Nucleic acids promote amyloid formation in diseases including Alzheimer's
and Creutzfeldt-Jakob disease. However, it remains unclear whether the close
interactions between amyloid and nucleic acid allow nucleic acid secondary
structure to play a role in modulating amyloid structure and function. Here we
have used a simplified system of short basic peptides with alternating
hydrophobic and hydrophilic amino acid residues to study nucleic acid - amyloid
interactions. Employing biophysical techniques including X-ray fibre
diffraction, circular dichroism spectroscopy and electron microscopy we show
that the polymerized charges of nucleic acids concentrate and enhance the
formation of amyloid from short basic peptides, many of which would not
otherwise form fibres. In turn, the amyloid component binds nucleic acids and
promotes their hybridisation at concentrations below their solution
Kd, as shown by time-resolved FRET studies. The
self-reinforcing interactions between peptides and nucleic acids lead to the
formation of amyloid nucleic acid (ANA) fibres whose properties are distinct
from their component polymers. In addition to their importance in disease and
potential in engineering, ANA fibres formed from prebiotically-produced peptides
and nucleic acids may have played a role in early evolution, constituting the
first entities subject to Darwinian evolution