274 research outputs found
Mapping the Asymmetric Thick Disk: II Distance, Size and Mass of the Hercules Thick Disk Cloud
The Hercules Thick Disk Cloud (Larsen et al. 2008) was initially discovered
as an excess in the number of faint blue stars between quadrants 1 and 4 of the
Galaxy. The origin of the Cloud could be an interaction with the disk bar, a
triaxial thick disk or a merger remnant or stream. To better map the spatial
extent of the Cloud along the line of sight, we have obtained multi-color UBVR
photometry for 1.2 million stars in 63 fields approximately 1 square degree
each. Our analysis of the fields beyond the apparent boundaries of the excess
have already ruled out a triaxial thick disk as a likely explanation (Larsen,
Humphreys and Cabanela 2010) In this paper we present our results for the star
counts over all of our fields, determine the spatial extent of the over density
across and along the line of sight, and estimate the size and mass of the
Cloud. Using photometric parallaxes, the stars responsible for the excess are
between 1 and 6 kiloparsecs from the Sun, 0.5 -- 4 kpc above the Galactic
plane, and extends approximately 3-4 kiloparsecs across our line of sight. It
is thus a major substructure in the Galaxy. The distribution of the excess
along our sight lines corresponds with the density contours of the bar in the
Disk, and its most distant stars are directly over the bar. We also see through
the Cloud to its far side. Over the entire 500 square degrees of sky containing
the Cloud, we estimate more than 5.6 million stars and 1.9 million solar masses
of material. If the over density is associated with the bar, it would exceed
1.4 billion stars and more than than 50 million solar masses. Finally, we argue
that the Hercules-Aquila Cloud (Belokurov et al. 2007) is actually the Hercules
Thick Disk Cloud.Comment: 52 pages, 13 figure
Mapping the Asymmetric Thick Disk I. A Search for Triaxiality
A significant asymmetry in the distribution of faint blue stars in the inner
Galaxy, Quadrant 1 (l = 20 to 45 degrees) compared to Quadrant 4 was first
reported by Larsen & Humphreys (1996). Parker et al (2003, 2004) greatly
expanded the survey to determine its spatial extent and shape and the
kinematics of the affected stars. This excess in the star counts was
subsequently confirmed by Juric et al. (2008) using SDSS data. Possible
explanations for the asymmetry include a merger remnant, a triaxial Thick Disk,
and a possible interaction with the bar in the Disk. In this paper we describe
our program of wide field photometry to map the asymmetry to fainter magnitudes
and therefore larger distances. To search for the signature of triaxiality, we
extended our survey to higher Galactic longitudes. We find no evidence for an
excess of faint blue stars at l > 55 degrees including the faintest magnitude
interval. The asymmetry and star count excess in Quadrant 1 is thus not due to
a triaxial Thick Disk.Comment: 36 pages, 8 figures. Accepted by Astronomical Journa
Mid-Infrared interferometry of dust around massive evolved stars
We report long-baseline interferometric measurements of circumstellar dust
around massive evolved stars with the MIDI instrument on the Very Large
Telescope Interferometer and provide spectrally dispersed visibilities in the
8-13 micron wavelength band. We also present diffraction-limited observations
at 10.7 micron on the Keck Telescope with baselines up to 8.7 m which explore
larger scale structure. We have resolved the dust shells around the late type
WC stars WR 106 and WR 95, and the enigmatic NaSt1 (formerly WR 122), suspected
to have recently evolved from a Luminous Blue Variable (LBV) stage. For AG Car,
the protoypical LBV in our sample, we marginally resolve structure close to the
star, distinct from the well-studied detached nebula. The dust shells around
the two WC stars show fairly constant size in the 8-13 micron MIDI band, with
gaussian half-widths of ~ 25 to 40 mas. The compact dust we detect around NaSt1
and AG Car favors recent or ongoing dust formation.
Using the measured visibilities, we build spherically symmetric radiative
transfer models of the WC dust shells which enable detailed comparison with
existing SED-based models. Our results indicate that the inner radii of the
shells are within a few tens of AU from the stars. In addition, our models
favor grain size distributions with large (~ 1 micron) dust grains. This
proximity of the inner dust to the hot central star emphasizes the difficulty
faced by current theories in forming dust in the hostile environment around WR
stars. Although we detect no direct evidence for binarity for these objects,
dust production in a colliding-wind interface in a binary system is a feasible
mechanism in WR systems under these conditions.Comment: 21 pages, 4 tables, 13 figures. Accepted for publication in the
Astrophysical Journa
ALMA Long Baseline Observations of the Strongly Lensed Submillimeter Galaxy HATLAS J090311.6+003906 at z=3.042
We present initial results of very high resolution Atacama Large
Millimeter/submillimeter Array (ALMA) observations of the =3.042
gravitationally lensed galaxy HATLAS J090311.6+003906 (SDP.81). These
observations were carried out using a very extended configuration as part of
Science Verification for the 2014 ALMA Long Baseline Campaign, with baselines
of up to 15 km. We present continuum imaging at 151, 236 and 290 GHz, at
unprecedented angular resolutions as fine as 23 milliarcseconds (mas),
corresponding to an un-magnified spatial scale of ~180 pc at z=3.042. The ALMA
images clearly show two main gravitational arc components of an Einstein ring,
with emission tracing a radius of ~1.5". We also present imaging of CO(10-9),
CO(8-7), CO(5-4) and H2O line emission. The CO emission, at an angular
resolution of ~170 mas, is found to broadly trace the gravitational arc
structures but with differing morphologies between the CO transitions and
compared to the dust continuum. Our detection of H2O line emission, using only
the shortest baselines, provides the most resolved detection to date of thermal
H2O emission in an extragalactic source. The ALMA continuum and spectral line
fluxes are consistent with previous Plateau de Bure Interferometer and
Submillimeter Array observations despite the impressive increase in angular
resolution. Finally, we detect weak unresolved continuum emission from a
position that is spatially coincident with the center of the lens, with a
spectral index that is consistent with emission from the core of the foreground
lensing galaxy.Comment: 9 pages, 5 figures and 3 tables, accepted for publication in the
Astrophysical Journal Letter
ALMA Observations of Asteroid 3 Juno at 60 Kilometer Resolution
We present Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm
continuum images of the asteroid 3 Juno obtained with an angular resolution of
0.042 arcseconds (60 km at 1.97 AU). The data were obtained over a single 4.4
hr interval, which covers 60% of the 7.2 hr rotation period, approximately
centered on local transit. A sequence of ten consecutive images reveals
continuous changes in the asteroid's profile and apparent shape, in good
agreement with the sky projection of the three-dimensional model of the
Database of Asteroid Models from Inversion Techniques. We measure a geometric
mean diameter of 259pm4 km, in good agreement with past estimates from a
variety of techniques and wavelengths. Due to the viewing angle and inclination
of the rotational pole, the southern hemisphere dominates all of the images.
The median peak brightness temperature is 215pm13 K, while the median over the
whole surface is 197pm15 K. With the unprecedented resolution of ALMA, we find
that the brightness temperature varies across the surface with higher values
correlated to the subsolar point and afternoon areas, and lower values beyond
the evening terminator. The dominance of the subsolar point is accentuated in
the final four images, suggesting a reduction in the thermal inertia of the
regolith at the corresponding longitudes, which are possibly correlated to the
location of the putative large impact crater. These results demonstrate ALMA's
potential to resolve thermal emission from the surface of main belt asteroids,
and to measure accurately their position, geometric shape, rotational period,
and soil characteristics.Comment: 8 pages, 3 figures, 2 tables, accepted for publication in the
Astrophysical Journal Letter
On the nature of the galactic early-B hypergiants
Despite their importance to a number of astrophysical fields, the lifecycles
of very massive stars are still poorly defined. In order to address this
shortcoming, we present a detailed quantitative study of the physical
properties of four early-B hypergiants (BHGs); Cyg OB2 #12, zeta Sco, HD190603
and BP Cru. These are combined with an analysis of their long-term
spectroscopic and photometric behaviour in order to determine their
evolutionary status. The long-term datasets revealed that they are remarkably
stable over long periods (>40yr), with the possible exception of zeta Sco prior
to the 20th century, in contrast to the typical excursions that characterise
luminous blue variables (LBVs). Zeta Sco, HD190603 and BP Cru possess physical
properties intermediate between B supergiants and LBVs; we therefore suggest
that BHGs are the immediate descendants and progenitors (respectively) of such
stars (for initial masses in the range ~30-60Msun). In contrast, while the wind
properties of Cyg OB2 #12 are consistent with this hypothesis, the combination
of extreme luminosity and spectroscopic mass (~110Msun) and comparatively low
temperature means it cannot be accommodated in such a scheme. Likewise, despite
its co-location with several LBVs above the Humphreys-Davidson (HD) limit, the
lack of long term variability and its unevolved chemistry apparently excludes
such an identification. Since such massive stars are not expected to evolve to
such cool temperatures, the properties of Cyg OB2 #12 are difficult to
understand under current evolutionary paradigms. [ABRIDGED]Comment: 36 pages, 19 figures (of which 17 pages are online supplemental
material). Accepted for publication in Astronomy and Astrophysic
Ultraviolet disinfection robots to improve hospital cleaning: Real promise or just a gimmick?
The global COVID-19 pandemic due to the novel coronavirus SARS-CoV-2 has challenged the availability of traditional surface disinfectants. It has also stimulated the production of ultraviolet-disinfection robots by companies and institutions. These robots are increasingly advocated as a simple solution for the immediate disinfection of rooms and spaces of all surfaces in one process and as such they seem attractive to hospital management, also because of automation and apparent cost savings by reducing cleaning staff. Yet, there true potential in the hospital setting needs to be carefully evaluated. Presently, disinfection robots do not replace routine (manual) cleaning but may complement it. Further design adjustments of hospitals and devices are needed to overcome the issue of shadowing and free the movement of robots in the hospital environment. They might in the future provide validated, reproducible and documented disinfection processes. Further technical developments and clinical trials in a variety of hospitals are warranted to overcome the current limitations and to find ways to integrate this novel technology in to the hospitals of to-day and the future
First Results from High Angular Resolution ALMA Observations Toward the HL Tau Region
We present Atacama Large Millimeter/submillimeter Array (ALMA) observations
from the 2014 Long Baseline Campaign in dust continuum and spectral line
emission from the HL Tau region. The continuum images at wavelengths of 2.9,
1.3, and 0.87 mm have unprecedented angular resolutions of 0.075 arcseconds (10
AU) to 0.025 arcseconds (3.5 AU), revealing an astonishing level of detail in
the circumstellar disk surrounding the young solar analogue HL Tau, with a
pattern of bright and dark rings observed at all wavelengths. By fitting
ellipses to the most distinct rings, we measure precise values for the disk
inclination (46.72pm0.05 degrees) and position angle (+138.02pm0.07 degrees).
We obtain a high-fidelity image of the 1.0 mm spectral index (), which
ranges from in the optically-thick central peak and two
brightest rings, increasing to 2.3-3.0 in the dark rings. The dark rings are
not devoid of emission, we estimate a grain emissivity index of 0.8 for the
innermost dark ring and lower for subsequent dark rings, consistent with some
degree of grain growth and evolution. Additional clues that the rings arise
from planet formation include an increase in their central offsets with radius
and the presence of numerous orbital resonances. At a resolution of 35 AU, we
resolve the molecular component of the disk in HCO+ (1-0) which exhibits a
pattern over LSR velocities from 2-12 km/s consistent with Keplerian motion
around a ~1.3 solar mass star, although complicated by absorption at low
blue-shifted velocities. We also serendipitously detect and resolve the nearby
protostars XZ Tau (A/B) and LkHa358 at 2.9 mm.Comment: 11 pages, 5 figures, 2 tables, accepted for publication in the
Astrophysical Journal Letter
An Overview of the 2014 ALMA Long Baseline Campaign
A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to
make accurate images with resolutions of tens of milliarcseconds, which at
submillimeter (submm) wavelengths requires baselines up to ~15 km. To develop
and test this capability, a Long Baseline Campaign (LBC) was carried out from
September to late November 2014, culminating in end-to-end observations,
calibrations, and imaging of selected Science Verification (SV) targets. This
paper presents an overview of the campaign and its main results, including an
investigation of the short-term coherence properties and systematic phase
errors over the long baselines at the ALMA site, a summary of the SV targets
and observations, and recommendations for science observing strategies at long
baselines. Deep ALMA images of the quasar 3C138 at 97 and 241 GHz are also
compared to VLA 43 GHz results, demonstrating an agreement at a level of a few
percent. As a result of the extensive program of LBC testing, the highly
successful SV imaging at long baselines achieved angular resolutions as fine as
19 mas at ~350 GHz. Observing with ALMA on baselines of up to 15 km is now
possible, and opens up new parameter space for submm astronomy.Comment: 11 pages, 7 figures, 2 tables; accepted for publication in the
Astrophysical Journal Letters; this version with small changes to
affiliation
Amyloid-Associated Nucleic Acid Hybridisation
Nucleic acids promote amyloid formation in diseases including Alzheimer's
and Creutzfeldt-Jakob disease. However, it remains unclear whether the close
interactions between amyloid and nucleic acid allow nucleic acid secondary
structure to play a role in modulating amyloid structure and function. Here we
have used a simplified system of short basic peptides with alternating
hydrophobic and hydrophilic amino acid residues to study nucleic acid - amyloid
interactions. Employing biophysical techniques including X-ray fibre
diffraction, circular dichroism spectroscopy and electron microscopy we show
that the polymerized charges of nucleic acids concentrate and enhance the
formation of amyloid from short basic peptides, many of which would not
otherwise form fibres. In turn, the amyloid component binds nucleic acids and
promotes their hybridisation at concentrations below their solution
Kd, as shown by time-resolved FRET studies. The
self-reinforcing interactions between peptides and nucleic acids lead to the
formation of amyloid nucleic acid (ANA) fibres whose properties are distinct
from their component polymers. In addition to their importance in disease and
potential in engineering, ANA fibres formed from prebiotically-produced peptides
and nucleic acids may have played a role in early evolution, constituting the
first entities subject to Darwinian evolution
- …