69 research outputs found

    A reference relative time-scale as an alternative to chronological age for cohorts with long follow-up

    Get PDF
    Background: Epidemiologists have debated the appropriate time-scale for cohort survival studies; chronological age or time-on-study being two such time-scales. Importantly, assessment of risk factors may depend on the choice of time-scale. Recently, chronological or attained age has gained support but a case can be made for a ‘reference relative time-scale’ as an alternative which circumvents difficulties that arise with this and other scales. The reference relative time of an individual participant is the integral of a reference population hazard function between time of entry and time of exit of the individual. The objective here is to describe the reference relative time-scale, illustrate its use, make comparison with attained age by simulation and explain its relationship to modern and traditional epidemiologic methods. Results: A comparison was made between two models; a stratified Cox model with age as the time-scale versus an un-stratified Cox model using the reference relative time-scale. The illustrative comparison used a UK cohort of cotton workers, with differing ages at entry to the study, with accrual over a time period and with long follow-up. Additionally, exponential and Weibull models were fitted since the reference relative time-scale analysis need not be restricted to the Cox model. A simulation study showed that analysis using the reference relative time-scale and analysis using chronological age had very similar power to detect a significant risk factor and both were equally unbiased. Further, the analysis using the reference relative time-scale supported fully-parametric survival modelling and allowed percentile predictions and mortality curves to be constructed. Conclusions: The reference relative time-scale was a viable alternative to chronological age, led to simplification of the modelling process and possessed the defined features of a good time-scale as defined in reliability theory. The reference relative time-scale has several interpretations and provides a unifying concept that links contemporary approaches in survival and reliability analysis to the traditional epidemiologic methods of Poisson regression and standardised mortality ratios. The community of practitioners has not previously made this connection

    Deriving stage at diagnosis from multiple population-based sources: colorectal and lung cancer in England.

    Get PDF
    BACKGROUND: Stage at diagnosis is a strong predictor of cancer survival. Differences in stage distributions and stage-specific management help explain geographic differences in cancer outcomes. Stage information is thus essential to improve policies for cancer control. Despite recent progress, stage information is often incomplete. Data collection methods and definition of stage categories are rarely reported. These inconsistencies may result in assigning conflicting stage for single tumours and confound the interpretation of international comparisons and temporal trends of stage-specific cancer outcomes. We propose an algorithm that uses multiple routine, population-based data sources to obtain the most complete and reliable stage information possible. METHODS: Our hierarchical approach derives a single stage category per tumour prioritising information deemed of best quality from multiple data sets and various individual components of tumour stage. It incorporates rules from the Union for International Cancer Control TNM classification of malignant tumours. The algorithm is illustrated for colorectal and lung cancer in England. We linked the cancer-specific Clinical Audit data (collected from clinical multi-disciplinary teams) to national cancer registry data. We prioritise stage variables from the Clinical Audit and added information from the registry when needed. We compared stage distribution and stage-specific net survival using two sets of definitions of summary stage with contrasting levels of assumptions for dealing with missing individual TNM components. This exercise extends a previous algorithm we developed for international comparisons of stage-specific survival. RESULTS: Between 2008 and 2012, 163 915 primary colorectal cancer cases and 168 158 primary lung cancer cases were diagnosed in adults in England. Using the most restrictive definition of summary stage (valid information on all individual TNM components), colorectal cancer stage completeness was 56.6% (from 33.8% in 2008 to 85.2% in 2012). Lung cancer stage completeness was 76.6% (from 57.3% in 2008 to 91.4% in 2012). Stage distribution differed between strategies to define summary stage. Stage-specific survival was consistent with published reports. CONCLUSIONS: We offer a robust strategy to harmonise the derivation of stage that can be adapted for other cancers and data sources in different countries. The general approach of prioritising good-quality information, reporting sources of individual TNM variables, and reporting of assumptions for dealing with missing data is applicable to any population-based cancer research using stage. Moreover, our research highlights the need for further transparency in the way stage categories are defined and reported, acknowledging the limitations, and potential discrepancies of using readily available stage variables

    The impact of life tables adjusted for smoking on the socio-economic difference in net survival for laryngeal and lung cancer.

    Get PDF
    BACKGROUND: Net survival is a key measure in cancer control, but estimates for cancers that are strongly associated with smoking may be biased. General population life tables represent background mortality in net survival, but may not adequately reflect the higher mortality experienced by smokers. METHODS: Life tables adjusted for smoking were developed, and their impact on net survival and inequalities in net survival for laryngeal and lung cancers was examined. RESULTS: The 5-year net survival estimated with smoking-adjusted life tables was consistently higher than the survival estimated with unadjusted life tables: 7% higher for laryngeal cancer and 1.5% higher for lung cancer. The impact of using smoking-adjusted life tables was more pronounced in affluent patients; the deprivation gap in 5-year net survival for laryngeal cancer widened by 3%, from 11% to 14%. CONCLUSIONS: Using smoking-adjusted life tables to estimate net survival has only a small impact on the deprivation gap in survival, even when inequalities are substantial. Adjusting for the higher, smoking-related background mortality did increase the estimates of net survival for all deprivation groups, and may be more important when measuring the public health impact of differences or changes in survival, such as avoidable deaths or crude probabilities of death

    Patient, tumor, and healthcare factors associated with regional variability in lung cancer survival: a Spanish high‑resolution population‑based study

    Get PDF
    Purpose The third most frequently diagnosed cancer in Europe in 2018 was lung cancer; it is also the leading cause of cancer death in Europe. We studied patient and tumor characteristics, and patterns of healthcare provision explaining regional variability in lung cancer survival in southern Spain. Methods A population-based cohort study included all 1196 incident first invasive primary lung cancer (C33–C34 according to ICD-10) cases diagnosed between 2010 and 2011 with follow-up until April 2015. Data were drawn from local population-based cancer registries and patients’ hospital medical records from all public and private hospitals from two regions in southern Spain. Results There was evidence of regional differences in lung cancer late diagnosis (58% stage IV in Granada vs. 65% in Huelva, p value < 0.001). Among patients with stage I, only 67% received surgery compared with 0.6% of patients with stage IV. Patients treated with a combination of radiotherapy, chemotherapy, and surgery had a 2-year mortality risk reduction of 94% compared with patients who did not receive any treatment (excess mortality risk 0.06; 95% CI 0.02–0.16). Geographical differences in survival were observed between the two regions: 35% vs. 26% at 1-year since diagnosis. Conclusions The observed geographic differences in survival between regions are due in part to the late cancer diagnosis which determines the use of less effective therapeutic options. Results from our study justify the need for promoting lung cancer early detection strategies and the harmonization of the best practice in lung cancer management and treatment.Maria Jose Sanchez Perez is supported by the Andalusian Department of Health: Research, Development, and Innovation Office project grant PI-0152/2017. Miguel Angel Luque-Fernandez is supported by the Spanish National Institute of Health, Carlos III Miguel Servet I Investigator Award (CP17/00206)

    Trends in incidence, mortality and survival in women with breast cancer from 1985 to 2012 in Granada, Spain: a population-based study

    Get PDF
    The incidence of breast cancer has increased since the 1970s. Despite favorable trends in prognosis, the role of changes in clinical practice and the introduction of screening remain controversial. We examined breast cancer trends to shed light on their determinants Overall, age-adjusted (European Standard Population) incidence rates increased from 48.0 cases × 100,000 women in 1985–1989 to 83.4 in 2008–2012, with an annual percentage change (APC) of 2.5% (95%CI, 2.1–2.9) for 1985–2012. The greatest increase was in women younger than 40 years (APC 3.5, 95%CI, 2.4–4.8). For 2000–2012 the incidence trend increased only for stage I tumors (APC 3.8, 95%CI, 1.9–5.8). Overall age-adjusted breast cancer mortality decreased (APC − 1, 95%CI, − 1.4 – − 0.5), as did mortality in the 50–69 year age group (APC − 1.3, 95%CI, − 2.2 – − 0.4). Age-standardized net survival increased from 67.5% at 5 years in 1985–1989 to 83.7% in 2010–2012. All age groups younger than 70 years showed a similar evolution. Five-year net survival rates were 96.6% for patients with tumors diagnosed in stage I, 88.2% for stage II, 62.5% for stage III and 23.3% for stage IV. Breast cancer incidence is increasing – a reflection of the evolution of risk factors and increasing diagnostic pressure. After screening was introduced, the incidence of stage I tumors increased, with no decrease in the incidence of more advanced stages. Reductions were seen for overall mortality and mortality in the 50–69 year age group, but no changes were found after screening implementation. Survival trends have evolved favorably except for the 70–84 year age group and for metastatic tumors.This study was supported by a grant from the Acción Estratégica en Salud plan for the High Resolution Project on Prognosis and Care of Cancer Patients (No. AC14/00036) awarded by the Spanish Ministry of Economy and Competitiveness and co-funded by the European Regional Development Fund (ERDF)

    Lancet

    Get PDF
    BACKGROUND: In 2015, the second cycle of the CONCORD programme established global surveillance of cancer survival as a metric of the effectiveness of health systems and to inform global policy on cancer control. CONCORD-3 updates the worldwide surveillance of cancer survival to 2014. METHODS: CONCORD-3 includes individual records for 37.5 million patients diagnosed with cancer during the 15-year period 2000-14. Data were provided by 322 population-based cancer registries in 71 countries and territories, 47 of which provided data with 100% population coverage. The study includes 18 cancers or groups of cancers: oesophagus, stomach, colon, rectum, liver, pancreas, lung, breast (women), cervix, ovary, prostate, and melanoma of the skin in adults, and brain tumours, leukaemias, and lymphomas in both adults and children. Standardised quality control procedures were applied; errors were rectified by the registry concerned. We estimated 5-year net survival. Estimates were age-standardised with the International Cancer Survival Standard weights. FINDINGS: For most cancers, 5-year net survival remains among the highest in the world in the USA and Canada, in Australia and New Zealand, and in Finland, Iceland, Norway, and Sweden. For many cancers, Denmark is closing the survival gap with the other Nordic countries. Survival trends are generally increasing, even for some of the more lethal cancers: in some countries, survival has increased by up to 5% for cancers of the liver, pancreas, and lung. For women diagnosed during 2010-14, 5-year survival for breast cancer is now 89.5% in Australia and 90.2% in the USA, but international differences remain very wide, with levels as low as 66.1% in India. For gastrointestinal cancers, the highest levels of 5-year survival are seen in southeast Asia: in South Korea for cancers of the stomach (68.9%), colon (71.8%), and rectum (71.1%); in Japan for oesophageal cancer (36.0%); and in Taiwan for liver cancer (27.9%). By contrast, in the same world region, survival is generally lower than elsewhere for melanoma of the skin (59.9% in South Korea, 52.1% in Taiwan, and 49.6% in China), and for both lymphoid malignancies (52.5%, 50.5%, and 38.3%) and myeloid malignancies (45.9%, 33.4%, and 24.8%). For children diagnosed during 2010-14, 5-year survival for acute lymphoblastic leukaemia ranged from 49.8% in Ecuador to 95.2% in Finland. 5-year survival from brain tumours in children is higher than for adults but the global range is very wide (from 28.9% in Brazil to nearly 80% in Sweden and Denmark). INTERPRETATION: The CONCORD programme enables timely comparisons of the overall effectiveness of health systems in providing care for 18 cancers that collectively represent 75% of all cancers diagnosed worldwide every year. It contributes to the evidence base for global policy on cancer control. Since 2017, the Organisation for Economic Co-operation and Development has used findings from the CONCORD programme as the official benchmark of cancer survival, among their indicators of the quality of health care in 48 countries worldwide. Governments must recognise population-based cancer registries as key policy tools that can be used to evaluate both the impact of cancer prevention strategies and the effectiveness of health systems for all patients diagnosed with cancer. FUNDING: American Cancer Society; Centers for Disease Control and Prevention; Swiss Re; Swiss Cancer Research foundation; Swiss Cancer League; Institut National du Cancer; La Ligue Contre le Cancer; Rossy Family Foundation; US National Cancer Institute; and the Susan G Komen Foundation

    Factors influencing physical activity and rehabilitation in survivors of critical illness: a systematic review of quantitative and qualitative studies

    Get PDF
    PURPOSE: To identify, evaluate and synthesise studies examining the barriers and enablers for survivors of critical illness to participate in physical activity in the ICU and post-ICU settings from the perspective of patients, caregivers and healthcare providers. METHODS: Systematic review of articles using five electronic databases: MEDLINE, CINAHL, EMBASE, Cochrane Library, Scopus. Quantitative and qualitative studies that were published in English in a peer-reviewed journal and assessed barriers or enablers for survivors of critical illness to perform physical activity were included. Prospero ID: CRD42016035454. RESULTS: Eighty-nine papers were included. Five major themes and 28 sub-themes were identified, encompassing: (1) patient physical and psychological capability to perform physical activity, including delirium, sedation, illness severity, comorbidities, weakness, anxiety, confidence and motivation; (2) safety influences, including physiological stability and concern for lines, e.g. risk of dislodgement; (3) culture and team influences, including leadership, interprofessional communication, administrative buy-in, clinician expertise and knowledge; (4) motivation and beliefs regarding the benefits/risks; and (5) environmental influences, including funding, access to rehabilitation programs, staffing and equipment. CONCLUSIONS: The main barriers identified were patient physical and psychological capability to perform physical activity, safety concerns, lack of leadership and ICU culture of mobility, lack of interprofessional communication, expertise and knowledge, and lack of staffing/equipment and funding to provide rehabilitation programs. Barriers and enablers are multidimensional and span diverse factors. The majority of these barriers are modifiable and can be targeted in future clinical practice

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat
    corecore