings, the most useful quantity to consider is therefore the
ratio of branching ratios for a down-type quark or lepton to that of the τ -lepton

m2
τ

Ncm
2
f

Br(h0 → ff)

Br(h0 → ττ)
= r2

f,H(m2
h0)

{
1 , cot2 α cot2 β

}
, (49)

where Nc is a color factor, Nc = 3 for quarks and Nc = 1 for leptons. Throughout this
section the first term in curly brackets refers to tree-level masses or radiative masses from
holomorphic A-terms; the second term to “wrong Higgs” couyplings for radiative masses
from non-holomorphic A’-terms. Finite fermion mass effects in the final-state phase space
are ignored throughout, except for the top quark. Analogous relations hold for the heavy
Higgs scalar H0:

m2
τ

Ncm2
f

Br(H0 → ff)

Br(H0 → ττ)
= r2

f,H(m2
H0)

{
1 , tan2 α cot2 β

}
, (50)

and for the pseudoscalar A0:

m2
τ

Ncm2
f

Br(A0 → ff)

Br(A0 → ττ)
= r2

f,A(m2
A0)

{
1 , cot4 β

}
, (51)

where f is a down-type quark or lepton. In the Higgs decoupling limit of m2
A0 � m2

Z ,
the light-Higgs projection onto the Higgs doublets aligns with the expectation values and
the h0 couplings become standard-model-like, giving cot2 α → tan2 β. This occurs even for
radiative Yukawa couplings, and implies that all h0 branching ratios approach standard-
model values in the Higgs decoupling limit, up to possible form-factor effects. Thus in this
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limit, independently of whether the fermion masses are tree-level or radiative from either
holomorphic or non-holomorphic chiral flavor breaking, the ratio (49) for h0 just depends on
the form factor. However, in the case of non-holomorphic breaking, the ratios (50) and (51)
for H0 and A0 can differ drastically from unity because of the “wrong Higgs” coupling. In
particular, in the “wrong Higgs” case, it holds:

Br(A0 → ττ) > Br(A0 → bb)for tan β >
√√

3mb/mτ ' 1.7.

The momentum dependence of the effective Higgs Yukawa coupling can in principle be
probed by comparing rf,H(m2

h0) with rf,H(m2
H0) or rf,A(m2

A0) for a given final state.

It is important to emphasize that any supersymmetric theory with tree-level Yukawa
couplings and only a pair of Higgs doublets is guaranteed by holomorphy of the superpo-
tential to give a ratio of unity for (49)–(51) up to small and calculable quantum corrections,
as described above. Deviations of the lowest-order ratios would therefore be an indication
of either additional Higgs doublets or, with only a single pair of doublets, radiative contri-
butions to the masses – through form-factor effects and/or non-holomorphic “wrong Higgs”
couplings.

For the heavy-Higgs pseudoscalar, if kinematically open, A0 → tt can compete with
A0 → bb depending on the value of tan β. For reference, with a tree-level or radiative mass
for the b-quark with holomorphic chiral flavor breaking, the A0tt coupling is larger than the

A0bb coupling for tanβ <
√

mt/mb ' 7.5. In this case the (tree-level) top quark coupling can
be used as a “standard candle” with which to compare the charm quark coupling through
the ratio

m2
t

m2
c

Br(A0 → cc)
√

1− 4m2
t/m

2
A0

Br(A0 → tt)
= r2

c,A(m2
A0)

{
1 , tan4 β

}
, (52)

where
√

1− 4m2
t /m

2
A0 is a kinematic correction for the S-wave decay of a pseudoscalar.

In a theory with tree-level Yukawa couplings, or radiative masses with holomorphic flavor
breaking, if A0 → tt is open, Br(A0 → cc) is unobservably small. However, from (52), if the
charm quark gains a mass from the “wrong Higgs” through non-holomorphic flavor breaking,

Br(A0 → cc) can be non-negligible, and even dominate Br(A0 → tt) if tanβ >∼
√

mt/mc '
16. In this case Br(A0 → cc) can be small or large, depending on the origin of the b-
quark mass. If the b-quark mass is tree-level or radiative through a holomorphic A-term,
Br(A0 → cc) ≤ m2

c/(m2
b + m2

c) ' 0.05 (neglecting the form factors). However, if the b-quark
mass arises radiatively from a non-holomorphic A′-term, Br(A0 → cc) ' 1 in the large tan β
limit, even if A0 → tt is open. An analogous relation to (52) holds for the heavy Higgs
scalar H0 with P -wave kinematic correction and with tan4 β replaced by cot2 α tan2 β. With
tan β � 1, Br(H0, A0 → cc) are therefore very sensitive to possible “wrong Higgs” couplings
arising from a radiative charm quark mass. This is in contrast to Br(h0 → cc), which, in
the Higgs decoupling limit, approaches the standard model value up to form factor effects,
as discussed above.

Measurements of the above ratios of branching ratios requires flavor identification of the
final states. With adequate τ - and b-tagging at future lepton and possibly hadron colliders,
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the ratios (49)–(51) can be used to probe a radiative b-quark mass. The ratio (52) also
requires c-tagging and top identification to probe a radiative charm-quark mass. Extension
to other fermions is problematic since in most scenarios the branching ratios will be small.
However, the proposed µ+µ− collider, which can produce the Higgs bosons as s-channel
resonances, provides the possibility of measuring the muon–Higgs couplings [43]. For h0, with
width less than the beam width, Γtot

h0
<∼ Γbeam, the total cross section σ(µ+µ− → h0 → X)

gives a measure of Γ(h0 → µµ)Br(h0 → X). Independent measurements of Br(h0 → X)
can then give Γ(h0 → µµ) to a few percent precision [46]. A measurement of Γtot

h0 from
scanning around the h0 resonance, with a beam energy resolution better than the beam
width δ

√
s � Γbeam, then yields Br(h0 → µµ) = Γ(h0 → µµ)/Γtot

h0 [43]. For H0 and
A0 with Γtot

H0,A0
>∼ Γbeam, the peak cross sections σ(µ+µ− → H0, A0 → X) at the center

of the resonances give a direct measure of Br(H0, A0 → µµ)Br(H0, A0 → X). Thus, a
measurement of these ratios can also test whether the muon mass is generated radiatively.
Note, however, that rµ,H(0) is already bounded by muon magnetic moment measurements,
and will be very well bounded or determined by such measurements by the time the µ+µ−

collider is in operation. In this case, the ratios (49)–(51) for the muon will provide a test
for possible “wrong Higgs” couplings.

In addition to the branching ratios, a µ+µ− collider also allows the possibility of deter-
mining absolute widths, as described above. The absolute magnitude of the Higgs–muon
coupling obtained from Γ(h0 → µµ) cannot in general be interpreted directly because of
Higgs mixing effects and the tanβ dependence of the h0µµ coupling. In the Higgs decou-
pling limit of m2

A0 � m2
Z , however, the light Higgs couplings for either tree-level or radiative

fermion masses become standard-model-like, up to the form-factor ratios, as discussed above.
So in the Higgs decoupling limit

Γ(h0 → ff)

Γ(φ0 → ff)

∣∣∣∣∣
m2

A0→∞
= r2

f,H(m2
h0) , (53)

where Γ(φ0 → ff) is the width for the decay of the standard model Higgs boson, φ0, which is
calculable in terms of the fermion mass. However, away from the decoupling limit, deviations
of the h0–fermion couplings only vanish like O(m2

Z/m2
A0), and can be significant for finite

mA0 . Therefore, the ratio (53) of absolute to standard-model widths is not as useful as ratios
of physical Higgs boson branching ratios for disentangling the effects of the form factor and
possible “wrong Higgs” coupling from Higgs mixing effects.

The absolute widths for Γ(H0, A0 → ff) can also be determined at a µ+µ− col-
lider. Given measurements of Br(H0, A0 → ff), either independently or as described
above, measurements of Γtot

H0,A0 by precision scans of the line shapes yield the widths
Γ(H0, A0 → ff) = Br(H0, A0 → ff)Γtot

H0,A0. Again, the absolute magnitude of the H0–
fermion couplings suffer from mixing effects. The pseudoscalar couplings are independent
of h0–H0 mixing, but do depend on tan β as shown in table III. The normalized A0 partial
widths for down-type quarks or leptons are

Γ(A0 → ff)

Γ(φ0 → ff)
= r2

f,A(m2
A0)

{
tan2 β , cot2 β

}
. (54)
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Making use of these ratios requires an independent measurement of tan β. Alternatively, if
perturbativity of the top-quark Yukawa coupling up to a large scale is imposed, implying
tan β >∼ 1.8, a value of the normalized widths ≤ 3.2 could be taken as evidence of form-factor
effects or “wrong Higgs” couplings.

At a µ+µ− collider, with the possibility of measuring absolute decay widths, also tests of
supersymmetric theories with tree-level Yukawa couplings and a single pair of Higgs doublets
can be made. Another way to eliminate Higgs mixing effects in the minimal case is to sum
the normalized decay widths of both h0 and H0 to a given fermion final state. For down-type
quarks or leptons with tree-level or radiative masses from holomorphic flavor breaking, or
for up-type quarks with radiative masses from non-holomorphic flavor breaking, this sum
gives:

Γ(φ0 → ff)

Γ(h0 → ff)
+

Γ(φ0 → ff)

Γ(H0 → ff)
=

cos2 β

r2
f,H(m2

h0) sin2 α + r2
f,H(m2

H0) cos2 α
. (55)

For up-type quarks with tree-level or radiative masses from holomorphic A-terms, or
for down-type quarks or leptons with radiative masses from non-holomorphic A′-terms,
(55) holds with the substitutions cos2 β → sin2 β and cos2 α ↔ sin2 α. With tree-level
masses the denominator on the right-hand side of (55) sums to unity, up to quantum cor-
rections. Thus, with a radiative fermion mass, (55) can be sensitive to the momentum
dependence of the form factor, if an independent measurement of tan β is available. Alter-
natively, with tree-level masses the sum of (55) for a down-type quark or lepton and the
analogous relation for an up-type quark is unity. This quantity for bb and cc widths or µµ
and cc widths would provide an interesting test for form-factor effects for these fermions.
Making use of the latter sums with holomorphic flavor breaking in general requires that
H0 → tt be closed so that Br(H0 → cc) is non-negligible.

Another quantity that eliminates all Higgs mixing effects, including tan β dependence,
is the product of normalized partial widths for A0 decay to up-type quarks and down-type
quarks or leptons. If A0 → tt is open,

Γ(A0 → tt)Γ(A0 → ff)(1− 4m2
t /m

2
A0)

Γ(φ0 → tt)Γ(φ0 → ff)
= r2

f,A(m2
A0)

{
1 , cot4 β

}
, (56)

where f = b, τ, µ, and (1−4m2
t /m

2
A0) is a kinematic correction factor for the S-wave decay of

a pseudoscalar, compared with the P -wave decay of a scalar. If open, Br(A0 → tt) depends
on tanβ, as discussed above. If Br(A0 → tt) is non-negligible, the product (56) with f = µ
from measurements at a µ+µ− collider provides an interesting test of form factors or “wrong
Higgs” couplings to the muon. If Br(A0 → tt) and Br(A0 → bb) are comparable, the b-quark
coupling can be probed. Note that with f = τ the product (56) is unity for a single pair of
Higgs doublets with tree-level top quark and τ -lepton Yukawa couplings. This may therefore
be used as a good test for multiple pairs of Higgs doublets. If A0 → tt is closed, analogous
relations may be applied with Γ(A0 → cc).

A final interesting quantity for testing A0 couplings is the sum of normalized decay
widths to an up-type quark and a down-type quark or lepton. If A0 → tt is open,
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Γ(A0 → ff)

Γ(φ0 → ff)
+

Γ(A0 → tt)(1− 4m2
t/m

2
A0)

Γ(φ0 → tt)
={

r2
f,A(m2

A0) tan2 β + cot2 β , (r2
f,A(m2

A0) + 1) cot2 β
}

, (57)

with f = b, τ, µ. In the minimal case with tree-level masses the sum (57) is strictly ≥
2, up to calculable quantum corrections. With a radiative mass for f from holomorphic
chiral flavor breaking this bound can be modified by the magnitude of the form factor
ratio r2

f,A(m2
A0). The effect is most dramatic when f obtains a mass radiatively from non-

holomorphic breaking, in which case the sum (57) is in principle arbitrary. If perturbativity
of the top Yukawa up to a large scale is imposed, implying tan β >∼ 1.8, the sum (57) can
be significantly lower than the bound implied by tree-level masses. Again a violation of the
lower bound for (57) would be a clear signal in a supersymmetric theory for either more
than a single pair of Higgs doublets or, with a single pair, of radiative masses.

The requirement of large tri-linear terms for radiative second-generation masses leads
to large left–right mixing for second-generation scalars, as mentioned at the beginning of
this section. This may be probed in a number of ways in high-energy experiments. The
large tri-linear terms coupling a Higgs doublet to left- and right-handed scalars can lead
directly to enhanced decays involving Higgs bosons and second-generation mass eigenstate
scalars, f̃1 and f̃2. For example, if open, Br(f̃2 → f̃1h

0) or Br(H0, A0 → f̃1f̃2) can be
non-negligible. In contrast, with tree-level masses, these are expected to be insignificant for
second-generation scalars. In addition, left–right mixing can also directly affect production
cross sections. For example, the polarized cross sections σ(e+

L,Re−L,R → f̃if̃i) etc., depend

sensitively on the gauge couplings of f̃i. In the minimal case, second generation scalar mass
eigenstates are expected to be nearly pure gauge eigenstates. But with radiative masses,
since the tri-linear terms are so large, the mass eigenstates are very likely to be well-mixed
combinations of left- and right-handed scalars.

Finally, with radiative masses from scalar chiral flavor breaking, the radiatively gener-
ated Higgsino coupling can differ drastically from the radiative Higgs coupling, with even
different parametric dependence on the underlying couplings, as described in section IIC.
This is a clear prediction of the present scenario for radiative fermion masses. To an elec-
troweak scale observer who assumes tree-level masses, this appears as a hard violation of
the supersymmetric relation between the Higgs and Higgsino couplings. Unfortunately, be-
cause of complicated gaugino–Higgsino mixing effects, disentangling the Higgsino–matter
couplings from couplings of physical neutralinos and charginos in, for example, χ0

i → f̃ f
and χ±i → f̃ f ′, or f̃ → χ0

i f and f̃ → χ±i f ′, is much more difficult than disentangling
Higgs–matter couplings. Unless some of the neutralino and chargino states are very nearly
pure Higgsino-like, this would require precision branching-ratio measurements for many final
states.

IX. SOFTLY BROKEN LEPTON NUMBER

In addition to chiral flavor symmetries, it is also possible that other global chiral sym-
metries such as lepton or baryon number or matter parity [28] are broken in the low-energy
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theory predominantly by auxiliary rather than scalar expectation values. Consider the case,
for example, of lepton-number violation. Soft lepton-number violation involving the bilin-
ear terms L ⊃ m2LH2 was considered in ref. [47]. Here we discuss the consequence of
lepton-number violating tri-linear scalar terms analogous to (1) and (2) in the holomorphic
operators

L ⊃ ÂLQD + ÂLLE (58)

and the non-holomorphic operator

L ⊃ Â′L∗QU (59)

where the flavor structure is suppressed. Note that the non-holomorphic operator involves
right-handed up-squarks. This differs from the standard tree-level superpotential lepton-
number violating Yukawa couplings, which are restricted to be holomorphic. The lepton-
number violating operators (58) give rise to a radiatively generated neutrino mass. At one
loop a soft lepton-number violating sneutrino–antisneutrino mixing term, L ⊃ δm2

ν̃ ν̃ν̃ +h.c.,
is generated with

δm2
ν̃ ∼

〈Hα〉2A2Â2

16π2m4
f̃

(60)

and likewise for the non-holomorphic operator (59). Gauge invariance implies that this
mixing is proportional to two powers of both lepton-number violating and lepton-number
conserving tri-linear scalar terms. The induced sneutrino–antisneutrino mixing in turn gives
rise to a neutrino mass at two loops

mν ∼
α2mW̃

δm2
ν̃

4πm2
ν̃

, (61)

through diagrams such as in fig. 13. Since the neutrinos are left-handed, only the W̃3

x

x

x

ν ν

ν̃ ν̃

ẽL ẽR

ẽR ẽL

W̃3

FIG. 13. Two-loop contribution to the neutrino mass from soft lepton-number violation.

chirality-violating mass contributes to the radiatively induced neutrino mass in the pure
gaugino limit. The magnitude of the tri-linear scalar terms for a given neutrino mass is
numerically, very roughly, AÂ/m̃ 2 ∼ (mν/3 MeV)1/2(m̃/100 GeV)1/2, assuming m̃ ' m

W̃
'
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mν̃ . The specific pattern of neutrino masses and mixings of course depends on the flavor
structure of both the lepton-number violating and lepton-number conserving scalar tri-linear
terms. Notice that, unlike quark and lepton masses, radiatively induced neutrino masses
arise from non-renormalizable operators in the low-energy theory, and therefore vanish in
the superpartner decoupling limit in which all soft supersymmetry-breaking parameters are
taken simultaneously large.

One generic consequence of this mechanism for soft radiative neutrino masses is the rel-
atively large ratio δm2

ν̃/m
2
ν̃ ∼ (4π/α2)(mν/mW̃

). This is to be compared with a standard
scenario in which neutrino masses arise directly from tree-level superpotential couplings.
In this case, a sneutrino–antisneutrino mixing arises radiatively from the neutrino mass
(rather than the other way around) yielding δm2

ν̃/m
2
ν̃ ∼ (α2/4π)(mνmW̃

/m2
ν̃). For a mas-

sive τ -neutrino, the relatively large δm2
ν̃/m

2
ν̃ associated with a soft neutrino mass might be

probed in ν̃τ–˜̄ντ oscillation experiments [48]. Lastly, it is interesting to note that the simple
assumption of degeneracy among respective tri-linear couplings corresponds to the case of
large neutrino mixing angles.

X. SUMMARY AND DISCUSSION

Supersymmetric theories have the property that the chiral flavor symmetries required
for quark and lepton masses may be broken either in hard renormalizable terms, or in
soft supersymmetry-breaking terms. This interesting feature arises because the squark and
slepton superpartners necessarily carry the same flavor symmetries as the quarks and leptons.
In this paper we have investigated the possibility that some of the fermion masses arise
predominantly radiatively from chiral flavor violation in soft supersymmetry-breaking terms.
The breaking of such symmetries exclusively in soft and not in hard terms is technically
natural and may be enforced by horizontal R-symmetries. In this scenario some of the
flavor symmetries are broken either explicitly in the messenger sector or spontaneously in
the supersymmetry-breaking sector. In the latter case this amounts to an auxiliary field
version of the Froggatt–Nielsen mechanism.

Soft chiral flavor violation can in principle be the source of radiative masses for all the
first- and second-generation quarks and leptons and the b-quark. Since radiative masses are
intrinsically suppressed by a loop factor, the smallness of the first generation masses can be
due in part to this suppression. The remaining suppression in this radiative scenario can
be obtained in part from a hierarchy between the gaugino and scalar superpartner masses,
or from a hierarchy between the supersymmetry-breaking and flavor-breaking scales. The
loop factor is sufficient to account for essentially all of the suppression of second-generation
masses with respect to the electroweak scale.

Radiative fermion masses, especially for the second generation or b-quark, require signif-
icant left–right scalar superpartner mixing from scalar tri-linear terms. Such large mixings
introduce potentially dangerous directions in field space, along which charge and/or color are
broken. However, metastability of the charge- and color-preserving vacuum on cosmological
time scales is possible in many models. In addition, some classes of models with non-
holomorphic tri-linear terms or mixing with mirror matter at the supersymmetry-breaking
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scale contain stabilizing terms in the potential, which eliminate these dangerous directions
and render the charge- and color-preserving vacuum absolutely stable.

Since the dominant source of flavor violation for fermions with soft radiative masses re-
sides in supersymmetry-breaking terms, interesting levels of low-energy flavor violation may
arise. These are functions of the specific textures for the scalar masses and tri-linear terms
and therefore very model-dependent. The study of such flavor changing associated with soft
fermion masses is outside the scope of this work, but should be considered in any future
work on specific models of the soft and hard textures. In some classes of models certain
relations or symmetries among the soft terms can lead to partial or complete alignment in
flavor space of non-renormalizable chirality-violating operators with the effective Yukawa
couplings and reduce or eliminate observable flavor breaking. It is noteworthy that when
all the soft supersymmetry-violating parameters are taken simultaneously large, radiative
Yukawa couplings approach finite limits, whereas flavor violation induced by virtual su-
perpartners in non-renormalizable operators is suppressed. This is particularly relevant in
schemes with heavy first- and second-generation scalars.

Radiative fermion masses lead to a number of striking phenomenological consequences.
Chief among these is that new contributions to chirality-violating operators are effectively
not suppressed by a loop factor compared with the fermion mass, which itself arises at one
loop. This is a generic feature of any theory of radiative fermion masses. The most important
such operators are anomalous magnetic moments for fermions with soft radiative masses. In
this scenario the supersymmetric correction to the anomalous moment only depends on the
superpartner mass spectrum, and is necessarily positive. The anomalous magnetic moment
of the muon is by far the most sensitive probe of a radiative muon mass. The current
experimental bound already constrains part of the supersymmetric parameter space in this
scenario. Even if the muon mass is not predominantly radiative, a contribution to the muon
anomalous magnetic moment from relatively large chiral flavor violation in the muon tri-
linear term might provide an interesting interpretation for a non-vanishing measurement of
anew

µ .

CP-violating Higgs–fermion couplings and electric dipole moments are naturally sup-
pressed by the alignment of the phases of radiatively generated chirally violating operators
with the phase of a radiatively generated mass. This alignment is naturally very precise in
interesting regions of parameter space. Thus, the standard supersymmetric CP problem, is
mitigated or eliminated in the scenario of radiative fermion masses studied here.

Other phenomenological consequences of radiative masses are related to the softness of
the Yukawa couplings. Most notably, the Higgs–fermion couplings are momentum-dependent
with non-trivial form factors. The lowest-order operator, which represents the momentum
dependence, may be characterized in terms of a finite Higgs Yukawa radius. This radius,
like the anomalous magnetic moment, is not suppressed by a loop factor. Even at zero mo-
mentum the Higgs Yukawa coupling can differ from the mass Yukawa coupling. In addition,
“wrong Higgs” couplings result if the radiative mass arises from non-holomorphic soft terms.
All these Higgs–fermion coupling effects may be tested at future colliders by looking for de-
viations of various sum rules and relations among Higgs boson decay widths and branching
ratios to fermion final states. Many of these sum rules and relations are guaranteed by
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holomorphy to be satisfied at lowest order in any supersymmetric theory with a single pair
of Higgs doublets and hard fermion masses.

A further signal of the softness of a fermion mass is the associated radiatively gener-
ated Higgsino coupling. Large differences between the couplings of Higgs and Higgsinos to
matter are expected in this scenario. To a low-energy observer who assumes hard Yukawa
couplings, these would manifest themselves as apparent hard violations of supersymmetry in
renormalizable interactions. Unfortunately direct measurement of such couplings at future
colliders is likely to be very difficult. Finally, the relatively large left–right scalar super-
partner mixing associated with second-generation or b-quark radiative masses can lead to
significant modifications of supersymmetric production cross sections and branching ratios
from minimal expectations.

The spontaneous breaking of chiral flavor symmetries in the supersymmetry-breaking
sector through auxiliary rather than scalar directions can be extended to other global
chiral symmetries such as lepton number. Soft lepton number violation gives rise, radia-
tively, to lepton-violating sneutrino masses which in turn induce radiative neutrino masses.
Sneutrino–antisneutrino oscillations are relatively large in this scenario and might be probed
if the τ -neutrino is not too light.

In summary, the interesting features of radiative fermion masses arising from soft chiral
flavor violation include:

• Radiative masses for first- and second-generation quarks and leptons and for the
b-quark can be accommodated while satisfying (meta)stability requirements for the
charge- and color-preserving vacuum.

• Higgs Yukawa couplings are momentum-dependent with non-trivial form factors and
finite Higgs Yukawa radii.

• “Wrong Higgs” radiative Yukawa couplings arise from non-holomorphic soft chiral
flavor breaking.

• Apparent large hard violation of supersymmetry in Higgsino couplings.

• Supersymmetric contributions to anomalous magnetic moments are positive and not
suppressed by a loop factor. A radiative muon mass will be very well probed by the
Brookhaven muon g − 2 experiment.

• CP-violating electric dipole moments are suppressed by natural phase alignment. Both
the neutron and electron EDMs could be not too far below current experimental
bounds.

• Left–right scalar superpartner mixing is enhanced.

• Radiative neutrino masses arising from soft lepton number violation imply enhanced
sneutrino–antisneutrino oscillations.

Specific models for the hard and soft textures should be developed to further explore this
interesting possibility for the origin of some of the fermion masses.
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APPENDIX A: DEFINITIONS AND INTEGRALS

1. Scalar superpartner mass and mixing

The 2× 2 squark or slepton mass squared matrix,

M2 =

 m2
LL (m2

LR)

(m2
LR)∗ m2

RR

 , (A1)

written here in the basis {f̃L, f̃R}, is Hermitian M2 = (M2)†, with eigenvalues

m2
f̃1,2

=
1

2

{(
m2

LL + m2
RR

)
∓
√

(m2
LL −m2

RR)
2
+ 4|m2

LR|2
}

. (A2)

Notice that f̃R is here the actual right component of f̃ and corresponds to the conjugate of
the field φR used in the text.

The eigenvectors f̃1 and f̃2 corresponding to the eigenvalues in (A2) are obtained from
f̃L, f̃R through a unitary transformation :(

f̃1

f̃2

)
= U

(
f̃L

f̃R

)
≡
(

cos θfe
+iφ sin θf

sin θf − cos θfe
−iφ

)(
f̃L

f̃R

)
, (A3)

where φ ≡ Arg(m2
LR) = −Arg(A〈Hα〉) or φ = −Arg(A′〈H∗

α〉). The mixing angle θf is
defined, up to a two-fold ambiguity by the relations

sin 2θf = − 2|m2
LR|

m2
f̃2
−m2

f̃1

; cos 2θf = ±m2
LL −m2

RR

m2
f̃2
−m2

f̃1

. (A4)

Note that in the strict superpartner decoupling limit, for which m2
LR/m2

LL,RR → 0, the
mixing angles approach cos θf → 0 and sin θf → 1.

The fractional splitting of the mass squared eigenvalues used in the text is related to the
mass squared matrix by

φf ≡
m2

f̃2
−m2

f̃1

m2
f̃2

+ m2
f̃1

=
1

TrM2

√
(TrM2)2 − 4 DetM2 . (A5)

Note that φf → 1− for DetM2 → 0+, corresponding to a vanishing eigenvalue in the scalar
mass matrix.

2. Fermion mass integral

The two-point function I(m2
1, m

2
2, m

2
λ), introduced in section IIA, is a completely sym-

metric function in its three variables
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TABLE IV. Limiting behavior of I(m2,m2,m2
λ) and I(0,m2,m2

λ) for either fixed gaugino mass
mλ = mλ or fixed scalar mass m = m. The limit in the first column reflects the infrared behavior
of the loop integral for m or mλ → 0.

mλ = mλ fixed m → 0 m → mλ m →∞
I(m2,m2,mλ

2) 1
mλ

2

(
− ln( m2

mλ
2 )
)
→ +∞ 1

mλ
2 · 1

2
1

m2 → 0

I(0,m2,mλ
2) 1

mλ
2

(
− ln( m2

mλ
2 )
)
→ +∞ 1

mλ
2

1
m2

(
ln( m2

mλ
2 )
)
→ 0

m = m fixed mλ → 0 mλ → m mλ →∞
I(m2,m2,m2

λ) 1
m2

1
mλ

2

(
ln(m2

λ

m2 )
)
→ 0

I(0,m2,m2
λ) 1

m2

(
− ln(m2

λ

m2 )
)
→ +∞ 1

mλ
2

(
ln(m2

λ

m2 )
)
→ 0

I(m2
1, m

2
2, m

2
λ) = −m2

1 m2
2ln(m2

1/m
2
2) + m2

2 m2
λln(m2

2/m
2
λ) + m2

λ m2
1ln(m2

λ/m
2
1)

(m2
1 −m2

2)(m
2
2 −m2

λ)(m
2
λ −m2

1)
. (A6)

It may be cast in the simpler form:

I(m2
1, m

2
2, m

2
λ) =

1

m2
1 −m2

2

(
ln β1

β1 − 1
− ln β2

β2 − 1

)
, (A7)

where βi = m2
λ/m

2
i , i = 1, 2, in which, however, only the symmetry between two of the three

variables is manifest. This form is more useful to obtain some interesting limiting cases. In
the limit of degenerate scalar-partner masses the loop function (A7) becomes

I(m2, m2, m2
λ) =

1

m2

1

(β − 1)2
(1− β + β ln β) , (A8)

whereas in the limit of highly non-degenerate eigenvalues, m = m2 � m1,

I(0, m2, m2
λ) =

1

m2

ln β

β − 1
. (A9)

The limiting behavior of these functions for either fixed gaugino mass or fixed scalar
mass is shown in table IV. The loop function is typically bounded by I(m2

1, m
2
2, m

2
λ) ×

max(m2
1, m

2
2, m

2
λ)

<∼ O(1), but this can be enhanced in certain limits by a logarithm. Large
scalar splittings also slightly enhance the loop integral.

3. Higgs vertex function

Except for a sign difference, the convention of the first reference in [49] is followed
in the definition of the three-point function employed here: C0(p

2
1, p

2
2, 2p1 ·p2; m

2
1, m

2
λ, m

2
2).

Explicitly,
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C0(p
2
1, p

2
2, 2p1 ·p2; m

2
1, m

2
λ, m

2
2)

≡ i

π2

∫
d4k

1

[k2 −m2
1 + iε][(k + p1)2 −m2

λ + iε][(k + p1 + p2)2 −m2
2 + iε]

=
∫ 1

0
dx
∫ x

0
dy

1

[ax2 + by2 + cxy + dx + ey + f ]
, (A10)

where the a, b, c, d, e, and f are

a=p2
2 ; b=p2

1 ; c=2p1 ·p2 ; d=−p2
2+m2

λ−m2
2 ; e=−p2

1−2p1 ·p2+m2
1−m2

λ ; f =m2
2 − iε .

(A11)

The general solution is:

C0(p
2
1, p

2
2, 2p1 ·p2; m

2
1, m

2
λ, m

2
2)

=
1

(c + 2αb)

3∑
j=1

(−1)j+1
∑

k=1,2

[
Li2

(
yj

yj − yjk

)
− Li2

(
yj − 1

yj − yjk

)]
, (A12)

where the yj are

y1 = −(d + eα + 2a + cα)

c + 2αb
, y2 = −(d + eα)

c + 2αb

1

1−α
, y3 =

(d + eα)

c + 2αb

1

α
, (A13)

and α is one of the two solutions of the equation α2b+αc+a = 0. Finally, for each j = 1, 2, 3,
the quantities yj1 and yj2 are the roots of the quadratic equations

Q1(y) = p2
1y

2 + (m2
1 −m2

λ − p2
1)y + m2

λ − iε

Q2(y) = (p1 + p2)
2y2 + (m2

1 −m2
2 − (p1 + p2)

2)y + m2
2 − iε

Q3(y) = p2
2y

2 + (m2
λ −m2

2 − p2
2)y + m2

2 − iε . (A14)

In the case of the decay H → f f̄ , or of the resonant production f f̄ → H , the momenta
are such that p = q, p1 = q1, q2 = −p2. All external fields are on-shell, and the approximation
p2

1 = p2
2 = 0 and 2p1 ·p2 = m2

H is appropriate for m2
f � m2

H . Both α’s also vanish in this
limit (a = b = 0). An independent integration then yields

C0(0, 0, m
2
H; m2

1, m
2
λ, m

2
2)

=
1

m2
H

∑
i=1,2

[
Li2

(
x0

x0−xi

)
−Li2

(
x0−1

x0−xi

)]
−
[
Li2

(
x0

x0+f/d

)
−Li2

(
x0−1

x0+f/d

)] ,

(A15)

where x0 is the root of the linear equation, cx + e = 0 and x1, x2 the roots of the quadratic
equation cx2 + (d + e)x + f = 0,
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x1,2 =
m2

2 −m2
1 + m2

H

2m2
H

∓
(m2

2 −m2
1 + m2

H

2m2
H

)2

−
(

m2
2

m2
H

)2

+ iε

1/2

(A16)

and d and f follow from (A11) in this limit.

Notice that the arguments of logarithms and dilogarithms in (A12) and (A15) are in
general complex. Moreover, depending on the relative size of the masses involved, some
arguments of Li2(x) in (A12) and (A15) may be such that Re(x) > 1. Since Li2(x) has a
cut on the real axis, starting from 1, the relations

Li2(x) = −Li2(1− x) +
1

6
π2 − ln(x) ln(1− x)

Li2(x) = −Li2

(
1

x

)
− 1

6
π2 − 1

2
ln2(−x) (A17)

may have to be used.

With general superpartner masses, the limit of vanishing Higgs mass, mH → 0, re-
duces (A15) to the mass loop function

C0(0, 0, 0; m2
1, m

2
λ, m

2
2) = I(m2

1, m
2
2, m

2
λ) . (A18)

If mH 6= 0, the two limits of degenerate scalar masses, m2
1 = m2

2 = m2, and of maxi-
mally split ones, m2

1 = 0, m2
2 = m2, explicitly analysed for the mass loop function, do not

yield considerable simplifications for C0(0, 0, m
2
H; m2, m2

λ, m
2) and C0(0, 0, m

2
H; 0, m2

λ, m
2)

with respect to (A15). For fixed m scalar mass m = m, C0(0, 0, m
2
H ; m2, mλ

2, m2) and
C0(0, 0, m

2
H ; 0, mλ

2, m2) acquire simple analytic expressions in the limit mλ → m. In both
cases, a = b = d = 0. In addition, in the first case, it is e = −c and the three-point function
is then

C0(0, 0, m
2
H ; m2, m2, m2) =

1

m2
H

{
Li2

(
1

x2

)
+ Li2

(
1

x1

)}
. (A19)

The roots x1,2 are in this limit

x1,2 =
1

2

1∓
√√√√1− 4

m2

m2
H

+iε

 . (A20)

Using (A17), x1 + x2 = 1, and analytic continuation

C0(0, 0, m
2
H ; m2, m2, m2) =

1

2m2
H


−
ln

1 +
√

1−4m2/m2
H

1−
√

1−4m2/m2
H

− iπ

2

2
m

mH
< 1 ,

+ 4 arcsin2
(

mH

2m

)
2

m

mH

≥ 1 .

(A21)
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The imaginary piece for 2m/mH < 1 corresponds to the cut for physical intermediate states.

In the case of maximal splitting, it is

C0(0, 0, m
2
H; 0, m2, m2)

=
1

m2
H

{
Li2

(
1 + m2/m2

H

x2

)
+Li2

(
1 + m2/m2

H

x1

)
−Li2

(
m2/m2

H

x2

)
−Li2

(
m2/m2

H

x1

)}
,

(A22)

with x1,2 given by:

x1,2 =
1

2

(1 +
m2

m2
H

)
∓
√√√√(1− m2

m2
H

)2

+iε

 . (A23)

Using again (A17) and the fact that x1 + x2 = 1 + m2/m2
H , it can be shown that

C0(0, 0, m
2
H; 0, m2, m2) =

1

m2
H


−1

2

(
ln

m2

m2
H

+ iπ

)2

− π2

6
− Li2

(
m2

m2
H

)
m

mH
< 1 ,

+ Li2

(
m2

H

m2

)
m

mH
≥ 1 ,

(A24)

where Li2(x) is a real number for x < 1.

4. Higgsino vertex function

The vertex function Vijlkh appearing in the Higgsino coupling relevant to the decays

f̃h(q2) → χ̃0
i (q) fL,R(q1) is given by

Vijlkh =

mχ̃0
j
−mχ̃0

i

m2

f̃k
−m2

χ̃0
j

m2
f̃h
−m2

χ̃0
i

C0(q
2, 0, q2

2; m
2
H0

l
, m2

χ̃0
j
, m2

f̃k
)

+

 mχ̃0
i

m2

f̃h
−m2

χ̃0
i

[B0(q
2; m2

χ̃0
j
, m2

Hl
)−B0(q

2
2; m

2
Hl

, m2

f̃k
)
]

. (A25)

The definition of the two-point function B0(q
2; m2

1, m
2
2) follows standard conventions, as for

example in [49], except for a minus sign

B0(q
2; m2

1, m
2
2) =

(
µ2πeγ

)(4−n)/2 i

π2

∫
dnk

1

[k2 −m2
1 + iε][(k + q)2 −m2

2 + iε]
(A26)

where γ is Euler’s constant.
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APPENDIX B: ANOMALOUS MAGNETIC AND ELECTRIC DIPOLE
MOMENTS

The electromagnetic dipole operator for a Dirac fermion is given by the Lagrangian
operator

L ⊃ −1

2
df fLσµνfRFµν + h.c. (B1)

where df is the dipole moment coefficient, which is, in general complex and fL,R = PL,Rf
are the left- and right-handed chiral components of the Dirac fermion. In a general basis
with complex fermion mass mf , the electric dipole moment is

de
f = |df | sin

(
Arg(dfm

∗
f )
)

(B2)

and the anomalous magnetic moment is

af =
2mf

eQf
|df | cos

(
Arg(dfm

∗
f )
)

, (B3)

where Qf is the fermion electric charge.

In the CP-conserving case, Arg(dfm
∗
f ) = 0, the one-loop chirality-violating contribution

of fig. 8 to the muon anomalous magnetic moment is given by

L ⊃ +
α′

4π
(eQµ) m2

LR

∑
j

Kj
f mχ̃0

j
Ig−2(m

2
µ̃1

, m2
µ̃2

, m2
χ̃0

j
)Og−2 , (B4)

where Qµ = −1 is the muon electric charge, the operator Og−2 ≡ µ̄(p′) σµνFµνµ(p), and the
loop function is

Ig−2(m
2
1, m

2
2m

2
λ) =

1

m2
λ

1

m2
2−m2

1

{
β1 (β2

1 − 1− 2β1 ln β1)

2 (β1 − 1)3 − (1 → 2)

}
, (B5)

with βi = m2
λ/m

2
i , i = 1, 2. For comparison with the mass loop function, the limiting

behavior of (B5) for degenerate scalar partners masses is

Ig−2 (m2, m2, m2
λ) =

1

(m2)2

1

2(β − 1)4

(
2β(β + 2) lnβ − 5β2 + 4β + 1

)
, (B6)

while for large scalar splitting

Ig−2 (0, m2, m2
λ) =

1

m2

1

m2
λ

1

2(β − 1)3

(
2β2 ln β − 3β2 + 4β − 1

)
. (B7)

The limiting behavior of these functions for either fixed gaugino mass or fixed scalar mass
is shown in table (V). Using the expression for the radiatively generated mass (3), the
coupling (B4) may be written
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TABLE V. Limiting behavior of Ig−2(m2,m2,mλ
2) and Ig−2(0,m2,mλ

2) for either fixed gaug-
ino mass mλ = mλ, or fixed scalar mass m = m. The limit in the first column reflects the infrared
behavior of the loop integral for m or mλ → 0.

mλ = mλ fixed m → 0 m → mλ m →∞
Ig−2 (m2,m2,mλ

2) 1
(mλ

2)2

(
− ln( m2

mλ
2 )
)
→ +∞ 1

(mλ
2)2
· 1

12
1

(m2)2 · 1
2 → 0

Ig−2 (0,m2,mλ
2) 1

(mλ
2)2

(
− ln( m2

mλ
2 )
)
→ +∞ 1

(mλ
2)2
· 1

3
1

m2
1

mλ
2 · 1

2 → 0

m = m fixed mλ → 0 mλ → m mλ →∞
Ig−2 (m2,m2,m2

λ) 1
(m2)2

· 1
2

1
(mλ

2)2

(
ln(m2

λ

m2 )
)
→ 0

Ig−2 (0,m2,m2
λ) 1

m2
1

m2
λ
· 1

2 → +∞ 1
(mλ

2)2

(
ln(m2

λ

m2 )
)
→ 0

L ⊃ −e Qµ

2
mµ

∑
j Kj

f mχ̃0
j
Ig−2(m

2
µ̃1

, m2
µ̃2

, m2
χ̃0

j
)∑

j Kj
f mχ̃0

j
I(m2

µ̃1
, m2

µ̃2
, m2

χ̃0
j
)

Og−2 ≡ −aµ
eQµ

4mµ

Og−2 . (B8)

The supersymmetric contribution to the muon anomalous magnetic moment, aSUSY
µ , is then

explicitly given in eq. (37). For a quark, the dominant gluino contribution to the dipole
moment is given by the Lagrangian operator

L ⊃ 2αs

3π
(eQq) m2

LR mg̃ Ig−2(m
2
q̃1

, m2
q̃2

, m2
g̃)Og−2 (B9)

x

x

µR µL µL

γµ̃L

W̃3

FIG. 14. Two-loop one-particle-reducible contribution to the muon anomalous magnetic mo-
ment. The chirality-violating loop corresponds to an external mass insertion through the on-shell
equation of motion.

Before concluding, it is worth noting that the result (B4) obtained from the chirality-
violating gaugino propagator in fig. 8 is the leading contribution to the anomalous magnetic
moment. In models with hard Yukawa couplings, supersymmetric one-loop contributions in
general arise also from the chirality-conserving gaugino propagator. The fermion on-shell
equation of motion produces an external mass insertion, thereby giving a contribution to
the chirality-violating anomalous magnetic moment. With a radiatively generated fermion
mass, such contributions are formally two-loop one-particle-reducible since the external mass
insertion is one-loop, as shown in fig. 14. These are of the same order as chirality-violating
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x x
µR µL

γ

µ̃R

µ̃L

B̃ H̃-B̃

H0

FIG. 15. Two-loop one-particle-irreducible contribution to the muon anomalous magnetic mo-
ment. In the heavy Higgs limit the one-loop sub-diagram on the left corresponds to the radiative
Higgsino–scalar–fermion coupling of fig. 6. There are additional contributions from chirality con-
serving gaugino propagators.

two-loop one-particle-irreducible contributions, such as those arising from the effective one-
loop Yukawa coupling, as shown in fig. 15. The result (B4) therefore represents the full
one-loop supersymmetric contribution to the anomalous magnetic moment of a fermion
with a soft radiative mass.
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