17 research outputs found

    Strong contribution of diatom resting spores to deep-sea carbon transfer in naturally iron-fertilized waters downstream of South Georgia

    Get PDF
    Biogeochemical and diatom export fluxes are presented from two bathypelagic sediment trap deployments in the Antarctic Zone of the Southern Ocean. One of the sediment traps was deployed in very productive, naturally iron-fertilized waters downstream of South Georgia (P3, 2000 m) and compared to a deployment in moderately productive waters upstream of the island system (P2, 1500 m). At both sites significant diatom export events occurred in spring (November) and contained mostly empty cells that were associated with low particulate organic carbon (POC) fluxes. A summer export pulse occurred one month later at P2 (end February/March) compared to P3 (end January). Diatom fluxes at P3 were one order of magnitude higher than at P2, a difference mainly attributed to the short and intense export of resting spores from Chaetoceros Hyalochaete and Thalassiosira antarctica species. Aside from these resting spores, diatom export assemblages at both sites were dominated by empty Fragilariopsis kerguelensis frustules. The fraction of diatoms exported as empty frustules was considerably lower at P3 (52%) than P2 (91%). This difference was related to the flux of intact diatom resting spores at P3 and may partially explain the lower Si:C export stoichiometry observed at P3 (1.1) compared to P2 (1.5). Through the enumeration of full diatom frustules and subsequent biomass calculations we estimate that diatom resting spores account for 42% of annual POC flux in the productive waters downstream of South Georgia. At both sites the contribution of diatom vegetative stages to POC fluxes was considerably lower (<5%). From these analyses we conclude that resting spore export contributes towards the slightly higher bathypelagic (POC) flux at P3 (40.6 mmol m−2 y−1) compared to P2 (26.4 mmol m−2 y−1). We compared our sediment trap records with previously published diatom assemblage data from the mixed layer and surface sediments (3760 m) around South Georgia. The relative proportion of diatom resting spores within diatom assemblages increases as a function of depth and is explained by selective preservation of their robust frustules. Our study highlights the significance of diatom resting spore export as a carbon vector out of the mixed layer. Furthermore, the contribution or resting spores to POC flux in the bathypelagic ocean and sediments suggests they play a particularly important role in sequestering biologically fixed CO2 over climatically relevant timescales

    The role of diatom resting spores in pelagic–benthic coupling in the Southern Ocean

    Get PDF
    Natural iron fertilization downstream of Southern Ocean island plateaus supports large phytoplankton blooms and promotes carbon export from the mixed layer. In addition to sequestering atmospheric CO2, the biological carbon pump also supplies organic matter (OM) to deep-ocean ecosystems. Although the total flux of OM arriving at the seafloor sets the energy input to the system, the chemical nature of OM is also of significance. However, a quantitative framework linking ecological flux vectors to OM composition is currently lacking. In the present study we report the lipid composition of export fluxes collected by five moored sediment traps deployed in contrasting productivity regimes of Southern Ocean island systems (Kerguelen, Crozet and South Georgia) and compile them with quantitative data on diatom and faecal pellet fluxes. At the three naturally iron-fertilized sites, the relative contribution of labile lipids (mono- and polyunsaturated fatty acids, unsaturated fatty alcohols) is 2–4 times higher than at low productivity sites. There is a strong attenuation of labile components as a function of depth, irrespective of productivity. The three island systems also display regional characteristics in lipid export. An enrichment of zooplankton dietary sterols, such as C27Δ5, at South Georgia is consistent with high zooplankton and krill biomass in the region and the importance of faecal pellets to particulate organic carbon (POC) flux. There is a strong association of diatom resting spore fluxes that dominate productive flux regimes with energy-rich unsaturated fatty acids. At the Kerguelen Plateau we provide a statistical framework to link seasonal variation in ecological flux vectors and lipid composition over a complete annual cycle. Our analyses demonstrate that ecological processes in the upper ocean, e.g. resting spore formation and grazing, not only impact the magnitude and stoichiometry of the Southern Ocean biological pump, but also regulate the composition of exported OM and the nature of pelagic–benthic coupling

    Annual particulate matter and diatom export in a high nutrient, low chlorophyll area of the Southern Ocean

    No full text
    International audienceUpper ocean plankton assemblages are known to influence the export of carbon and biominerals from the mixed layer. However, relationships between plankton community structure and the magnitude and stoichiometry of export remain poorly characterized. We present data on biogeochemical and diatom export fluxes from the annual deployment of a sediment trap in a High Nutrient, Low Chlorophyll (HNLC) area upstream of the Kerguelen Plateau (KERFIX station). The weak and tidal-driven circulation provided favorable conditions for a quantitative analysis of export processes. Particulate organic carbon (POC) fluxes were highest in spring and summer. Biogenic silica (BSi) fluxes displayed similar seasonal patterns, although BSi:POC ratios were elevated in winter. Fragilariopsis kerguelensis dominated the annual diatom export assemblage (59.8% of the total valve flux). We identified clusters of diatom species that were positively or negatively correlated to the BSi:POC ratio. Our results indicate that the differential role of certain diatom species for carbon and silicon export, previously identified from iron-fertilized productive areas, is also valid in HNLC regimes. Although annual POC export below the mixed layer of the HNLC site is twofold lower that the one previously reported in a naturally iron-fertilized area of the Kerguelen Plateau, the fraction of seasonal net community production exported is similar at both sites (~1.5%). These findings suggest that natural iron fertilization increases the strength but not the efficiency of carbon export from the mixed layer

    Export fluxes in a naturally iron-fertilized area of the Southern Ocean – Part 1: Seasonal dynamics of particulate organic carbon export from a moored sediment trap

    No full text
    A sediment trap moored in the naturally iron-fertilized Kerguelen Plateau in the Southern Ocean provided an annual record of particulate organic carbon and nitrogen fluxes at 289 m. At the trap deployment depth, current speeds were typically low (~ 10 cm s<sup>−1</sup>) and primarily tidal-driven (M2 tidal component). Although advection was weak, the sediment trap may have been subject to hydrodynamical and biological (swimmer feeding on trap funnel) biases. Particulate organic carbon (POC) flux was generally low (< 0.5 mmol m<sup>−2</sup> d<sup>−1</sup>), although two episodic export events (< 14 days) of 1.5 mmol m<sup>−2</sup> d<sup>−1</sup> were recorded. These increases in flux occurred with a 1-month time lag from peaks in surface chlorophyll and together accounted for approximately 40% of the annual flux budget. The annual POC flux of 98.2 ± 4.4 mmol m<sup>−2</sup> yr<sup>−1</sup> was low considering the shallow deployment depth but comparable to independent estimates made at similar depths (~ 300 m) over the plateau, and to deep-ocean (> 2 km) fluxes measured from similarly productive iron-fertilized blooms. Although undertrapping cannot be excluded in shallow moored sediment trap deployment, we hypothesize that grazing pressure, including mesozooplankton and mesopelagic fishes, may be responsible for the low POC flux beneath the base of the winter mixed layer. The importance of plankton community structure in controlling the temporal variability of export fluxes is addressed in a companion paper

    Planktic foraminifer and coccolith contribution to carbonate export fluxes over the central Kerguelen Plateau

    Get PDF
    International audienceWe report the contribution of planktic foraminifers and coccoliths to the particulate inorganic carbon (PIC) export fluxes collected over an annual cycle (October 2011/September 2012) on the central Kerguelen Plateau in the Antarctic Zone (AAZ) south of the Polar Front (PF). The seasonality of PIC flux was decoupled from surface chlorophyll a concentration and particulate organic carbon (POC) fluxes and was characterized by a late summer (February) maximum. This peak was concomitant with the highest satellite-derived sea surface PIC and corresponded to a Emiliania huxleyi coccoliths export event that accounted for 85% of the annual PIC export. The foraminifer contribution to the annual PIC flux was much lower (15%) and dominated by Turborotalita quinqueloba and Neogloboquadrina pachyderma. Foraminifer export fluxes were closely related to the surface chlorophyll a concentration, suggesting food availability as an important factor regulating the foraminifer's biomass. We compared size-normalized test weight (SNW) of the foraminifers with previously published SNW from the Crozet Islands using the same methodology and found no significant difference in SNW between sites for a given species. However, the SNW was significantly species-specific with a threefold increase from T. quinqueloba to Globigerina bulloides. The annual PIC:POC molar ratio of 0.07 was close to the mean ratio for the global ocean and lead to a low carbonate counter pump effect (~5%) compared to a previous study north of the PF (6–32%). We suggest that lowers counter pump effect south of the PF despite similar productivity levels is due to a dominance of coccoliths in the PIC fluxes and a difference in the foraminifers species assemblage with a predominance of polar species with lower SNW
    corecore