21 research outputs found

    Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (Cicer arietinum L.).

    Get PDF
    Extensive and deep root systems have been recognized as one of the most important traits for improving chickpea (Cicer arietinum L.) productivity under progressively receding soil moisture conditions. However, available information on the range of variation for root traits is still limited. Genetic variability for the root traits was investigated using a cylinder culture system during two consecutive growth seasons in the mini-core germplasm collection of ICRISAT plus several wild relatives of chickpea. The largest genetic variability was observed at 35 days after sowing for root length density (RLD) (heritability, h 2 = 0.51 and 0.54) across seasons, and followed by the ratio of plant dry weight to root length density with h 2 of 0.37 and 0.50 for first and second season, respectively. The root growth of chickpea wild relatives was relatively poor compared to C. arietinum, except in case of C. reticulatum. An outstanding genotype, ICC 8261, which had the largest RLD and one of the deepest root system, was identified in chickpea mini-core germplasm collection. The accession ICC 4958 which was previously characterized as a source for drought avoidance in chickpea was confirmed as one with the most prolific and deep root system, although many superior accessions were also identified. The chickpea landraces collected from the Mediterranean and the west Asian region showed a significantly larger RLD than those from the south Asian region. In addition, the landraces originating from central Asia (former Soviet Union), characterized by arid agro-climatic conditions, also showed relatively larger RLD. As these regions are under-represented in the chickpea collection, they might be interesting areas for further germplasm exploration to identify new landraces with large RLD. The information on the genetic variability of chickpea root traits provides valuable baseline knowledge for further progress on the selection and breeding for drought avoidance root traits in chickpea

    Quorum sensing:Implications on rhamnolipid biosurfactant production

    Get PDF

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    Paroxysmal Cerebral Disorder

    Instrument selection and implementation in a networked context

    No full text
    corecore