73 research outputs found

    CIRENE Air-Sea Interactions in the Seychelles-Chagos Thermocline Ridge Region

    Get PDF
    A field experiment in the southwestern Indian Ocean provides new insights into ocean-atmosphere interactions in a key climatic region

    EUREC⁎A

    Get PDF
    The science guiding the EURECA campaign and its measurements is presented. EURECA comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EURECA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EURECA explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EURECA's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement

    EUREC⁎A

    Get PDF
    The science guiding the EURECA campaign and its measurements is presented. EURECA comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EURECA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EURECA explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EURECA's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement

    Agroecological management of cucurbit-infesting fruit fly: a review

    Full text link

    Untersuchungen ïżœber die Bildung der peritrophischen Membran bei den Insekten

    No full text

    How important are diapycnal mixing and geothermal heating for the deep circulation of the Western Mediterranean?

    No full text
    The dissipation rate of turbulent kinetic energy Δ and the associated diapycnal turbulent mixing is inferred from a set of microstructure observations collected over several cruises from year 2012 to 2014. The geographical distribution of Δ highlights several regions of enhanced levels of turbulence ranging from 10−9 to 10−6 W kg−1: the Sicily Channel, the Corsica Channel, and the Ligurian Sea. Elsewhere, Δ was small, often below 10−10 W kg−1. Below 1300 m, geothermal heating provides three-fold more buoyancy than small-scale turbulence. Geothermal heating and turbulent diffusion provide enough buoyancy to balance 15% to 50% of a mean yearly deep water formation rate of 0.9 to 0.3 sverdrup (106 m3/s), respectively. The remaining part has to eventually overflow through the Strait of Gibraltar

    Improved resistance management for durable disease control: a case study of phoma stem canker of oilseed rape (Brassica napus)

    No full text
    Specific resistance loci in plants are generally very efficient in controlling development of pathogen populations. However, because of the strong selection pressure exerted, these resistances are often not durable. The probability of a resistance breakdown in a pathosystem depends on the evolutionary potential of the pathogen which is affected by: (i) the type of resistance (monogenic and/or polygenic), (ii) the type of reproduction of the pathogen (sexual and/or asexual), (iii) the capacity of the pathogen for dispersal, (iv) the resistance deployment strategy (pyramiding of specific resistances, mixture of cultivars, spatio-temporal alternation), (v) the size of the pathogen population, which is affected by control methods and environmental conditions. We propose the concept of Integrated Avirulence Management (IAM) to enhance the durability of specific resistances. IAM involves a strategy to limit the selection pressure exerted on pathogen populations and, at the same ti! me, reduce the size of pathogen populations by combining cultural, physical, biological or chemical methods of control. Several breakdowns of resistance specific to Leptosphaeria maculans, the causal agent of phoma stem canker have occurred in Europe and in Australia. This review paper examines control methods to limit the size of L. maculans populations and discusses how this limitation of population size can enhance the durability of specific resistances. It proposes pathways for the development of a spatially explicit model to define IAM strategies. Simulation results are presented to demonstrate the potential uses of such a model for the oilseed rape/L. maculans pathosyste

    La protection agroécologique appliquée

    No full text
    National audienceLe sol est un milieu complexe. Son Ă©tude et l’acquisition de rĂ©fĂ©rences solides sur ses interactions avec les cultures s’inscrit dans la durĂ©e. En pratique, il est d’ores et dĂ©jĂ  possible d’appliquer certains principes agroĂ©cologiques Ă  la protection contre les bioagresseurs pendant la phase d’implantation, en les adaptant Ă  chaque situation et aux objectifs visĂ©s
    • 

    corecore