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METHODOLOGY

A reference relative time‑scale  
as an alternative to chronological age 
for cohorts with long follow‑up
Margaret Anne Hurley*

Abstract 

Background:  Epidemiologists have debated the appropriate time-scale for cohort survival studies; chronological age 
or time-on-study being two such time-scales. Importantly, assessment of risk factors may depend on the choice of 
time-scale. Recently, chronological or attained age has gained support but a case can be made for a ‘reference relative 
time-scale’ as an alternative which circumvents difficulties that arise with this and other scales. The reference relative 
time of an individual participant is the integral of a reference population hazard function between time of entry and 
time of exit of the individual. The objective here is to describe the reference relative time-scale, illustrate its use, make 
comparison with attained age by simulation and explain its relationship to modern and traditional epidemiologic 
methods.

Results:  A comparison was made between two models; a stratified Cox model with age as the time-scale versus an 
un-stratified Cox model using the reference relative time-scale. The illustrative comparison used a UK cohort of cotton 
workers, with differing ages at entry to the study, with accrual over a time period and with long follow-up. Addition-
ally, exponential and Weibull models were fitted since the reference relative time-scale analysis need not be restricted 
to the Cox model. A simulation study showed that analysis using the reference relative time-scale and analysis using 
chronological age had very similar power to detect a significant risk factor and both were equally unbiased. Further, 
the analysis using the reference relative time-scale supported fully-parametric survival modelling and allowed percen-
tile predictions and mortality curves to be constructed.

Conclusions:  The reference relative time-scale was a viable alternative to chronological age, led to simplification of 
the modelling process and possessed the defined features of a good time-scale as defined in reliability theory. The 
reference relative time-scale has several interpretations and provides a unifying concept that links contemporary 
approaches in survival and reliability analysis to the traditional epidemiologic methods of Poisson regression and 
standardised mortality ratios. The community of practitioners has not previously made this connection.

Keywords:  Operational failure time, Life expectancy, Time transformation, Age-at-risk, Cumulative hazard, Attained 
age
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Background
In recent years, epidemiologists have debated which 
of the several possible time-scales to use for survival 
analysis for longitudinal studies and it has been argued 
that chronological age as the time-scale is preferable 
to the traditional time-on-study [1, 2]. The utility of 

chronological age has been disputed because, it is argued, 
that without further covariate adjustment for age at entry 
to the cohort or without ‘left-truncation’ the unadjusted 
age scale is inferior in performance to other models [3]. 
When adjustment is made for age at entry then, it has 
been suggested, model coefficients for risk factors of 
interest differ little between models using the chronologi-
cal age scale and those using time-on-study [3, 4]. How-
ever, others have reported substantial differences in the 
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assessment of risk factors depending on the time-scale 
used for the analysis [5–7]. The choice of correct time-
scale is important because the substantive findings of 
large cohort studies might be called into question if it 
were believed that an inappropriate choice leads to seri-
ously biased estimates of hazard ratios for risk factors [8]. 
What is clear is that considerable care is required in the 
choice of time-scale for any particular application; one 
example being when an environmental exposure is highly 
correlated with the calendar time-scale [9]. The use of 
alternative time-scales has been discussed widely in the 
context of reliability and performance and the definition 
of a good time-scale has been proposed [10].

Although there is still no general consensus, chrono-
logical age as time-scale has gained moderate acceptance 
for the analysis of survival data from cohort studies. With 
chronological age as the time-scale, age is usually deemed 
to be truncated on the left at age of entry to the study. 
Cox regression is the modelling framework of choice to 
assess risk factors and the baseline hazard is a nonpara-
metric function of age. This assumption is problematic 
for long running studies which accrue participants over 
a period of time since the hazard cannot be a function 
of age alone but must also depend on calendar time. For 
example, the mortality rate of a white male of 60  years 
in California in 1984 would not be the same as that of a 
white male of 60 years in California in 2004 since longev-
ity would have improved. Using chronological age leaves 
unresolved the issue of calendar time when participants 
enter the cohort at different calendar times and this issue 
is not trivial for studies which span several decades. 
Cohorts and particularly occupational cohorts, often 
have these features, that participants join the cohort 
at different ages and at different calendar times and are 
followed-up for long periods of time thereafter. One rec-
ommendation is to stratify on birth cohort in the Cox 
regression model using 5 or 10 yearly intervals but, for 
long running cohorts, this can result in very many strata 
[1, 3], although strata of varying lengths can be used to 
reduce the total number. Another possibility is to include 
age at entry as a covariate but modelling age-at-entry may 
require a complex sub-model to make adequate adjust-
ment [5]. Stratification or covariate adjustment is not the 
only answer and a viable alternative, which has received 
little attention, is to take a relative survival approach to 
the analysis of cohorts with long follow-up. The aim of 
this paper is to publicise this alternative approach and 
to indicate how this addresses the issue of accommodat-
ing age at entry, birth cohort, differing entry times and 
changing longevity.

Relative survival has a long history in epidemiology 
[11–13]. Relative survival compares the mortality (or 
other event of interest) in a study population to that in 

an appropriate reference population. The standardised 
mortality ratio (SMR) is a primary traditional estimate 
of relative mortality and is defined as the number of 
events occurring in a study group relative to the number 
of events expected from the event rates observed in the 
reference population. The Poisson regression method 
for event counts, which uses expected number of events 
from the reference population in place of the person—
years of observation, has been used widely in the past to 
model the association of risk factors with mortality or 
disease outcome [14–16]. Although not always recog-
nised as such, the Poisson regression method is equiva-
lent to modelling the SMR [17]. Poisson regression has 
lost popularity in recent years because it is now well rec-
ognised that modelling aggregated counts has less power 
to identify risk factors compared to modelling individual 
survival times using individual participant data (IPD). 
Although an extension of Poisson regression to model 
IPD has been described [18], Cox regression for individ-
ual survival times still comprises the regression method 
of first choice, since it makes no statistical distributional 
assumptions.

The objective of this communication is to compare, as 
an illustration, a standard analysis using chronological 
age as the time-scale, left-truncated at age of entry to the 
study, and with stratification for birth cohort in the Cox 
model with the analysis of individual survival times on a 
reference relative time-scale. The intention is to demon-
strate that this approach provides a viable alternative to 
the current standard analysis and is an approach which 
circumvents much of the controversy surrounding the 
choice of time-scale. Also, it has appealing interpreta-
tions and is connected to the traditional methods of Pois-
son regression and SMR.

Methods
This section described more fully the two time scales 
being compared; the new reference relative time-scale 
and the chronological age time-scale. Following this the 
illustrative cohort data is introduced and the statistical 
analyses of the data are described. The section finishes 
with a methodological description of the simulation 
study which was used to establish existence of any bias 
and the relative power of the two time-scales to detect 
a differential mortality risk between men and women of 
light smoking compared to non-smoking.

The reference relative time‑scale
An individual measure of relative survival has been 
described previously in which, each participant’s actual 
survival time is transformed to a new scale which is 
the expected residual cumulative distribution func-
tion from a reference population [19, 20]. This measure 
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lies in the range 0.0 to 1.0. For example, an individual 
participant‘s measure of 0.80 implies that this partici-
pant’s survival time is longer than 80  % of their peers 
in the reference population where peers are defined 
as people of the same gender, date of birth and other 
key demographics such as race and location. Model-
ling of the risk factors is then performed in which the 
response variable is the transformed survival time, Y, 
and the regression method is the Cox model [20]. Cox 
regression is valid even though the response measure, 
Y, is bounded above by 1.0 and does not have the fun-
damental attribute of time, that of being unbounded 
above. If the measure Y is further transformed to the 
measure Z where Z = −ln(1−Y) then Z has the prop-
erty that the Cox model fitted to the measure Z gives 
identical regression estimates and fit to the Cox model 
fitted to the measure Y. The measure Z is also bounded 
below by 0.0 but Z is not bounded above and so has the 
attributes of a realistic time-scale. The measure Z is the 
reference relative time.

More specifically, if an individual of gender g enters 
the study at age a0 at calendar time s0 and exits at age 
a1 at calendar time s1 then Z =

∫ s1
s0

�
(

g , a, s
)

ds where 
λ(g, a, s) is the hazard in the reference population for 
a person of gender g, at age a at calendar time s. The 
reference population may be defined by further demo-
graphics such as race and location, but the pertinent 

point is that the integral is taken over the hazard func-
tion for the individual participant’s peer group in the 
reference population. Thus the individual’s relative time 
is the cumulative hazard of the peer group in the refer-
ence population over the calendar time on study of the 
individual participant. The survival censoring indica-
tor is the same as that for chronological age, which is 
whether the individual participant had an event at time 
s1 or was censored.

The transformation, Z, transforms both censored and 
uncensored survival times to a new relative time-scale, 
called the reference relative time-scale. Figure  1 shows 
a representation of how the reference relative time-scale 
is obtained. The reference relative time-scale has a num-
ber of interpretations, some with an intuitive appeal and 
some which, at first sight, may seem counter-intuitive.

1.	 The reference relative time-scale is the expected 
number of events for the individual participant dur-
ing their time-on-study. A reference relative sur-
vival time of 1.0 implies that the individual reached 
their residual life expectancy from entry based on 
the reference population. A reference relative sur-
vival greater than 1.0 implies that the individual had 
exceeded their residual life expectancy and a value 
less than 1.0 that they had died or embarked before 
reaching residual life expectancy.

Fig. 1  Graphical representation of the way in which reference relative time is computed as the integral under the hazard function (cumulative 
hazard) obtained from a reference population
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2.	 The reference relative time-scale is a weighted ver-
sion of the real time-on-study. Real time is ‘stretched’ 
when the hazard (force of mortality) in the reference 
population is high but time is ‘shrunk’ when the haz-
ard is low. So a calendar time period such as 5 years 
lived by an older individual participant between 1990 
and 1995, has a longer reference relative time value 
than 5  years between 1990 and 1995 lived through 
by a younger individual. Shrinking time is a form of 
accelerating time whereas stretching time, deceler-
ates time.

3.	 The reference relative time-scale is the reciprocal of 
an individual participant’s own SMR (divided by 100 
if the latter is expressed as a percentage). If the SMR 
is calculated for a study group of size one then the 
reference relative time would be the reciprocal of this 
value. Thus, an individual participant with an SMR 
of 50 % would have a reference relative survival time 
of 2.0. For this individual, the reference relative time 
on study was so long that the individual would have 
been ‘expected’ to have died twice, with an explana-
tion in the following sense. On calendar time of entry 
the individual has an expected residual lifetime. If the 
individual achieves the end of this expected residual 
lifetime, they would then have a further (but much 
shorter) expected residual lifetime. If they achieve 
the end of this second residual lifetime then the refer-
ence relative survival time becomes 2.0. A log-linear 
model for the hazard on the reference relative time 
scale is therefore also a log-linear model for the indi-
vidual participants’ SMRs.

4.	 The reference relative time-scale has a simple game-
theoretic interpretation as the final score in a game. 
In each time period, the individual player joins battle 
against opponents that are intent on eliminating the 
individual. The number of opponents is proportional 
to the hazard in the reference population (force of 
opposition or mortality). If the individual eliminates 
all the opponents then the player banks points pro-
portional to the number of opponents overcome. The 
cumulative number of banked points on exit from the 
game measures the individual’s total success during 
time-on-play in the game. Censoring applies to the 
banked points if on exit from the game the individual 
participant has not been eliminated. So, the reference 
relative time-scale is the cumulative amount of haz-
ard that the individual has confronted before experi-
encing an event and is a measure of game success.

Modelling on the reference relative time-scale obtained 
from the transformation Z has two significant bene-
fits. Firstly, as well as using the Cox regression, relative 
time can be modelled using the full range of parametric 

survivals models, such as exponential and Weibull mod-
els. Secondly, if risk factors and other variables are all cat-
egorical, then modelling reference relative time using an 
exponential distribution is equivalent to Poisson regres-
sion using observed and expected counts. If risk factors 
and other variables contain quantitative covariates then 
modelling reference relative times is an extension of Pois-
son regression to IPD. Thus modelling on the reference 
relative time-scale can be understood as a generalisation 
of the traditional Poisson regression method to IPD and 
to more complex survival distributions. Reference rela-
tive survival, therefore, provides a unifying conceptual 
framework which encompasses both traditional and con-
temporary methods of analysis.

The reference relative time-scale is an example of an 
alternative time-scale or ‘operational failure time-scale’ 
which has been discussed in the literature on reliability 
and performance of systems [10]. It meets the criteria 
for definition as an ‘ideal time-scale’ which is defined by 
four features (1) scientific relevance (2) parsimonious and 
accurate description of variation in failure times under 
different conditions (3) a compact statistical distribu-
tion on the transformed time-scale and (4) succinct and 
meaningful summarization of the effects of covariates of 
interest. An ‘ideal time-scale’ arises because the hazard in 
the reference population provides a time-varying exter-
nal continuous covariate during each individual partici-
pant’s time-on-study.

The chronological age time‑scale
Currently, the conventional approach for survival analysis 
for cohort data with long follow-up, in which participants 
enter at different calendar times and where ages at entry 
are variable is to use the time-scale of chronological age 
with left truncation for age at entry. With this approach 
adjustment for birth cohort is made by using a stratified 
Cox model with 5 or 10 year intervals [3, 5] or intervals of 
varying size as appropriate.

Illustrative cohort data
Analyses of a long running cohort of British cotton mill 
workers (1966–2007) have been previously described. 
The cohort was founded with the aim of understand-
ing the long-term effects of exposure to environmental 
particulates on respiratory mortality and morbidity. The 
cohort has provided evidence that working with cotton 
reduced the risk of lung cancer death and that light smok-
ing at baseline predicted higher mortality for women 
compared to men [21–23]. These results were obtained 
using the reference relative time-scale as the mode of 
analysis and the primary inferential topic of interest here 
was to demonstrate that these results were robust to the 
choice of time-scale.
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Ages at entry to the cohort were in the range 
15–81  years (quartiles, 32, 45 and 56  years) over the 
period 1966–1974 and participants’ year of birth was in 
the range 1885–1954. Smoking consumption was catego-
rised at baseline as non-smoker, light (1–14), medium 
(15–24), heavy (25+ cigarettes per day) smoker and for-
mer smoker. The cohort contained both men and women 
mostly working full-time in all of the mill environments. 
Other variables measured at baseline included; the pres-
ence of the lung disease of cotton mill workers known 
as Byssinosis, the presence of cough and phlegm for at 
least 3  days per week for at least 3  months of the year, 
how long the worker had worked in the cotton industry 
and lung function expressed as forced expiratory vol-
ume in one second adjusted for age, gender and height 
(FEV1% predicted) and the ratio of FEV1% predicted to 
forced vital capacity (FVC). Participants alive at age 90 
were censored. Table  1 illustrates the cohort data using 
10 typical but hypothetical individual participants. Also, 
Table 1 shows the type of values produced by the trans-
formation to reference relative survival time for the hypo-
thetical individuals for cohort entry at one calendar time 
point. The participants with identifiers 1, 2 and 3 all had 
the same time on study but had different ages at entry. 
The first two participants of these three had small refer-
ence relative times because they entered at a young age, 
whereas the third participant entered at 40.8  years and 
their reference relative time on study was >1.057 showing 
that they had just attained their expected lifetime when 
they exited from the study. The participant with identifier 

10 entered at age 60.7  years and their reference relative 
time on study was 1.756 which shows that they had well 
exceeded their expected residual lifetime from age at 
entry.

Ethics approval
Ethical approval was obtained from the University of 
Central Lancashire’s Faculty of Health Research Eth-
ics Committee which accepted that the study had been 
granted exemption by the Department of Health’s 
National Information Governance Board from the need 
to obtain informed consent from individuals retrospec-
tively to participate in the mortality study. In addition 
the Medical Research Information service at the NHS 
Information Centre granted permission for the study to 
receive vital status data.

Statistical analyses
To test the utility of the reference relative survival time-
scale, two regression analyses were compared using the 
cotton mill workers’ cohort data. The first analysis was 
the conventional analysis that used age as the time-scale 
with left truncation in a stratified Cox model with 24 
strata, representing 12 5-year birth cohorts per gender 
as suggested in the literature [1, 3]. The second was the 
analysis using the reference relative time-scale calculated 
using population mortality rates for England and Wales. 
The numbers of deaths by gender and by age in 5-year 
bands were obtained for each year from 1966 to 2007 and 
the corresponding mid-year population size estimates for 

Table 1  Ten hypothetical participants entering the British Cotton Workers’ Cohort in  December 1966 at  first medical 
examination

These data are typical of participants in the study but do not correspond to any true participants F female, M male , N Never smoked, L 1–14 cigarettes per day, M 
15–24 cigarettes per day, H 25 cigarettes or more per day, F former smoker
a  Forced expiratory volume (FEV1) as a % of the normal FEV1 for a participant of this age, gender and height
b  Forced expiratory volume (FEV1) as a % of forced vital capacity (FVC)
c  Cough and phlegm at least 3 days per week for at least 3 months of the year: A absent, P present
d  Lung disease of cotton workers, A Byssinosis absent, P Byssinosis present at grade ½ to 2

ID Age 
at entry 
(years)

Time 
on study 
(years)

Status 
at exit

Reference 
relative  
time

SMR (%) Gender Smoking 
status

Time worked 
in cotton 
(years)

FEV1%  
predicteda

FEV1% 
of FVCb

Coughc Byssi‑
nosisd

1 25.8 41.2 Alive >0.133 <751 M N 7 91 76 A A

2 28.7 41.2 Alive >0.172 <581 F N 6 101 78 A A

3 40.8 41.2 Alive >1.057 <95 M M 21 93 77 A A

4 45.7 22.6 Died 0.196 512 F N 25 52 83 P P

5 50.6 14.1 Died 0.229 437 F N 33 107 87 A A

6 51.6 24.7 Died 0.413 242 F H 25 115 47 P A

7 52.4 13.3 Died 0.248 403 M L 30 101 59 A A

8 55.2 31.3 Died 1.188 84 F L 35 49 89 P A

9 59.6 27.9 Died 1.355 74 F F 41 63 68 A P

10 60.7 29.3 Alive >1.756 <57 F N 43 74 81 P A
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England and Wales were also obtained [24]. The numbers 
of deaths were divided by the corresponding population 
size and then by 12 to obtain a monthly mortality hazard 
rate. The integral of the hazard rate was computed using 
a time interval of one month as an adequate approxima-
tion. Figure 1 gives an example of the estimated monthly 
mortality hazard for male aged 45 on 1 January 1965. The 
hazard is a step function because mortality was published 
in 5-year bands. The effect of improving longevity due to 
better health and social care is discernible in the declining 
hazard over a 5-year interval at the plateau on each step.

The analyses estimated the hazard ratio  (HR) for light, 
medium, heavy and former smoker relative to non-
smoker together with HRs for other risk factors meas-
ured at baseline. The analyses also estimated the women 
to men relative risk ratios (RRR) for the four baseline cat-
egories of cigarette consumption; light, medium, heavy 
and former smoking. The relative risk ratio was defined 
by RRR = HR of female smokers to female non-smokers/
HR of male smokers to male non-smokers where HR was 
the hazard ratio. The RRRs were the single degree of free-
dom components of the interaction between gender and 
consumption category and were estimated using indica-
tor variables. Both analyses fitted the Cox model, but the 
Weibull and the exponential models were also fitted for 
the survival times on the reference relative time-scale. 
The analyses were performed in the R programming lan-
guage and environment [25].

Simulation study
In order to compare the bias and power of the reference 
relative time-scale to that of chronological age at risk time-
scale a simulation study was carried out. Each simulation 
included all the participants from the illustrative cohort 
together with the participant’s age at entry, gender and date 
of entry to the study being kept fixed at their observed val-
ues. All the participant’s covariate and factor values were 
also kept fixed at their observed values. Each participant’s 
lifetime from date and age of entry was then simulated 
according to a model which calculated the participant’s 
hazard of dying in each calendar month following date of 
entry. For each month, in turn moving forward in time, a 
uniform random variable was generated. The first month, 
in the sequence, for which the random variable was less 
than the monthly hazard was selected as the simulated time 
of death. Once simulation of time of death was completed 
for all participants, a model was fitted by Cox regression 
using the reference relative time-scale and by a stratified 
Cox regression using the age at risk time-scale.

In the simulation, the monthly hazard for each par-
ticipant was calculated from a combination of the model 
parameters and the England and Wales reference popu-
lation monthly hazards. The model assumed that the 

hazard of dying was proportional to smoking status; non-
smoker, light smoker, medium smoker, heavy smoker or 
former smoker with relative parameters α0, α1, α2, α3, α4 
respectively and where α0 = 1. These parameters applied 
to both males and females except in the case of light 
smoking females for whom the relative parameter was 
βα1. In the simulation α0, α1, α2, α3, α4 were kept fixed at 
the values of 1.00, 1.24, 1.83, 2.08 and 0.93. Each simula-
tion was for a fixed value of β in the range 1.0–1.4. The 
actual hazard used in each month was obtained from 
these model parameters and the numbers of participants 
in each gender and smoking category in the illustrative 
cohort. For males, if there were n0, n1, n2, n3, n4 in the 
categories; non-smoker, light smoker, medium smoker, 
heavy smoker and former smoker and the monthly haz-
ard in the reference population was hm then the hazard 
for non-smokers, h0 was computed by.

The hazards for light smokers, medium smokers, heavy 
smokers and former smokers were given by α1h0, α2h0, 
α3h0 and α4h0 respectively. For females the calculation 
of the hazard was analogous except that α1 was replaced 
by βα1. This method of calculating the relative hazards 
had the effect that the average over a cohort with the 
observed mix of smoking grade would equal the refer-
ence population monthly hazard. This method generated 
realistic lifetimes with the appropriate relative hazards 
given by the model parameters. This allowed the two 
methods to be fairly compared in terms of their power to 
detect a value of β greater than 1.0 which would indicate 
a gender difference in the relative risk of light smoking 
and any bias in the estimation of β. It also allowed a check 
on the power of the null value of β = 1. For each value of 
β, 200 simulations were carried out and testing to esti-
mate power used a 5 % significance level for the test.

The simulation also provided an opportunity to com-
pare the methods when the reference population used to 
obtain the reference relative times was not an appropriate 
population for the cohort under study. This was achieved 
by increasing the monthly hazard of dying in the simu-
lation by an additional multiplying factor which was 
an exponential function of age; exp (0.002 ×  age). This 
increased the hazard by about 4 % at age 20 and 13 % by 
age 60. This produced disproportionately shorter simu-
lated lifetimes than in the reference population used to 
obtain the reference relative time-scale.

Results
Illustrative cohort data
A comparison of the fitted Cox model using the refer-
ence relative time-scale with the stratified Cox model 

h0 = hm(n0 + n1 + n2 + n3 + n4)/

(α0n0 + α1n1 + α2n2 + α3n3 + α4n4)



Page 7 of 12Hurley ﻿Emerg Themes Epidemiol  (2015) 12:18 

using chronological age as the time-scale is presented 
in Table  2. Gender main effect was fixed at 1.0 in the 
stratified model due to the choice of stratification which 
included gender-specific strata. Previously, the pro-
portional hazards assumption was tested for the Cox 
model using the reference relative time-scale by calcu-
lating the correlation between the Schoenfeld residuals 
and the transformed survival times and the assumption 
was shown to be satisfied [23]. Overall, there was a good 
measure of agreement between the two approaches in 
the parameter estimates and the 95  % confidence inter-
vals for the risk factors of interest, suggesting that the 
two methods of analysis were comparable.

The fitted model coefficients for two alternative fully 
parametric survival models, the Weibull and the expo-
nential, when fitted to the reference relative times, are 
shown in Table 3. The Weibull was previously identified 
as a well-fitting parametric model for the reference rela-
tive survival times in the cotton mill workers’ study [23]. 
It is clear from the parameter estimates in Table  3 that 
the RRR for light smoking, 1.35 for the Weibull model, 
significantly exceeded the ‘no difference’ value of 1.0 
and this indicates that the relative risk of light smoking 
compared to never having smoked was predicted at one-
third greater for women than for men. Furthermore, a 

lung function at 10 % below the reference standard for a 
person of a given gender, age and height had a parameter 
value 1.07, indicating a significant predicted 7 % increase 
in mortality hazard. This increase was after taking into 
account the effect of smoking by including smoking and 
gender in the model.

The fully-parametric models included a constant term 
and so the predicted percentiles of the survival distribu-
tion were computed. The percentiles were back trans-
formed using the reference population hazards in order 
to build mortality curves as a function of age. This was 
especially easy to execute since a parametric survival 
model had been fitted and demonstrated the advantage 
of the reference relative survival time followed by para-
metric survival modelling. Figure 2 shows an example of 
this application; the effect of the higher risk to women of 
light smoking can be visualised by the narrowing of the 
gender gap compared to non-smoking. Therefore the ref-
erence relative survival approach can satisfy the aim of 
obtaining survival curves as a function of age.

The exponential model shown in Table  3 is identical 
to the model that would have been fitted had Poisson 
regression for IPD data been used [17, 18] and shows 
that the reference relative survival time-scale provides an 
alternative route for carrying out Poisson regression for 

Table 2  Hazard ratios (HR) from the Cox regression model for all-cause mortality to 31 December 2007 using chronologi-
cal age and reference relative time as the time-scales

Chronological age as time-scale stratification  
by birth year and gender

Reference relative time as time-scale

Cox model Cox model

HR 95 % CI P value HR 95 % CI P value

Never smoked 1.00 1.00

Light smoking 1.22 1.01 1.47 0.043 1.21 1.00 1.46 0.055

Medium smoking 1.65 1.35 2.01 <0.001 1.64 1.34 2.00 <0.001

Heavy smoking 1.96 1.46 2.62 <0.001 1.99 1.49 2.65 <0.001

Former smoking 0.90 0.66 1.22 0.481 0.89 0.66 1.22 0.475

Male 1.00 1.00

Female 1.00 1.07 0.89 1.29 0.471

RRR light smoking 1.27 1.00 1.61 0.046 1.35 1.07 1.70 0.012

RRR medium smoking 1.06 0.82 1.38 0.657 1.15 0.89 1.49 0.290

RRR heavy smoking 0.96 0.59 1.54 0.853 1.00 0.63 1.61 0.990

RRR former smoking 1.07 0.66 1.75 0.774 1.10 0.68 1.78 0.705

Byssinosis absent 1.00 1.00

Byssinosis present 1.01 0.90 1.12 0.902 1.04 0.93 1.15 0.535

Cough and phlegm absent 1.00 1.00

Cough and phlegm present 1.10 1.00 1.21 0.061 1.07 0.97 1.18 0.155

One decade in the cotton industry 0.97 0.93 1.02 0.202 0.91 0.88 0.95 <0.001

FEV1: 10 % decrease below normal 1.08 1.05 1.11 <0.001 1.07 1.04 1.10 <0.001

FEV1 to FVC ratio: decrease of 10 % 1.04 0.98 1.10 0.186 1.01 0.96 1.07 0.726
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IPD. The parameter values and their interpretation for 
the exponential model are very similar to those for the 
Weibull. Practitioners who are more comfortable with 
traditional methods can use the reference relative time 
scale and be confident that their results concur with Pois-
son regression and that the results will be similar to anal-
ysis using chronological age.

Simulation study
For the values of the parameter β =  1.20 and β =  1.40, 
the estimated power was very similar when the simulated 
lifetimes were analysed using chronological age at risk as 
time-scale or the reference relative time-scale (Table  4; 
appropriate reference population). For both methods, 
when β = 1.00, the estimated probability of rejecting the 
null hypothesis of log(β) =  0 was similar to the type 1 
error rate of 5 %. In all cases the mean values of the esti-
mates of β were close to the true values and both meth-
ods showed no evidence of bias in estimation.

When lifetimes were simulated somewhat shorter than 
in the reference population, the reference relative time-
scale method performed well and performed similarly to 
the chronological age at risk time-scale in terms of power 
and bias (Table  4; inappropriate population). The simu-
lations thus supported the assertion that the reference 

relative time-scale was a viable alternative to using 
chronological age at risk.

Discussion
Transforming data, to achieve conformity to a para-
metric statistical distribution, is a cornerstone of much 
data analysis and yet surprisingly it is not often used for 
survival data from cohort studies. It has been used fre-
quently in reliability and performance theory where 
there is motivation to determine suitable usage or expo-
sure measures which transform real time to new scales. 
The term ‘operational time’ has been used for a time-
scale obtained by integrating the hazard function of an 
inhomogeneous process [26] and the expression ‘opera-
tional failure time’ has been used in reliability analysis to 
describe a transformed failure time. The transformation 
to the reference relative time-scale described here is a 
transformation to an operational failure time-scale which 
acts to remove a large component of the inhomogene-
ity in the observed survival times by using a reference 
population containing external knowledge of past tempo-
ral and cross-sectional hazard rates as a measure of this 
inhomogeneity. It need not be assumed that the refer-
ence population hazard rates apply directly to the cohort 
participants. Indeed the same rates would not apply if 

Table 3  Hazard ratios (HR) from the Weibull and exponential regression models for all-cause mortality to 31st December 
2007 using reference relative time as the time-scale

* LogL = −1813.7, shape 1.08 (95 % CI 1.04–1.12)

** LogL = −1822.9

Relative time as time-scale Relative time as time-scale

Weibull model* Exponential model**

HR 95 % CI P value HR 95 % CI P value

Never smoked 1.00 1.00

Light smoking 1.21 1.00 1.46 0.051 1.20 0.99 1.45 0.058

Medium smoking 1.68 1.38 2.05 <0.001 1.63 1.34 1.99 <0.001

Heavy smoking 2.01 1.51 2.68 <0.001 1.96 1.47 2.61 <0.001

Former smoking 0.89 0.66 1.21 0.465 0.90 0.66 1.22 0.485

Male 1.00 1.00

Female 1.10 0.92 1.32 0.304 1.08 0.90 1.30 0.383

RRR light smoking 1.35 1.07 1.70 0.012 1.33 1.05 1.68 0.016

RRR medium smoking 1.13 0.87 1.46 0.361 1.13 0.87 1.46 0.351

RRR heavy smoking 0.98 0.61 1.58 0.942 0.98 0.61 1.58 0.943

RRR former smoking 1.11 0.68 1.80 0.681 1.10 0.68 1.78 0.702

Byssinosis absent 1.00

Byssinosis present 1.04 0.93 1.16 0.484 1.04 0.93 1.16 0.524

Cough and phlegm absent 1.00

Cough and phlegm present 1.07 0.97 1.18 0.158 1.08 0.98 1.19 0.142

One decade in the cotton industry 0.91 0.88 0.94 <0.001 0.92 0.89 0.96 <0.001

FEV1: 10 % decrease below normal 1.07 1.04 1.10 <0.001 1.07 1.04 1.10 <0.001

FEV1 to FVC ratio: decrease of 10 % 1.01 0.95 1.07 0.763 1.02 0.96 1.0800 0.571
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the cohort were not healthy individuals but were a group 
with a disease diagnosis. Rather it would be enough if 
the hazards rates could be assumed proportional for the 
removal of homogeneity to succeed. The transformation 
to the reference relative time-scale is a pre-processing of 

the data so that modelling can go ahead without concern 
for complex sub-models for study group demograph-
ics, such as age, or large numbers of strata in a stratified 
model which has concerned data analysts [5]. The mod-
elling effort can focus on the risk factors of interest and 

Fig. 2  Predicted mortality curves, using a Weibull model for relative survival times, for men and women who attained age 45 at 1 January 1965 and 
who never smoked or who smoked 1–14 cigarettes per day (light smoking). Solid lines show mortality for men and broken lines for women

Table 4  Simulation results comparing the estimation of the parameter β using the reference relative time scale and the 
age at risk time scale using 200 simulations

Chronological age as time-scale  
stratification by birth year and gender

Reference relative time as time-scale

Cox model Cox model

True value of β 1.000 1.200 1.400 1.000 1.200 1.400

Appropriate reference population

 Mean estimate of β 1.005 1.204 1.421 1.006 1.204 1.421

 95 % CI lower bound 0.991 1.187 1.402 0.992 1.187 1.402

 95 % CI upper bound 1.019 1.221 1.440 1.021 1.221 1.440

 Estimated power (%) 6.5 42.5 93.5 5.5 44.5 92.5

 95 % CI lower bound (%) 3.5 35.6 89.1 2.8 37.5 87.9

 95 % CI upper bound (%) 10.9 49.7 96.5 9.6 51.7 95.7

Inappropriate reference population

 Mean estimate of β 1.005 1.200 1.399 1.003 1.198 1.398

 95 % CI lower bound 0.992 1.185 1.380 0.990 1.183 1.379

 95 % CI upper bound 1.018 1.216 1.418 1.018 1.213 1.417

 Estimated power (%) 4.5 41.1 92.0 4.5 42.5 92.5

 95 % CI lower bound (%) 2.1 34.1 87.3 2.1 35.6 87.9

 95 % CI upper bound (%) 8.4 48.2 95.4 8.4 49.7 95.7
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parsimonious models can be determined. If there was 
concern that the pre-processing had not been totally 
effective, then additional covariates such as age and age 
squared could be included in the regression model. This 
would provide a test of lack-of-fit since the coefficients 
for these terms should be negligible if the pre-processing 
has achieved its objective. The pre-processing also makes 
it more likely that a suitable parametric survival model 
can be identified and this may provide insight into the 
underlying stochastic mechanisms.

In contrast, it can be argued that a primary objective 
of epidemiology is to understand the complex pattern of 
risk over age and over calendar time and that the removal 
of all or a part of this pattern may hinder rather than 
help meet this objective. If age and calendar time are 
no longer in the regression model then the pattern with 
age and calendar time cannot be visualised in the model 
coefficients. However, comparative patterns with age and 
calendar time can be obtained using a back transforma-
tion of the reference population as has been shown here 
but this requires additional effort beyond interpreting 
the regression coefficients. Also, if age and calendar time 
are included in the regression model fitted after pre-
processing then a good deal of care would be needed in 
their interpretation. It is clear that transformation to the 
reference relative time-scale will not be appropriate in all 
applications and this is a limitation of the methodology.

A further limitation of the methodology as described 
here is that no account has been taken of the preci-
sion of estimation of the reference population hazard 
function. In the illustrative example actual mortality in 
England and Wales was likely to be reasonably well esti-
mated but population size would have a greater degree 
of imprecision and this would hold true for many other 
potential reference populations. As described here, the 
methodology assumes that the reference population 
hazard is measured without error and, if this was in 
doubt, a sensitivity analysis would be needed to confirm 
study findings.

In the illustrative example given here, all covariates and 
factors were determined at baseline when participants 
entered the study. If covariates and factors varied dur-
ing follow-up then the analysis would follow the usual 
method for handling time-varying covariates. The total 
calendar time interval on study for each individual would 
need to be sub-divided into consecutive time windows 
during which the covariates and factors were assumed 
constant. Each portion before the last would be censored 
and the final time window would reflect whether the par-
ticipant finally had the event of interest or was censored 
at exit from the study. Then each time window would 
be separately transformed to the reference relative time 
scale and the regression analysis proceed as usual.

To reiterate, in reliability theory a definition of a ‘good 
time-scale’ has been proposed [10] with four defining 
features; (1) scientific relevance (2) parsimonious and 
accurate description of variation in failure times under 
different conditions (3) a compact statistical distribu-
tion on the transformed time-scale and (4) succinct and 
meaningful summarization of the effects of covariates of 
interest. The reference relative time-scale demonstrated 
these attributes in the illustration given here. The time-
scale had several relevant interpretations, values on the 
scale could be defined for the widely differing individual 
participants, the Weibull provides a compact distribu-
tion on the new time-scale and effects of risk factors 
of interest were succinctly summarised by the model 
coefficients.

The reference relative time-scale discussed here is a 
transformation of the measure of individual relative sur-
vival that has been suggested previously in the literature 
[19]. Subsequently, the concept of relative survival seems 
to have evolved and relative survival is often used now to 
mean only the estimation of the excess mortality due to a 
particular disease or condition within an additive hazards 
model framework [27–30]. Since the disease or condition 
is likely to increase mortality not only from the specific 
condition or disease but also from other causes, all-cause 
mortality provides an easier quantity to measure than 
cause specific mortality. The reference population is used 
as a baseline from which to estimate the excess numbers 
of deaths. In this context, the models fitted are additive 
hazards models but the concept of relative mortality is 
equally applicable to proportional hazards models [10]. 
Where cause specific mortalities are available for the ref-
erence population, a reference relative time-scale can be 
defined for any specific cause and so relative survival, in 
the context described here, can be applied to both cause 
specific and all-cause mortality. Hence, there may be 
applications to the modelling of competing risks since 
a value on each of a number of reference relative time-
scales for different causes of death could be computed 
to provide a vector of multivariate survival data in refer-
ence relative time. Further, the meta-analysis of IPD is 
of increasing importance [31]. The use of the reference 
relative time-scale may have benefit for meta-analysis of 
IPD since cohorts from different locations could each be 
transformed using different reference populations and 
then combined in a single regression analysis provided, 
of course, the same covariates were recorded in each 
location.

The reference relative time scale could be viewed as a 
composite time-scale which merges an age time-scale 
with a calendar time scale. Age–period-cohort (APC) 
models, which index an event count by age, calendar 
period and birth cohort, have an extensive literature [32] 
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and have been of interest because of the recognised fail-
ure of identifiability of effects due to co-linearity. The ref-
erence relative time scale may have applications in APC 
modelling since it reduces the time scales from three to 
two and so models might become identifiable.

The use of a reference population to gain insight into the 
risk factors affecting a study cohort begs the question of 
whether results from the study group can be generalised to 
the reference population. This would seem likely if it could 
be assumed that the study group is, in some sense, a sam-
ple from the reference population, but might the general-
izability be conditional upon certain other assumptions? It 
would be reasonable to use a reference population to create 
a relative time-scale so long as there was a sound belief that 
the hazards in the study group were proportional to those 
in the reference population. If this was the case, would gen-
eralisation to the reference population be valid also?

It may be worthwhile considering whether the defini-
tion of the reference relative time-scale as the integral 
over a reference population hazard could be extended 
to include an additional term under the integral for 
the quality of life of the individual as a function of age. 
The transformation to the reference relative time-scale 
stretches time when the population hazard is high and 
this effect is greater for older compared to younger indi-
viduals. A quality of life function could act as a penalty to 
reduce some of the stretching and would change conclu-
sions regarding risk factors of interest when regression 
models are fitted on the reference relative time-scale. It is 
clear, therefore, from these discussions that the reference 
relative time-scale not only provides a viable alternative 
to modelling chronological age or real time-on-study but 
is an interesting concept in its own right that points the 
way to several avenues of future research which others 
may wish to explore.

Conclusions
The reference relative time-scale was shown to provide a 
viable alternative to the current standard method which 
uses chronological age as the time scale with left trunca-
tion for age at entry and a Cox model stratified on birth 
cohort. Its use led to a simplification of the modelling 
process and the scale possessed the defined features of a 
good time-scale as defined in reliability theory. Simula-
tion suggested that the two methods have similar power 
and are equally unbiased. The reference relative time-
scale has several interpretations and provides a unifying 
concept that links contemporary approaches in survival 
and reliability analysis to the traditional epidemiologic 
methods of Poisson regression and SMRs and can be 
understood as an extension of these traditional methods. 
The community of practitioners has previously failed to 
make this connection.
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