149 research outputs found

    A cross-sectional study of obesogenic behaviours and family rules according to family structure in European children

    Get PDF
    Background There has been an increase in children growing up in non-traditional families, such as single-parent and blended families. Children from such families have a higher prevalence of obesity and poorer health outcomes, but research on the relationship with obesogenic behaviours is limited. Objectives Therefore, the aim of this study was to investigate whether there are associations between family structures and obesogenic behaviours and related family rules in European children and adolescents. Methods The sample included 7664 children (mean age +/- SD: 10.9 +/- 2.9) from 4923 families who were participants of the multi-centre I.Family study (2013/2014) conducted in 8 European countries. Family structure was assessed by a detailed interview on kinship and household. Obesogenic behaviours (screen time, sleep duration, consumption of sugar-sweetened beverages (SSBs)) and family rules (rules for computer and television, bedtime routine, availability of SSBs during meals) were determined by standardized questionnaires. Multilevel mixed-effects linear and logistic regression models were used to model the associations of family structure with obesogenic behaviours and family rules. Sex, age, parental education level, number of children and adults in the household and BMI z-score were covariates in the models. Two-parent biological families were set as the reference category. Results Children from single-parent families were less likely to have family rules regarding screen time (OR: 0.62, 95% CI: 0.40-0.94, p = 0.026) with higher reported hours of screen time per week (beta = 2.70 h/week, 95% CI: 1.39-4.00, p <0.001). The frequency of weekly SSB consumption differed by family structure in a sex-specific manner: girls from single-parent (beta = 3.19 frequency/week, 95% CI: 0.91-5.47, p = 0.006) and boys from blended/adoptive families (beta = 3.01 frequency/week, 95% CI: 0.99-5.03, p = 0.004) consumed more SSBs. Sleep duration, bedtime routines and availability of SSBs during meals did not differ between children from these family structures. Parental education did not modify any of these associations. Conclusions Parents in non-traditional family structures appear to experience more difficulties in restricting screen time and the intake of SSBs in their children than parents in traditional two-parent family structures. Our findings therefore suggest that additional support and effective strategies for parents in non-traditional families may help to reduce obesogenic behaviours in children from such family types.Peer reviewe

    A cross-sectional study of obesogenic behaviours and family rules according to family structure in European children

    Get PDF
    Background There has been an increase in children growing up in non-traditional families, such as single-parent and blended families. Children from such families have a higher prevalence of obesity and poorer health outcomes, but research on the relationship with obesogenic behaviours is limited. Objectives Therefore, the aim of this study was to investigate whether there are associations between family structures and obesogenic behaviours and related family rules in European children and adolescents. Methods The sample included 7664 children (mean age +/- SD: 10.9 +/- 2.9) from 4923 families who were participants of the multi-centre I.Family study (2013/2014) conducted in 8 European countries. Family structure was assessed by a detailed interview on kinship and household. Obesogenic behaviours (screen time, sleep duration, consumption of sugar-sweetened beverages (SSBs)) and family rules (rules for computer and television, bedtime routine, availability of SSBs during meals) were determined by standardized questionnaires. Multilevel mixed-effects linear and logistic regression models were used to model the associations of family structure with obesogenic behaviours and family rules. Sex, age, parental education level, number of children and adults in the household and BMI z-score were covariates in the models. Two-parent biological families were set as the reference category. Results Children from single-parent families were less likely to have family rules regarding screen time (OR: 0.62, 95% CI: 0.40-0.94, p = 0.026) with higher reported hours of screen time per week (beta = 2.70 h/week, 95% CI: 1.39-4.00, p <0.001). The frequency of weekly SSB consumption differed by family structure in a sex-specific manner: girls from single-parent (beta = 3.19 frequency/week, 95% CI: 0.91-5.47, p = 0.006) and boys from blended/adoptive families (beta = 3.01 frequency/week, 95% CI: 0.99-5.03, p = 0.004) consumed more SSBs. Sleep duration, bedtime routines and availability of SSBs during meals did not differ between children from these family structures. Parental education did not modify any of these associations. Conclusions Parents in non-traditional family structures appear to experience more difficulties in restricting screen time and the intake of SSBs in their children than parents in traditional two-parent family structures. Our findings therefore suggest that additional support and effective strategies for parents in non-traditional families may help to reduce obesogenic behaviours in children from such family types.Peer reviewe

    Regulatory feedback cycle of the insulin-degrading enzyme and the amyloid precursor protein intracellular domain: Implications for Alzheimer's disease

    Get PDF
    One of the major pathological hallmarks of Alzheimer´s disease (AD) is an accumulation of amyloid-β (Aβ) in brain tissue leading to formation of toxic oligomers and senile plaques. Under physiological conditions, a tightly balanced equilibrium between Aβ-production and -degradation is necessary to prevent pathological Aβ-accumulation. Here, we investigate the molecular mechanism how insulin-degrading enzyme (IDE), one of the major Aβ-degrading enzymes, is regulated and how amyloid precursor protein (APP) processing and Aβ-degradation is linked in a regulatory cycle to achieve this balance. In absence of Aβ-production caused by APP or Presenilin deficiency, IDE-mediated Aβ-degradation was decreased, accompanied by a decreased IDE activity, protein level, and expression. Similar results were obtained in cells only expressing a truncated APP, lacking the APP intracellular domain (AICD) suggesting that AICD promotes IDE expression. In return, APP overexpression mediated an increased IDE expression, comparable results were obtained with cells overexpressing C50, a truncated APP representing AICD. Beside these genetic approaches, also AICD peptide incubation and pharmacological inhibition of the γ-secretase preventing AICD production regulated IDE expression and promoter activity. By utilizing CRISPR/Cas9 APP and Presenilin knockout SH-SY5Y cells results were confirmed in a second cell line in addition to mouse embryonic fibroblasts. In vivo, IDE expression was decreased in mouse brains devoid of APP or AICD, which was in line with a significant correlation of APP expression level and IDE expression in human postmortem AD brains. Our results show a tight link between Aβ-production and Aβ-degradation forming a regulatory cycle in which AICD promotes Aβ-degradation via IDE and IDE itself limits its own production by degrading AICD

    Comparison of TNFα to Lipopolysaccharide as an Inflammagen to Characterize the Idiosyncratic Hepatotoxicity Potential of Drugs: Trovafloxacin as an Example

    Get PDF
    Idiosyncratic drug reactions (IDRs) are poorly understood, unpredictable, and not detected in preclinical studies. Although the cause of these reactions is likely multi-factorial, one hypothesis is that an underlying inflammatory state lowers the tolerance to a xenobiotic. Previously used in an inflammation IDR model, bacterial lipopolysaccharide (LPS) is heterogeneous in nature, making development of standardized testing protocols difficult. Here, the use of rat tumor necrosis factor-α (TNFα) to replace LPS as an inflammatory stimulus was investigated. Sprague-Dawley rats were treated with separate preparations of LPS or TNFα, and hepatic transcriptomic effects were compared. TNFα showed enhanced consistency at the transcriptomic level compared to LPS. TNFα and LPS regulated similar biochemical pathways, although LPS was associated with more robust inflammatory signaling than TNFα. Rats were then codosed with TNFα and trovafloxacin (TVX), an IDR-associated drug, and evaluated by liver histopathology, clinical chemistry, and gene expression analysis. TNFα/TVX induced unique gene expression changes that clustered separately from TNFα/levofloxacin, a drug not associated with IDRs. TNFα/TVX cotreatment led to autoinduction of TNFα resulting in potentiation of underlying gene expression stress signals. Comparison of TNFα/TVX and LPS/TVX gene expression profiles revealed similarities in the regulation of biochemical pathways. In conclusion, TNFα could be used in lieu of LPS as an inflammatory stimulus in this model of IDRs

    A signalome screening approach in the autoinflammatory disease TNF Receptor Associated Periodic Syndrome (TRAPS) highlights the anti-inflammatory properties of drugs for repurposing

    Get PDF
    TNF Receptor Associated Periodic Syndrome (TRAPS) is an autoinflammatory disease caused by mutations in TNF Receptor 1 (TNFR1). Current therapies for TRAPS are limited and do not target the pro-inflammatory signalling pathways that are central to the disease mechanism. Our aim was to identify drugs for repurposing as anti-inflammatories based on their ability to down-regulate molecules associated with inflammatory signalling pathways that are activated in TRAPS. This was achieved using rigorously optimised, high through- put cell culture and reverse phase protein microarray systems to screen compounds for their effects on the TRAPS-associated inflammatory signalome. 1360 approved, publically available, pharmacologically active substances were investigated for their effects on 40 signalling molecules associated with pro-inflammatory signalling pathways that are constitutively upregulated in TRAPS. The drugs were screened at four ten-fold concentrations on cell lines expressing both wild-type (WT) TNFR1 and TRAPS-associated C33Y mutant TNFR1, or WT TNFR1 alone; signalling molecule levels were then determined in cell lysates by the reverse phase protein microarray. A novel mathematical methodology was developed to rank the compounds for their ability to reduce the expression of signalling molecules in the C33Y-TNFR1 transfectants towards the level seen in the WT-TNFR1 transfectants. Seven high-ranking drugs were selected and tested by RPPA for effects on the same 40 signalling molecules in lysates of peripheral blood mononuclear cells (PBMCs) from C33Y-TRAPS patients compared to PBMCs from normal controls. The fluoroquinolone antibiotic lomefloxacin, as well as others from this class of compounds, showed the most significant effects on multiple pro-inflammatory signalling pathways that are constitutively activated in TRAPS; lomefloxacin dose-dependently significantly reduced expression of 7/40 signalling molecules across the Jak/Stat, MAPK, NF-kB and PI3K/AKT pathways. This study demonstrates the power of signalome screening for identifying candidates for drug repurposing

    Photoactive assemblies of organic compounds and biomolecules: drug-protein supramolecular systems

    Full text link
    [EN] The properties of singlet and triplet excited states are strongly medium-dependent. Hence, these species constitute valuable tools as reporters to probe compartmentalised microenvironments, including drug@protein supramolecular systems. In the present review, the attention is focused on the photophysical properties of the probe drugs (rather than those of the protein chromophores) using transport proteins (serum albumins and 1-acid glycoproteins) as hosts. Specifically, fluorescence measurements allow investigating the structural and dynamic properties of biomolecules or their complexes. Thus, the emission quantum yields and the decay kinetics of the drug singlet excited states provide key information to determine important parameters such as the stoichiometry of the complex, the binding constant, the relative degrees of occupancy of the different compartments, etc. Application of the FRET concept allows determining donor-acceptor interchromophoric distances. In addition, anisotropy measurements can be related to the orientation of the drug within the binding sites, where the degrees of freedom for conformational relaxation are restricted. Transient absorption spectroscopy is also a potentially powerful tool to investigate the binding of drugs to proteins, where formation of encapsulated triplet excited states is favoured over other possible processes leading to ionic species (i. e. radical ions), and their photophysical properties are markedly sensitive to the microenvironment experienced within the protein binding sites. Even under aerobic conditions, the triplet lifetimes of protein-complexed drugs are remarkably long, which provides a broad dynamic range for identification of distinct triplet populations or for chiral discrimination. Specific applications of the laser flash photolysis technique include the determination of drug distribution among the bulk solution and the protein binding sites, competition of two types of proteins to bind a 3 drug, occurrence of drug-drug interactions within protein binding sites, enzymatic-like activity of the protein or determination of enantiomeric compositions. The use of proteins as supramolecular hosts modifies the photoreactivity of encapsulated substrates by providing protection against oxygen or other external reagents, by imposing conformational restrictions in the binding pockets, or by influencing the stereochemical outcome. In this review, a selected group of examples is presented including decarboxylation, dehalogenation, nucleophilic addition, dimerisation, oxidation, Norrish type II reaction, photo-Fries rearrangement and 6 electrocyclisationFinancial support from the Spanish Government (CTQ2010-14882, JCI-2011-09926, RyC-2007-00476), from the EU (PCIG12-GA-2012-334257), from the Universitat Politènica de València (SP20120757) and from the Consellería de Educació, Cultura i Esport (PROMETEOII/2013/005, GV/2013/051) is gratefully acknowledged.Vayá Pérez, I.; Lhiaubet-Vallet, VL.; Jiménez Molero, MC.; Miranda Alonso, MÁ. (2014). Photoactive assemblies of organic compounds and biomolecules: drug-protein supramolecular systems. Chemical Society Reviews. 43:4102-4122. https://doi.org/10.1039/C3CS60413FS410241224
    corecore