51 research outputs found

    Effect of fenofibrate on microcirculation and wound healing in healthy and diabetic mice

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>Disturbances in wound healing in patients with hyperglycaemic blood sugar values are a common clinical problem. Recent studies identified PPARα-ligands as potential skin therapeutic agents. The aim of this study was to investigate the effects of oral fenofibrate treatment on dermal wound healing and micro-circulatory parameters in diabetic mice.</p> <p>Methods</p> <p>Dermal wounds were created in CD-1 mice. Mice were randomized into four treatment groups: diabetic mice treated (dbf) or not-treated with fenofibrate (dbnf). As controls served non-diabetic mice treated (ndf) or not-treated with fenofibrate (ndnf). At various points in time microcirculation was analyzed by intravital fluorescent microscopy to determine wound surface area, vessel diameter, plasma leakage, functional capillary density, and leukocyte/endothelium interaction.</p> <p>Results</p> <p>The dbf-mice showed a significantly increased diameter of the venules and the arterioles up to 3 days after wound creation compared to dbnf-mice. However, wound healing was not improved in dbf-compared to dbnf-mice. Surprisingly, all microcirculatory parameter (vessel diameter, plasma leakage and functional capillary density) were not deteriorated in dbnf-compared to ndnf-mice.</p> <p>Conclusion</p> <p>We confirm that high blood sugar values lead to a delayed wound healing, but this could not traced back to altered microcirculatory patterns. Furthermore, in dbf-mice an improved vasodilatatory function of small vessels could be detected, but with no substantial effect on wound healing. Further studies are needed to clarify, if topical application of fenofibrate might be beneficial.</p

    Effects of vitamin E supplementation on renal non-enzymatic antioxidants in young rats submitted to exhaustive exercise stress

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exercise stress was shown to increase oxidative stress in rats. It lacks reports of increased protection afforded by dietary antioxidant supplements against ROS production during exercise stress. We evaluated the effects of vitamin E supplementation on renal non-enzymatic antioxidants in young rats submitted to exhaustive exercise stress.</p> <p>Methods</p> <p>Wistar rats were divided into three groups: 1) control group; 2) exercise stress group and; 3) exercise stress + Vitamin E group. Rats from the group 3 were treated with gavage administration of 1 mL of Vitamin E (5 mg/kg) for seven consecutive days. Animals from groups 2 and 3 were submitted to a bout of swimming exhaustive exercise stress. Kidney samples were analyzed for Thiobarbituric Acid Reactive Substances to (TBARS) by malondialdehyde (MDA), reduced glutathione (GSH) and vitamin-E levels.</p> <p>Results</p> <p>The group treated with vitamin E and submitted to exercise stress presented the lowest levels of renal MDA (1: 0.16+0.02 mmmol/mgprot vs. 2: 0.34+0.07 mmmol/mgprot vs. 3: 0.1+0.01 mmmol/mgprot; p < 0.0001), the highest levels of renal GSH (1: 23+4 μmol/gprot vs. 2: 23+2 μmol/gprot vs. 3: 58+9 μmol/gprot; p < 0.0001) and the highest levels of renal vitamin E (1: 24+6 μM/gtissue vs. 2: 28+2 μM/gtissue vs. 3: 43+4 μM/gtissue; p < 0.001).</p> <p>Conclusion</p> <p>Vitamin E supplementation improved non-enzymatic antioxidant activity in young rats submitted to exhaustive exercise stress.</p

    Crop Updates 2000 - Pulses

    Get PDF
    This session covers fifty nine papers from different authors: 1.1999 PULSE INDUSTRY HIGHLIGHTS 2. CONTRIBUTORS 3. BACKGROUND 4. SUMMARY OF PREVIOUS RESULTS 5. 1999 REGIONAL ROUNDUP 6. Northern Agricultural Region, W. O’Neill, AGWEST 7. Central Agricultural Region J. Russell and R.J. French AGWEST 8. Great Southern and Lakes N. Brandon, C. Gaskin and N. Runciman, AGWEST 9. Esperance Mallee M. Seymour, AGWEST PULSE PRODUCTION AGRONOMY AND GENETIC IMPROVEMENT 10. Faba Bean 11. Desi chickpea Traits associated with drought resistance in chickpea, J. Berger, N.C. Turner, CLIMA and CSIRO Plant Industry, R.J. French, AGWEST, R. Carpenter, C. Ludwig and R. Kenney, CSIRO Plant Industry 12. Genotype x environment analysis of chickpea adaptation, J. Berger and N. Turner, CLIMA and CSIRO Plant Industry, and K.H.M. Siddique, AGWEST 13. Carbon fixation by chickpea pods under terminal drought, Q. Ma, CLIMA, M.H. Behboudian, Massey University, New Zealand, N.C. Turner and J.A. Palta, CLIMA, and CSIRO Plant Industry 14. Influence of terminal drought on growth and seed quality, M.H. Behboudian, Massey University, New Zealand, Q. Ma, CLIMA, N.C. Turner and J.A. Palta, CSIRO Plant Industry 15. Resistance to chilling at flowering and to budworm, H. Clarke, CLIMA Chickpea nodulation survey, J. Stott and J. Howieson, Centre for Rhizobium Studies, Murdoch University 16. Kabuli chickpea 17. Premium quality kabuli chickpea development in the ORIA, K.H.M. Siddique CLIMA and AGWEST, K.L. Regan, AGWEST, R. Shackles, AGWEST 18. International screening for Ascochyta blight resistance, K.H.M. Siddique CLIMA and AGWEST, C. Francis, CLIMA, K.L. Regan, AGWEST, N. Acikgoz and N. Atikyilmaz, AARI, Turkey and R.S. Malholtra, ICARDA, Syria 19. Agronomic evaluation of Ascochyta resistant kabuli germplasm in WA, K.H.M. Siddique CLIMA and AGWESTC. Francis, CLIMA, K.L. Regan and M. Baker, AGWEST 20. Field Pea 21. Lentil 22. ACIAR project J. Clements, K.H.M. Siddique CLIMA and AGWEST and C. Francis CLIMA 23. Vetch 24. Rust, M. Seymour, AGWEST 25. Narbon bean 26. Agronomy, M. Seymour, AGWEST 27. Lupinus species 28. Screening lupins for tolerance to alkaline/calcareous soils, C. Tang, CLIMA andUniversity of WAand J.D. Brand, WAITE, University of Adelaide 29. Lathyrus development, C. Hanbury and K.H.M. Siddique, CLIMA and AGWEST 30. Sheep feeding studies, C. White, CSIRO, Perth, C. Hanbury, CLIMA and K.H.M. Siddique, CLIMA and AGWEST 31. Lathyrus: a potential new ingredient in pig diets, B.P. Mullan, C.D. Hanbury and K.H.M. Siddique, AGWEST 32. Species comparison 33. Species for horticultural rotations, K.H.M. Siddique, AGWEST, R. Lancaster and I. Guthridge AGWEST 34. Marrow fat field pea shows promise in the southwest, K.H.M. Siddique, AGWEST, N. Runciman, AGWEST, and I. Pritchard, AGWEST, 35. Pulses on grey clay soils, P. Fisher, M. Braimbridge, J. Bignell, N. Brandon, R. Beermier, W. Bowden, AGWEST 36. Nutrient management of pulses 37. Summary of pulse nutrition studies in WA, M.D.A. Bolland, K.H.M. Siddique, G.P. Riethmuller, and R.F. Brennan, AGWEST 38. Pulse species response to phosphorus and zinc, S. Lawrence, Zed Rengel, University of WA, S.P. Loss, CSBP futurefarm, M.D.A. Bolland, .H.M. Siddique, W. Bowden, AGWEST 39. Gypsum 40. Antitranspirants seed priming DEMONSTRATION OF PULSES IN THE FARMING SYSTEM 41. Foliar and soil applied nutrients for field peas in the south coast mallee,M. Seymour, AGWEST, and P. Vedeniapine, Phosyn Ltd 42. Demonstration of pulse species at Kendenup, C. Kirkwood, Farmer, Katanning, R. Beermier, N. Runciman and N. Brandon, AGWEST 43. Kabuli chickpea demonstration at Gnowangerup, R. Beermier and N. Brandon, AGWEST 44. Lathyrus sativus demonstration at Mindarabin, N. Brandon and R. Beermier, AGWEST 45. New field pea varieties in the central eastern region, J. Russell, AGWEST DISEASE AND PEST MANAGEMENT 46. Ascochyta blight of chickpea 47. Botrytis grey mould (BGM) of chickpea 48. Fungal disease diagnostics, Pulse disease diagnostics, D. Wright, AGWEST Plant Laboratories 49. Viruses in pulses, Luteovirus infection in field pea and faba bean crops, and viruses in seed, L. Latham, CLIMA and AGWEST, R. Jones, AGWEST 50. Screening of pulse species for pea seed-borne mosaic virus, L. Latham, CLIMAand AGWEST, and R. Jones, AGWEST 51. CMV in chickpea: effect of seed-borne sources on virus spread and seed yield, R. Jones, AGWEST and L. Latham, CLIMA and AGWEST 52. Insect pests 53. Evaluation of transgenic field pea against the pea weevil,M.J. de Sousa Majer, School of Environmental Biology, Curtin University of Technology,, D. Hardie, and N.C. Turner, CSIRO Division of Plant Industry 54. Development of a molecular marker for pea weevil resistance in field pea, Oonagh Byrne, CLIMA, Darryl Hardie, AGWEST and Penny Smith, UWA 55. Aphid feeding damage to faba bean and lentil crops, Françoise Berlandier, AGWEST 56. Taxonomy and control of bruchids in pulses, N. Keals, CLIMA, D. Hardie and R. Emery, AGWEST, 57. ACKNOWLEDGMENTS 58. PUBLICATIONS BY PULSE PRODUCTIVITY PROJECT STAFF 59. VARIETIES PRODUCED AND COMMERCIALLY RELEASE

    Polyethylene/Polyhydroxyalkanoates-based Biocomposites and Bionanocomposites

    Get PDF
    The development of advanced polymer composite materials having superior mechanical properties has opened up new horizons in the field of science and engineering. Polyethylene (PE) is considered one of the most widely used thermoplastics in the world due to its excellent properties which have excellent chemical inertness, low coefficient of friction, toughness, near-zero moisture absorption, ease of processing and electrical properties. Polyhydroxyalkanoates (PHAs) are garnering increasing attention in the biodegradable polymer market because of their promising properties such as high biodegradability in different environments. This chapter covers polyethylene/polyhydroxyalkanoates-based biocomposites and bionanocomposites. It summarizes many of the recent research accomplishments in the area of PE/PHAs-based biocomposites and bionanocomposites such as state-of-the-art regarding different methods of their preparation. Also discussed are different characterization techniques and use of PE/PHAs-based biocomposites and bionanocomposites in biomedical, packaging, structural, military, coating, fire retardant, aerospace and optical applications, along with recycling and lifetime studies

    Seismic performance of buildings with structural and foundation rocking in centrifuge testing

    No full text
    Rocking motion, established in either the superstructure in the form of a two-point stepping mechanism (structural rocking), or resulting from rotational motion of the foundation on the soil (foundation rocking), is considered an effective, low cost base isolation technique. This paper unifies for the first time the two types of rocking motion under a common experimental campaign, so that on the one hand, structural rocking can be examined under the influence of soil and on the other, foundation rocking can be examined under the influence of a linear elastic superstructure. Two building models, designed to rock above or below their foundation level so that they can reproduce structural and foundation rocking, respectively, were tested side-by-side in a centrifuge. The models were placed on a dry sandbed and subjected to a sequence of earthquake motions. The range of rocking amplitude that is required for base isolation was quantified. Overall, it is shown that the relative density of sand does not influence structural rocking, while for foundation rocking, the change from dense to loose sand can affect the time-frequency response significantly and lead to a more predictable behaviour.The authors gracefully acknowledge the Engineering and Physical Sciences Research Council (EPSRC) for funding this research through the EPSRC Centre for Doctoral Training in Future Infrastructure and Built Environment (EPSRC grant reference number EP/L016095/1)
    corecore