118 research outputs found

    Assessment of Soil Structure and Root Patterns by Means of Micro-X-ray Computed Tomography in Temperate Grassland Sites

    Get PDF
    Grassland sites are important ecosystems delivering essential ecosystem services such as carbon storage and filtering of water. Adequate management necessitates a better understanding of soil ecological processes in grassland ecosystems. Of special interest is the relationship between soil structure and root development. In a project within the Biodiversity Exploratory Initiative (http://www.biodiversity-exploratories.de), undisturbed soil cores from 31 grassland plots from Swabian Alb Biodiversity exploratory in Germany were investigated by means of X-ray micro computed tomography. This allows the simultaneous determination of soil physical and root parameters in one sample. VG StudioMax® version 2.1 was used to apply a combination of histogram analysis and spatial transformation to distinguish between solids, root system, and pore space. The results of this study reveal close relationships between the soil physical state and root development in grassland soil. Roots have been identified as important contributors to the prevention of soil compaction. Whereas soil compaction is a major threat to soil functions and ecosystem services, which should be mitigated with enhanced awareness of root growth, e.g. with the right choice of varieties, implementation of legumes, adapted management

    Introduction

    Get PDF
    Since the 1990s, Albania has aimed to introduce democratic values into its legislation. This process can come to fruition only by the recognition and protection of private property. As a result, a new Civil Code was enacted at the beginning of the 1990s through intensive collaboration between Albanian and foreign scholars. Book II of the Albanian Civil Code of 1994 highlights the importance of private property. This book fills the gap in the national and international scientific literature since there is no scientific contribution written in English that examines the development of the Albanian law of property showing the similarities and differences between the Albanian and the Italian civil codes. Another novelty rests on its identification of the rules of the Albanian Civil Codes of 1929 and of 1982 that regulate the various legal institutional parts of the property law. Furthermore, this research summarizes the EU impact on Albanian property law by examining the differences between the legal institutions established at the supranational level such as Dir. 2014/60/EU, Dir. 2008/122/EC, Dir. 1346/2000/EC, and Reg. 2015/848 with the current Albanian system. In the conclusions, this research demonstrates that the Albanian law of property of 1994 is similar, sometimes identical, to the rules established in the Italian Civil Code of 1942

    Investigation of antibacterial and antiinflammatory activities of proanthocyanidins from pelargonium sidoides dc root extract

    Get PDF
    The study explores antibacterial, antiinflammatory and cytoprotective capacity of Pelargonium sidoides DC root extract (PSRE) and proanthocyanidin fraction from PSRE (PACN) under conditions characteristic for periodontal disease. Following previous finding that PACN exerts stronger suppression of Porphyromonas gingivalis compared to the effect on commensal Streptococcus salivarius, the current work continues antibacterial investigation on Staphylococcus aureus, Staphylococcus epidermidis, Aggregatibacter actinomycetemcomitans and Escherichia coli. PSRE and PACN are also studied for their ability to prevent gingival fibroblast cell death in the presence of bacteria or bacterial lipopolysaccharide (LPS), to block LPS-or LPS + IFNγ-induced release of inflammatory mediators, gene expression and surface antigen presentation. Both PSRE and PACN were more efficient in suppressing Staphylococcus and Aggregatibacter compared to Escherichia, prevented A. actinomycetemcomitans-and LPS-induced death of fibroblasts, decreased LPS-induced release of interleukin-8 and prostaglandin E2 from fibroblasts and IL-6 from leukocytes, blocked expression of IL-1β, iNOS, and surface presentation of CD80 and CD86 in LPS + IFNγ-treated macrophages, and IL-1β and COX-2 expression in LPS-treated leukocytes. None of the investigated substances affected either the level of secretion or expression of TNFα. In conclusion, PSRE, and especially PACN, possess strong antibacterial, antiinflammatory and gingival tissue protecting properties under periodontitis-mimicking conditions and are suggestable candidates for treatment of the disease

    A study on wear evaluation of railway wheels based on multibody dynamics and wear computation

    No full text
    The wear evolution of railway wheels is a very important issue in railway engineering. In the past, the reprofiling intervals of railway vehicle steel wheels have been scheduled according to designers' experience. Today, more reliable and accurate tools in predicting wheel wear evolution and wheelset lifetime can be used in order to achieve economical and safety benefits. In this work, a computational tool that is able to predict the evolution of the wheel profiles for a given railway system, as a function of the distance run, is presented. The strategy adopted consists of using a commercial multibody software to study the railway dynamic problem and a purpose-built code for managing its pre- and post-processing data in order to compute the wear. The tool is applied here to realistic operation scenarios in order to assess the effect of some service conditions on the wheel wear progression

    CXCR3 identifies human naive CD8+ T cells with enhanced effector differentiation potential

    Get PDF
    In mice, the ability of naive T (TN) cells to mount an effector response correlates with TCR sensitivity for self-derived Ags, which can be quantified indirectly by measuring surface expression levels of CD5. Equivalent findings have not been reported previously in humans. We identified two discrete subsets of human CD8+ TN cells, defined by the absence or presence of the chemokine receptor CXCR3. The more abundant CXCR3+ TN cell subset displayed an effector-like transcriptional profile and expressed TCRs with physicochemical characteristics indicative of enhanced interactions with peptide-HLA class I Ags.Moreover, CXCR3+ TN cells frequently produced IL-2 and TNF in response to nonspecific activation directly ex vivo and differentiated readily into Ag-specific effector cells in vitro. Comparative analyses further revealed that human CXCR3+ TN cells were transcriptionally equivalent to murine CXCR3+ TN cells, which expressed high levels of CD5. These findings provide support for the notion that effector differentiation is shaped by heterogeneity in the preimmune repertoire of human CD8+ T cells

    Altered mitochondrial metabolism in the insulin-resistant heart.

    Get PDF
    Obesity-induced insulin resistance and type 2 diabetes mellitus can ultimately result in various complications, including diabetic cardiomyopathy. In this case, cardiac dysfunction is characterized by metabolic disturbances such as impaired glucose oxidation and an increased reliance on fatty acid (FA) oxidation. Mitochondrial dysfunction has often been associated with the altered metabolic function in the diabetic heart, and may result from FA-induced lipotoxicity and uncoupling of oxidative phosphorylation. In this review, we address the metabolic changes in the diabetic heart, focusing on the loss of metabolic flexibility and cardiac mitochondrial function. We consider the alterations observed in mitochondrial substrate utilization, bioenergetics and dynamics, and highlight new areas of research which may improve our understanding of the cause and effect of cardiac mitochondrial dysfunction in diabetes. Finally, we explore how lifestyle (nutrition and exercise) and pharmacological interventions can prevent and treat metabolic and mitochondrial dysfunction in diabetes.COST Action MitoEAGL

    COVID-eVax, an electroporated DNA vaccine candidate encoding the SARS-CoV-2 RBD, elicits protective responses in animal models

    Get PDF
    The COVID-19 pandemic caused by SARS-CoV-2 has made the development of safe and effective vaccines a critical priority. To date, four vaccines have been approved by European and American authorities for preventing COVID-19, but the development of additional vaccine platforms with improved supply and logistics profiles remains a pressing need. Here we report the preclinical evaluation of a novel COVID-19 vaccine candidate based on the electroporation of engineered, synthetic cDNA encoding a viral antigen in the skeletal muscle. We constructed a set of prototype DNA vaccines expressing various forms of the SARS-CoV-2 spike (S) protein and assessed their immunogenicity in animal models. Among them, COVID-eVax—a DNA plasmid encoding a secreted monomeric form of SARS-CoV-2 S protein receptor-binding domain (RBD)—induced the most potent anti-SARS-CoV-2 neutralizing antibody responses (including against the current most common variants of concern) and a robust T cell response. Upon challenge with SARS-CoV-2, immunized K18-hACE2 transgenic mice showed reduced weight loss, improved pulmonary function, and lower viral replication in the lungs and brain. COVID-eVax conferred significant protection to ferrets upon SARS-CoV-2 challenge. In summary, this study identifies COVID-eVax as an ideal COVID-19 vaccine candidate suitable for clinical development. Accordingly, a combined phase I-II trial has recently started

    Expression of CD11c Is Associated with Unconventional Activated T Cell Subsets with High Migratory Potential

    Get PDF
    Ajudes rebudes: Marie Curie Career Integration Grant; Dexeus Foundation for Women's Health Research; i Contratos Ramón y CajalCD11c is an α integrin classically employed to define myeloid dendritic cells. Although there is little information about CD11c expression on human T cells, mouse models have shown an association of CD11c expression with functionally relevant T cell subsets. In the context of genital tract infection, we have previously observed increased expression of CD11c in circulating T cells from mice and women. Microarray analyses of activated effector T cells expressing CD11c derived from naïve mice demonstrated enrichment for natural killer (NK) associated genes. Here we find that murine CD11c+ T cells analyzed by flow cytometry display markers associated with non-conventional T cell subsets, including γδ T cells and invariant natural killer T (iNKT) cells. However, in women, only γδ T cells and CD8+ T cells were enriched within the CD11c fraction of blood and cervical tissue. These CD11c+ cells were highly activated and had greater interferon (IFN)-γ secretory capacity than CD11c- T cells. Furthermore, circulating CD11c+ T cells were associated with the expression of multiple adhesion molecules in women, suggesting that these cells have high tissue homing potential. These data suggest that CD11c expression distinguishes a population of circulating T cells during bacterial infection with innate capacity and mucosal homing potential

    KEYLINK: towards a more integrative soil representation for inclusion in ecosystem scale models. I. review and model concept

    Get PDF
    The relatively poor simulation of the below-ground processes is a severe drawback for many ecosystem models, especially when predicting responses to climate change and management. For a meaningful estimation of ecosystem production and the cycling of water, energy, nutrients and carbon, the integration of soil processes and the exchanges at the surface is crucial. It is increasingly recognized that soil biota play an important role in soil organic carbon and nutrient cycling, shaping soil structure and hydrological properties through their activity, and in water and nutrient uptake by plants through mycorrhizal processes. In this article, we review the main soil biological actors (microbiota, fauna and roots) and their effects on soil functioning. We review to what extent they have been included in soil models and propose which of them could be included in ecosystem models. We show that the model representation of the soil food web, the impact of soil ecosystem engineers on soil structure and the related effects on hydrology and soil organic matter (SOM) stabilization are key issues in improving ecosystem-scale soil representation in models. Finally, we describe a new core model concept (KEYLINK) that integrates insights from SOM models, structural models and food web models to simulate the living soil at an ecosystem scale
    corecore