21 research outputs found

    Letter of interest for a neutrino beam from Protvino to KM3NeT/ORCA

    Get PDF
    The Protvino accelerator facility located in the Moscow region, Russia, is in a good position to offer a rich experimental research program in the field of neutrino physics. Of particular interest is the possibility to direct a neutrino beam from Protvino towards the KM3NeT/ORCA detector, which is currently under construction in the Mediterranean Sea 40 km offshore Toulon, France. This proposal is known as P2O. Thanks to its baseline of 2595 km, this experiment would yield an unparalleled sensitivity to matter effects in the Earth, allowing for the determination of the neutrino mass ordering with a high level of certainty after only a few years of running at a modest beam intensity of ≈ 90 kW. With a prolonged exposure (≈1500 kWyear), a 2σ sensitivity to the leptonic CP-violating Dirac phase can be achieved. A second stage of the experiment, comprising a further intensity upgrade of the accelerator complex and a densified version of the ORCA detector (Super-ORCA), would allow for up to a 6σ sensitivity to CP violation and a 10º−17º resolution on the CP phase after 10 years of running with a 450 kW beam, competitive with other planned experiments. The initial composition and energy spectrum of the neutrino beam would need to be monitored by a near detector, to be constructed several hundred meters downstream from the proton beam target. The same neutrino beam and near detector set-up would also allow for neutrino-nucleus cross section measurements to be performed. A short-baseline sterile neutrino search experiment would also be possible

    The Control Unit of the KM3NeT Data Acquisition System

    Get PDF
    The KM3NeT Collaboration runs a multi-site neutrino observatory in the Mediterranean Sea. Water Cherenkov particle detectors, deep in the sea and far off the coasts of France and Italy, are already taking data while incremental construction progresses. Data Acquisition Control software is operating off-shore detectors as well as testing and qualification stations for their components. The software, named Control Unit, is highly modular. It can undergo upgrades and reconfiguration with the acquisition running. Interplay with the central database of the Collaboration is obtained in a way that allows for data taking even if Internet links fail. In order to simplify the management of computing resources in the long term, and to cope with possible hardware failures of one or more computers, the KM3NeT Control Unit software features a custom dynamic resource provisioning and failover technology, which is especially important for ensuring continuity in case of rare transient events in multi-messenger astronomy. The software architecture relies on ubiquitous tools and broadly adopted technologies and has been successfully tested on several operating systems

    Dependence of atmospheric muon flux on seawater depth measured with the first KM3NeT detection units: The KM3NeT Collaboration

    Get PDF
    KM3NeT is a research infrastructure located in the Mediterranean Sea, that will consist of two deep-sea Cherenkov neutrino detectors. With one detector (ARCA), the KM3NeT Collaboration aims at identifying and studying TeV–PeV astrophysical neutrino sources. With the other detector (ORCA), the neutrino mass ordering will be determined by studying GeV-scale atmospheric neutrino oscillations. The first KM3NeT detection units were deployed at the Italian and French sites between 2015 and 2017. In this paper, a description of the detector is presented, together with a summary of the procedures used to calibrate the detector in-situ. Finally, the measurement of the atmospheric muon flux between 2232–3386 m seawater depth is obtained

    gSeaGen: The KM3NeT GENIE-based code for neutrino telescopes

    Get PDF
    Program summary Program Title: gSeaGen CPC Library link to program files: http://dx.doi.org/10.17632/ymgxvy2br4.1 Licensing provisions: GPLv3 Programming language: C++ External routines/libraries: GENIE [1] and its external dependencies. Linkable to MUSIC [2] and PROPOSAL [3]. Nature of problem: Development of a code to generate detectable events in neutrino telescopes, using modern and maintained neutrino interaction simulation libraries which include the state-of-the-art physics models. The default application is the simulation of neutrino interactions within KM3NeT [4]. Solution method: Neutrino interactions are simulated using GENIE, a modern framework for Monte Carlo event generators. The GENIE framework, used by nearly all modern neutrino experiments, is considered as a reference code within the neutrino community. Additional comments including restrictions and unusual features: The code was tested with GENIE version 2.12.10 and it is linkable with release series 3. Presently valid up to 5 TeV. This limitation is not intrinsic to the code but due to the present GENIE valid energy range. References: [1] C. Andreopoulos at al., Nucl. Instrum. Meth. A614 (2010) 87. [2] P. Antonioli et al., Astropart. Phys. 7 (1997) 357. [3] J. H. Koehne et al., Comput. Phys. Commun. 184 (2013) 2070. [4] S. Adrián-Martínez et al., J. Phys. G: Nucl. Part. Phys. 43 (2016) 084001.The gSeaGen code is a GENIE-based application developed to efficiently generate high statistics samples of events, induced by neutrino interactions, detectable in a neutrino telescope. The gSeaGen code is able to generate events induced by all neutrino flavours, considering topological differences between tracktype and shower-like events. Neutrino interactions are simulated taking into account the density and the composition of the media surrounding the detector. The main features of gSeaGen are presented together with some examples of its application within the KM3NeT project.French National Research Agency (ANR) ANR-15-CE31-0020Centre National de la Recherche Scientifique (CNRS)European Union (EU)Institut Universitaire de France (IUF), FranceIdEx program, FranceUnivEarthS Labex program at Sorbonne Paris Cite ANR-10-LABX-0023 ANR-11-IDEX-000502Paris Ile-de-France Region, FranceShota Rustaveli National Science Foundation of Georgia (SRNSFG), Georgia FR-18-1268German Research Foundation (DFG)Greek Ministry of Development-GSRTIstituto Nazionale di Fisica Nucleare (INFN)Ministry of Education, Universities and Research (MIUR)PRIN 2017 program Italy NAT-NET 2017W4HA7SMinistry of Higher Education, Scientific Research and Professional Training, MoroccoNetherlands Organization for Scientific Research (NWO) Netherlands GovernmentNational Science Centre, Poland 2015/18/E/ST2/00758National Authority for Scientific Research (ANCS), RomaniaMinisterio de Ciencia, Innovacion, Investigacion y Universidades (MCIU): Programa Estatal de Generacion de Conocimiento, Spain (MCIU/FEDER) PGC2018-096663-B-C41 PGC2018-096663-A-C42 PGC2018-096663-BC43 PGC2018-096663-B-C44Severo Ochoa Centre of Excellence and MultiDark Consolider (MCIU), Junta de Andalucia, Spain SOMM17/6104/UGRGeneralitat Valenciana: Grisolia, Spain GRISOLIA/2018/119GenT, Spain CIDEGENT/2018/034La Caixa Foundation LCF/BQ/IN17/11620019EU: MSC program, Spain 71367

    Sensitivity of the KM3NeT/ARCA neutrino telescope to point-like neutrino sources

    Get PDF
    Instrumentatio

    Impact of the tumour bed effect on microenvironment, radiobiological hypoxia and the outcome of fractionated radiotherapy of human FaDu squamous-cell carcinoma growing in the nude mouse.

    No full text
    Contains fulltext : 143798.pdf (publisher's version ) (Closed access)PURPOSE: To investigate the impact of the tumour bed effect (TBE) on histological parameters of the micromilieu, radiobiological hypoxic fraction and local control after fractionated irradiation in FaDu squamous-cell carcinoma in the nude mouse. This tumour has previously shown a clear-cut TBE caused by increased necrotic cell loss at a constant cell production rate in the viable tumour compartment. MATERIALS AND METHODS: Human FaDu tumours were studied in the NMRI nude mouse. Tumours were transplanted either into unirradiated subcutaneous (s.c.) tissues (controls) or s.c. tissues pre-irradiated with 12.5 Gy (TBE group). In both groups we measured the volume doubling time (VDT), potential doubling time (T(pot)), relative necrotic area, and in the viable tumour compartment the relative vascular area (9F1 mAb), relative hypoxic area (NITP or pimonidazole), relative perfused area (Hoechst 33342), and the perfused fraction of vasculature. The tumour control dose 50% (TCD 50), radiobiological hypoxic fraction (rHF) and dose-modifying factors (DMF) for the comparison of tumours in the TBE and control groups were determined from local tumour control data after treatment with single doses under ambient conditions or under clamp hypoxia, and after irradiation with 30 fractions under ambient conditions within 6 weeks using maximum-likelihood analysis. RESULTS: A clear-cut TBE (VDT = 4.0 days (95%CI 2.9;4.4) for the control group versus 7.2 days (6.4;8.9) for the TBE group; p <0.0001) caused by increased necrosis (mean relative necrotic area of 12% (5;20)) versus 33% (10;41); p = 0.07) at a constant cell production rate (T(pot) = 2.2 days (1.4;2.3) versus 2.2 days (1.7;2.6); p = 0.30) was confirmed. Histological analysis of the micromilieu within the vital subarea revealed no systematic differences between the TBE and control groups. The rHF of 2% (0.1;27) for control tumours was lower than the 15% (95% CI 2;91) for the TBE group, but this difference was nonsignificant (p = 0.12). Compared with control tumours, the TCD50 for irradiation under clamped hypoxia was in a statistical trend lower for tumours in the TBE group (DMF 1.11 (0.98;1.28), p = 0.09). After fractionated irradiation, tumours of the TBE group were significantly more radiosensitive (TCD50 56.6 Gy (46;70) versus 78.7 Gy (63;100); p = 0.003). CONCLUSIONS: The results on FaDu tumours growing in pre-irradiated tissues indicate that increased necrosis caused by impairment of the vascular supply may increase the radiosensitivity of tumours treated by fractioned irradiation

    Coracoid pain test: a new clinical sign of shoulder adhesive capsulitis

    No full text
    Patients with adhesive capsulitis were clinically evaluated to establish whether pain elicited by pressure on the coracoid area may be considered a pathognomonic sign of this condition. The study group included 85 patients with primary adhesive capsulitis, 465 with rotator cuff tear, 48 with calcifying tendonitis, 16 with glenohumeral arthritis, 66 with acromioclavicular arthropathy and 150 asymptomatic subjects. The test was considered positive when pain on the coracoid region was more severe than 3 points (VAS scale) with respect to the acromioclavicular joint and the anterolateral subacromial area. The test was positive in 96.4% of patients with adhesive capsulitis and in 11.1%, 14.5%, 6.2% and 10.6% of patients with the other four conditions, respectively. A positive result was obtained in 3/150 normal subjects (2%). With respect to the other four diseases, the test had a sensitivity of 0.96 and a specificity ranging from 0.87 to 0.89. With respect to controls, the sensitivity and specificity were 0.99 and 0.98, respectively. The coracoid pain test could be considered as a pathognomonic sign in physical examination of patients with stiff and painful shoulder
    corecore