1,617 research outputs found

    τ\tau-Flavour Violation at the LHC

    Get PDF
    We study the conditions required for χ2→χ+τ±Ό∓\chi_2 \to \chi + \tau^\pm \mu^\mp decays to yield observable tau flavour violation at the LHC, for cosmologically interesting values of the neutralino relic density. These condition can be achieved in the framework of a SU(5) model with a see-saw mechanism that allows a possible coexistence of a LHC signal a low prediction for radiative LFV decays.Comment: 7 pages, 5 figures, Prepared for the proceedings of the workshop: "LC09: e+e−e^+ e^- Physics at the TeV Scale and the Dark Matter Connection", 21-24 September 2009, Perugia, Ital

    PANIC: the new panoramic NIR camera for Calar Alto

    Full text link
    PANIC is a wide-field NIR camera, which is currently under development for the Calar Alto observatory (CAHA) in Spain. It uses a mosaic of four Hawaii-2RG detectors and covers the spectral range from 0.8-2.5 micron(z to K-band). The field-of-view is 30x30 arcmin. This instrument can be used at the 2.2m telescope (0.45arcsec/pixel, 0.5x0.5 degree FOV) and at the 3.5m telescope (0.23arcsec/pixel, 0.25x0.25 degree FOV). The operating temperature is about 77K, achieved by liquid Nitrogen cooling. The cryogenic optics has three flat folding mirrors with diameters up to 282 mm and nine lenses with diameters between 130 mm and 255 mm. A compact filter unit can carry up to 19 filters distributed over four filter wheels. Narrow band (1%) filters can be used. The instrument has a diameter of 1.1 m and it is about 1 m long. The weight limit of 400 kg at the 2.2m telescope requires a light-weight cryostat design. The aluminium vacuum vessel and radiation shield have wall thicknesses of only 6 mm and 3 mm respectively.Comment: This paper has been presented in the SPIE of Astronomical Telescopes and Instrumentation 2008 in Marseille (France

    Direct Magnetic Evidence, Functionalization, and Low-Temperature Magneto-Electron Transport in Liquid-Phase Exfoliated FePS3

    Full text link
    Magnetism and the existence of magnetic order in a material is determined by its dimensionality. In this regard, the recent emergence of magnetic layered van der Waals (vdW) materials provides a wide playground to explore the exotic magnetism arising in the two-dimensional (2D) limit. The magnetism of 2D flakes, especially antiferromagnetic ones, however, cannot be easily probed by conventional magnetometry techniques, being often replaced by indirect methods like Raman spectroscopy. Here, we make use of an alternative approach to provide direct magnetic evidence of few-layer vdW materials, including antiferromagnets. We take advantage of a surfactant-free, liquid-phase exfoliation (LPE) method to obtain thousands of few-layer FePS3 flakes that can be quenched in a solvent and measured in a conventional SQUID magnetometer. We show a direct magnetic evidence of the antiferromagnetic transition in FePS3 few-layer flakes, concomitant with a clear reduction of the NĂ©el temperature with the flake thickness, in contrast with previous Raman reports. The quality of the LPE FePS3 flakes allows the study of electron transport down to cryogenic temperatures. The significant through-flake conductance is sensitive to the antiferromagnetic order transition. Besides, an additional rich spectra of electron transport excitations, including secondary magnetic transitions and potentially magnon-phonon hybrid states, appear at low temperatures. Finally, we show that the LPE is additionally a good starting point for the mass covalent functionalization of 2D magnetic materials with functional molecules. This technique is extensible to any vdW magnetic familyE.B. acknowledges funds from Ministerio de Ciencia e InnovaciĂłn in Spain (RTI2018-096075-A-C22, RYC2019- 028429-I). E.M.P. thanks the Spanish Ministerio de Ciencia e InnovaciĂłn (PID2020-116661RB-I00) and Comunidad de Madrid (P2018/NMT-4367). M.G.H. and A.C.-G. acknowledge funds from European Union Horizon 2020 research and innovation program (Graphene Core3-Grant agreement no. 881603 Graphene-based disruptive technologies), EU FLAGERA through the project To2Dox (JTC-2019-009), and Comunidad de Madrid through the project CAIRO-CM project (Y2020/NMT-6661). A.C.-G. also acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 755655, ERC-StG 2017 project 2D-TOPSENSE) and the Ministry of Science and Innovation (Spain) through the project PID2020-115566RB-I00. M.L.R.G. acknowledges support by the Spanish Ministry of Science and Innovation through Research Project PID 2020- 113753RB-100. The National Centre for Electron Microscopy (ELECMI National Singular Scientific Facility) is also acknowledge for provision of access to corrected aberration microscopy facilities. CzechNanoLab Research Infrastructure supported by MEYS CR (LM2018110) is acknowledge

    Generation and efficacy assessment of a chimeric antigen E2-CD154 as a marker Classical Swine Fever Virus subunit vaccine produced in HEK 293 and CHO K1 mammalian cells

    Get PDF
    The E2 glycoprotein is the major antigen that induces neutralizing and protective antibodies in CSFV infected pigs, thus a marker vaccine based on this antigen appears to be the most promising alternative to induce a protective immune response against CSFV. However, the structural characteristics of this protein state the necessity to produce glycoprotein E2 in more complex expression systems such as mammalian cells. In this study, we use a lentivirus-based gene delivery system to establish a stable recombinant HEK 293 and CHO K1 cell line for the expression of E2 fused to porcine CD154 as immunostimulatory molecule. In a first experiment, E2his and E2-CD154 were compared in an immunization trial. The average antibody titers in E2his immunized pigs was in the range of 30-40% of blocking and the average antibody titers for E2-CD154 are above 40% at day 14, meaning that the chimeric antigen is able to raise antibodies at positive levels in a shorter time. Additionally, the blocking rate of E2his vaccinated group in ELISA ranged between 66-88% and in the E2-CD154- vaccinated groups ranged between 86-92%, one week after booster immunization. The NPLA antibody titers also increased greatly. Later on, the protective capacity of purified E2-CD154 glycoprotein was demonstrated in a challenge experiment in pigs using a biphasic immunization schedule with 25 and 50 ÎŒg. The immunized animals developed neutralizing antibodies that were protective when the animals were faced to a challenge with 105 LD50 of ‘‘Margarita’’ CSFV highly pathogenic strain. No clinical signs of the disease were detected in the vaccinated pigs. Unvaccinated pigs in the control group exhibited symptoms of CSF at 3–4 days after challenge and were euthanized from 7–9 days when the pigs became moribund. These results indicate that E2-CD154 produced in recombinant HEK 293 and CHOK1cell line is a high quality candidate for the development of a safe and effective CSFV subunit vaccine. In the next steps, pilot and production scale, E2-CD154 expression levels should be increased in 10 to 50 fold, arriving to a very attractive productive platform for an implementation of a commercial subunit vaccine against CSF

    Ultrahigh-energy neutrino follow-up of Gravitational Wave events GW150914 and GW151226 with the Pierre Auger Observatory

    Get PDF
    On September 14, 2015 the Advanced LIGO detectors observed their first gravitational-wave (GW) transient GW150914. This was followed by a second GW event observed on December 26, 2015. Both events were inferred to have arisen from the merger of black holes in binary systems. Such a system may emit neutrinos if there are magnetic fields and disk debris remaining from the formation of the two black holes. With the surface detector array of the Pierre Auger Observatory we can search for neutrinos with energy above 100 PeV from point-like sources across the sky with equatorial declination from about -65 deg. to +60 deg., and in particular from a fraction of the 90% confidence-level (CL) inferred positions in the sky of GW150914 and GW151226. A targeted search for highly-inclined extensive air showers, produced either by interactions of downward-going neutrinos of all flavors in the atmosphere or by the decays of tau leptons originating from tau-neutrino interactions in the Earth's crust (Earth-skimming neutrinos), yielded no candidates in the Auger data collected within ±500\pm 500 s around or 1 day after the coordinated universal time (UTC) of GW150914 and GW151226, as well as in the same search periods relative to the UTC time of the GW candidate event LVT151012. From the non-observation we constrain the amount of energy radiated in ultrahigh-energy neutrinos from such remarkable events.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    Azimuthal asymmetry in the risetime of the surface detector signals of the Pierre Auger Observatory

    Get PDF
    The azimuthal asymmetry in the risetime of signals in Auger surface detector stations is a source of information on shower development. The azimuthal asymmetry is due to a combination of the longitudinal evolution of the shower and geometrical effects related to the angles of incidence of the particles into the detectors. The magnitude of the effect depends upon the zenith angle and state of development of the shower and thus provides a novel observable, (sec⁡ξ)max(\sec \theta)_\mathrm{max}, sensitive to the mass composition of cosmic rays above 3×10183 \times 10^{18} eV. By comparing measurements with predictions from shower simulations, we find for both of our adopted models of hadronic physics (QGSJETII-04 and EPOS-LHC) an indication that the mean cosmic-ray mass increases slowly with energy, as has been inferred from other studies. However, the mass estimates are dependent on the shower model and on the range of distance from the shower core selected. Thus the method has uncovered further deficiencies in our understanding of shower modelling that must be resolved before the mass composition can be inferred from (sec⁡ξ)max(\sec \theta)_\mathrm{max}.Comment: Replaced with published version. Added journal reference and DO

    Combined search for the quarks of a sequential fourth generation

    Get PDF
    Results are presented from a search for a fourth generation of quarks produced singly or in pairs in a data set corresponding to an integrated luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in 2011. A novel strategy has been developed for a combined search for quarks of the up and down type in decay channels with at least one isolated muon or electron. Limits on the mass of the fourth-generation quarks and the relevant Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a simple extension of the standard model with a sequential fourth generation of fermions. The existence of mass-degenerate fourth-generation quarks with masses below 685 GeV is excluded at 95% confidence level for minimal off-diagonal mixing between the third- and the fourth-generation quarks. With a mass difference of 25 GeV between the quark masses, the obtained limit on the masses of the fourth-generation quarks shifts by about +/- 20 GeV. These results significantly reduce the allowed parameter space for a fourth generation of fermions.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the t t-bar production cross section in the dilepton channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The t t-bar production cross section (sigma[t t-bar]) is measured in proton-proton collisions at sqrt(s) = 7 TeV in data collected by the CMS experiment, corresponding to an integrated luminosity of 2.3 inverse femtobarns. The measurement is performed in events with two leptons (electrons or muons) in the final state, at least two jets identified as jets originating from b quarks, and the presence of an imbalance in transverse momentum. The measured value of sigma[t t-bar] for a top-quark mass of 172.5 GeV is 161.9 +/- 2.5 (stat.) +5.1/-5.0 (syst.) +/- 3.6(lumi.) pb, consistent with the prediction of the standard model.Comment: Replaced with published version. Included journal reference and DO
    • 

    corecore