15 research outputs found

    A transit timing analysis of seven RISE light curves of the exoplanet system HAT-P-3

    Get PDF
    We present seven light curves of the exoplanet system HAT-P-3, taken as part of a transit timing programme using the rapid imager to search for exoplanets instrument on the Liverpool Telescope. The light curves are analysed using a Markov chain Monte Carlo algorithm to update the parameters of the system. The inclination is found to be i= 86.75+0.22−0.21 °, the planet-star radius ratio to be Rp/R★= 0.1098+0.0010−0.0012 and the stellar radius to be R★= 0.834+0.018−0.026 R⊙, consistent with previous results but with a significant improvement in the precision. Central transit times and uncertainties for each light curve are also determined, and a residual permutation algorithm is used as an independent check on the errors. The transit times are found to be consistent with a linear ephemeris, and a new ephemeris is calculated as Tc(0) = 245 4856.701 18 ± 0.000 18 HJD and P= 2.899 738 ± 0.000 007 d. Model timing residuals are fitted to the measured timing residuals to place upper mass limits for a hypothetical perturbing planet as a function of the period ratio. These show that we have probed for planets with masses as low as 0.33 and 1.81 M⊕ in the interior and exterior 2:1 resonances, respectively, assuming the planets are initially in circular orbits

    Detecting non-uniform period spacings in the Kepler photometry of gamma Doradus stars: methodology and case studies

    Full text link
    Context. The analysis of stellar oscillations is one of the most reliable ways to probe stellar interiors. Recent space missions such as Kepler have provided us with an opportunity to study these oscillations with unprecedented detail. For many multi-periodic pulsators such as {\gamma} Doradus stars, this led to the detection of dozens to hundreds of oscillation frequencies that could not be found from ground-based observations. Aims. We aim to detect non-uniform period spacings in the Fourier spectra of a sample of {\gamma} Doradus stars observed by Kepler. Such detection is complicated by both the large number of significant frequencies in the space photometry and by overlapping non-equidistant rotationally split multiplets. Methods. Guided by theoretical properties of gravity-mode oscillation of {\gamma} Doradus stars, we developed a period-spacing detection method and applied it to Kepler observations of a few stars, after having tested the performance from simulations. Results. The application of the technique resulted in the clear detection of non-uniform period spacing series for three out of the five treated Kepler targets. Disadvantages of the technique are also discussed, and include the disability to distinguish between different values of the spherical degree and azimuthal order of the oscillation modes without additional theoretical modelling. Conclusions. Despite the shortcomings, the method is shown to allow solid detections of period spacings for {\gamma} Doradus stars, which will allow future asteroseismic analyses of these stars.Comment: 10 pages, 13 figures, 2 tables. Accepted for publication in Astronomy & Astrophysic

    Gravity-mode period spacings as seismic diagnostic for a sample of gamma Doradus stars from Kepler space photometry and high-resolution ground-based spectroscopy

    Get PDF
    Gamma Doradus stars (hereafter gamma Dor stars) are gravity-mode pulsators of spectral type A or F. Such modes probe the deep stellar interior, offering a detailed fingerprint of their structure. Four-year high-precision space-based Kepler photometry of gamma Dor stars has become available, allowing us to study these stars with unprecedented detail. We selected, analysed, and characterized a sample of 67 gamma Dor stars for which we have Kepler observations available. For all the targets in the sample we assembled high-resolution spectroscopy to confirm their F-type nature. We found fourteen binaries, among which four single-lined binaries, five double-lined binaries, two triple systems and three binaries with no detected radial velocity variations. We estimated the orbital parameters whenever possible. For the single stars and the single-lined binaries, fundamental parameter values were determined from spectroscopy. We searched for period spacing patterns in the photometric data and identified this diagnostic for 50 of the stars in the sample, 46 of which are single stars or single-lined binaries. We found a strong correlation between the spectroscopic vsini and the period spacing values, confirming the influence of rotation on gamma Dor-type pulsations as predicted by theory. We also found relations between the dominant g-mode frequency, the longest pulsation period detected in series of prograde modes, vsini, and log Teff.Comment: 61 pages, 61 figures, 6 tables, accepted for publication in ApJ

    Detection of gravity modes in the massive binary V380 Cyg from Kepler spacebased photometry and high-resolution spectroscopy

    Get PDF
    We report the discovery of low-amplitude gravity-mode oscillations in the massive binary star V380 Cyg, from 180 d of Kepler custom-aperture space photometry and 5 months of high-resolution high signal-to-noise spectroscopy. The new data are of unprecedented quality and allowed to improve the orbital and fundamental parameters for this binary. The orbital solution was subtracted from the photometric data and led to the detection of periodic intrinsic variability with frequencies of which some are multiples of the orbital frequency and others are not. Spectral disentangling allowed the detection of line-profile variability in the primary. With our discovery of intrinsic variability interpreted as gravity mode oscillations, V380 Cyg becomes an important laboratory for future seismic tuning of the near-core physics in massive B-type stars.Comment: 5 pages, 4 figures, 2 tables. Accepted for publication in MNRAS Letter

    HD 181068: A Red Giant in a Triply-Eclipsing Compact Hierarchical Triple System

    Get PDF
    Hierarchical triple systems comprise a close binary and a more distant component. They are important for testing theories of star formation and of stellar evolution in the presence of nearby companions. We obtained 218 days of Kepler photometry of HD 181068 (magnitude of 7.1), supplemented by groundbased spectroscopy and interferometry, which show it to be a hierarchical triple with two types of mutual eclipses. The primary is a red giant that is in a 45-day orbit with a pair of red dwarfs in a close 0.9-day orbit. The red giant shows evidence for tidally-induced oscillations that are driven by the orbital motion of the close pair. HD 181068 is an ideal target for studies of dynamical evolution and testing tidal friction theories in hierarchical triple systems.Comment: 22 pages, including supporting on-line material. This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science Vol. 332 no. 6026 pp. 216-218 (8 April 2011), doi:10.1126/science.1201762. http://www.sciencemag.org/content/332/6026/216.ful

    Two Type Ic supernovae in low-metallicity, dwarf galaxies: diversity of explosions

    Full text link
    We present BVRI photometry and optical spectroscopy of two Type Ic supernovae SN 2007bg and SN 2007bi discovered in wide-field, non-targeted surveys and associated with sub-luminous blue dwarf galaxies. Neither SNe 2007bg nor 2007bi were found in association with an observed GRB, but are found to inhabit similar low-metallicity environments as GRB associated supernovae. The radio-bright SN 2007bg is hosted by an extremely sub-luminous galaxy of magnitude MB = -12.4+/-0.6 mag with an estimated oxygen abundance of 12+log(O/H) = 8.18+/-0.17. The lightcurve of SN 2007bg displays one of the fastest post-maximum decline rates of all broad-lined Type Ic supernovae known to date and, when combined with its high expansion velocities, a high kinetic energy to ejected mass ratio (E_K/Mej ~ 2.7). We show that SN 2007bi is possibly the most luminous Type Ic known, reaching a peak magnitude of MR ~ 21.3 mag and displays a remarkably slow decline, following the radioactive decay rate of 56Co to 56Fe throughout the course of its observed lifetime. From a simple model of the bolometric light curve of SN 2007bi we estimate a total ejected 56Ni mass of M_Ni = 3.5 - 4.5 solar masses, the largest 56Ni mass measured in the ejecta of a supernova to date. There are two models that could explain the high luminosity and large ejected 56Ni mass. One is a pair-instability supernova (PISN) which has been predicted to occur for massive stars at low metallicities. We measure the host galaxy metallicity of SN 2007bi to be 12 + log(O/H) = 8.15+/-0.15 which is somewhat high to be consistent with the PISN model. An alternative is the core-collapse of a C+O star of 20 - 40 solar masses which is the core of a star of originally 50 - 100 solar masses. (Abridged)Comment: Minor changes. 19 pages, 21 Figures. Accepted by A&

    KIC 10080943: An eccentric binary system containing two pressure- and gravity-mode hybrid pulsators

    Get PDF
    γ Doradus and δ Scuti pulsators cover the transition region between low mass and massive main-sequence stars, and as such, are critical for testing stellar models. When they reside in binary systems, we can combine two independent methods to derive critical information, such as precise fundamental parameters to aid asteroseismic modelling. In the Kepler light curve of KIC 10080943, clear signatures of gravity-and pressure-mode pulsations have been found. Ground-based spectroscopy revealed this target to be a double-lined binary system. Aims. We present the analysis of four years of Kepler photometry and high-resolution spectroscopy to derive observational constraints with which to evaluate theoretical predictions of the stellar structure and evolution for intermediate-mass stars. Methods. We used the method of spectral disentangling to determine atmospheric parameters for both components and derive the orbital elements. With phoebe, we modelled the ellipsoidal variation and reflection signal of the binary in the light curve and used classical Fourier techniques to analyse the pulsation modes. Results. We show that the eccentric binary system KIC 10080943 contains two hybrid pulsators with masses M1 = 2.0 ± 0.1 M⊙ and M2 = 1.9 ± 0.1 M⊙, with radii R1 = 2.9 ± 0.1 R⊙ and R2 = 2.1 ± 0.2 R⊙. We detect rotational splitting in the g and p modes for both stars and use them to determine a first rough estimate of the core-to-surface rotation rates for the two components, which will be improved by future detailed seismic modelling

    The discovery of a planetary candidate around the evolved low-mass Kepler giant star HD 175370

    Get PDF
    We report on the discovery of a planetary companion candidate with a minimum mass M sin i = 4.6 ± 1.0 MJupiter orbiting the K2 III giant star HD 175370 (KIC 007940959). This star was a target in our program to search for planets around a sample of 95 giant stars observed with Kepler. This detection was made possible using precise stellar radial velocity measurements of HD 175370 taken over five years and four months using the coudé echelle spectrograph of the 2-m Alfred Jensch Telescope and the fibre-fed echelle spectrograph HERMES of the 1.2-m Mercator Telescope. Our radial velocity measurements reveal a periodic (349.5 ± 4.5 days) variation with a semi-amplitude K = 133 ± 25 ms-1, superimposed on a long-term trend. A low-mass stellar companion with an orbital period of ˜88 years in a highly eccentric orbit and a planet in a Keplerian orbit with an eccentricity e = 0.22 are the most plausible explanation of the radial velocity variations. However, we cannot exclude the existence of stellar envelope pulsations as a cause for the low-amplitude radial velocity variations and only future continued monitoring of this system may answer this uncertainty. From Kepler photometry we find that HD 175370 is most likely a low-mass red-giant branch or asymptotic-giant branch star
    corecore